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Intrinsically disorder regions (IDRs) lack a stable structure, yet perform biological functions. The 
functions of IDRs include mediating interactions with other molecules, including proteins, DNA, or 
RNA and entropic functions, including domain linkers. Computational predictors provide residue-
level indications of function for disordered proteins, which contrasts with the need to functionally 
annotate the thousands of experimentally and computationally discovered IDRs. In this work, we 
investigate the feasibility of using residue-level prediction methods for region-level function 
predictions. For an initial examination of the multiple function region-level prediction problem, we 
constructed a dataset of (likely) single function IDRs in proteins that are dissimilar to the training 
datasets of the residue-level function predictors. We find that available residue-level prediction 
methods are only modestly useful in predicting multiple region-level functions. Classification is 
enhanced by simultaneous use of multiple residue-level function predictions and is further improved 
by inclusion of amino acids content extracted from the protein sequence. We conclude that 
multifunction prediction for IDRs is feasible and benefits from the results produced by current 
residue-level function predictors, however, it has to accommodate inaccuracy in functional 
annotations. 

Keywords: Intrinsically disordered proteins; Protein function; Protein-protein interactions; Protein-
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1.  Introduction 

Intrinsically disordered regions (IDRs) in proteins lack a stable three-dimension structure under 
physiological conditions, instead existing as ensembles of conformations [1-3]. Despite this lack of 
structure, IDRs perform many and varied biological functions using mechanisms distinct from the 
mechanisms of structured proteins [4]. Further, estimates suggest that IDRs are extremely common 
in nature, with 25 to 40% of eukaryotic proteins containing IDRs [5-7]. While IDRs are common, 
only a small number are annotated with biological functions. For example, the DisProt database [8], 
which curates known IDRs and their functions, contains only 803 proteins. This lack of data is 
compounded by the difficulty of using structure-based homology techniques to transfer annotations 
to uncharacterized proteins; extremely high identity is required for IDRs homology (>80% identity) 
[9] relative to that used for structured proteins (e.g. >30% identity). This calls for computational 
methods for both locating IDRs and, just as importantly, determining their functions. 

Prediction of disorder-associated functions is still in its infancy [10]. The first disorder function 
to gain popularity as a prediction target was protein-binding functions and several predictors for this 
have been developed to date [11-18]. Other functions have been slow to follow; we are only aware 
of one method for the prediction of DNA-binding and RNA-binding and another for predicting 
linkers [19]. The need for disorder-specific function prediction has been demonstrated; they are 
complementary to the predictions for the same type of function for structured regions [13].  
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Disorder function predictors are universally designed to predict function at the residue level [11-
17, 19]. While this provides a good resolution to function prediction, this approach creates some 
difficulties. Primary among these is the mismatch to conventional annotation; IDR databases 
typically annotate functions of IDRs rather than attributing functions to individual residues [8, 9, 
20]. Predicting function at the level of regions, rather than residues, matches available experimental 
data and annotation practices, and provides valuable functional context for the millions of putative 
IDRs that are available in the MobiDB [9, 21] and D2P2 [22] resources. 

In this work, we investigated the feasibility of using residue level predictors of disorder function 
to classify IDRs according to their functions. To our knowledge, this work is the first of its kind. 
For this investigation, a dataset of IDRs for several function types (protein-, DNA-, and RNA-
binding and linker regions) was built. This selection of functions is dictated by the availability of 
residue-level predictors of these functions. Our goal is to devise an approach to adapt residue-level 
function predictions to region-level function predictions and to demonstrate the feasibility of 
prediction-based annotation of several functions using multiple residue-level function predictions. 

2.  Materials and Methods 

2.1.  Data collection 

The regions used in this work were collected from proteins deposited in the DisProt database [8] 
and the Protein Data Bank (PDB) [23], respectively. To create this dataset, an initial set of 799 
disorder-containing proteins from DisProt and 1421 protein chains from PDB was considered. We 
use the entire DisProt, except for proteins with the disorder annotations flagged as ambiguous. The 
sequences from PDB must have high resolution structure (< 2Å), cover a complete protein chain, 
and exclude structures in complex with other molecules and peptides (chains < 30 residues long). 
We check the sequence coverage by mapping PDB chains into the corresponding UniProt protein 
using SIFTS [24]. The resulting 1421 structured proteins are unlikely to contain IDRs. 

We ensure that that these proteins share low (<25%) sequence similarity with the training 
datasets of the residue-level function predictors. The 799 DisProt proteins and 1421 PDB proteins 
were clustered with the training sets of the considered in this article disorder function predictors: 
ANCHOR [17], DisoRDPbind [13, 25], fMoRFpred [12], DFLpred [19] and DMRpred [26] using 
CD-HIT [27] at 30% similarity threshold. The proteins that are in the clusters that include any of 
the proteins from these training sets were removed, leaving 229 proteins from DisProt and 417 PDB 
proteins that are dissimilar (<30% similarity) to the training proteins. We annotate functions of IDRs 
in these 229 proteins using DisProt and exclude IDRs that have multiple functions to simplify the 
analysis and the assessment of predictive performance. Analysis of the multi-functional IDRs will 
be a subject of a future study. We extract 70 functionally annotated IDRs including 51 protein-
binding, 7 DNA-binding, 5 RNA-binding and 7 linker regions. We add a matching number of non-
overlapping structured regions with same length as the above IDRs, which we extract at random 
from the sequences of the 417 PDB proteins.  

2.2.  Computational workflow 

The computational pipeline for the functional prediction of IDRs, which also differentiates them 
from structured regions, has two main steps. First, the regions are represented by a fixed set of 
numerical features that are used to predict the functions. Second, these features are used to 
categorize each region to the corresponding type (function or a structured region). 
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2.2.1.  Feature-based representation of protein regions  

We extract two categories of the region-level features from: (1) the residue-level function 
predictions, and (2) the sequence of the region. Features in the first category are extracted from the 
residue-level predictions of the disordered linkers produced by DFLpred [19], the disordered 
protein-binding residues generated with ANCHOR [17], DisoRDPbind [13, 25] and fMoRFpred 
[12], and the DNA- and RNA-binding residues by DisoRDPbind [13, 25].  We extract residue-level 
predictions for the disordered and structured regions from the predictions generated using the 
corresponding protein sequences. Next, we aggregate these residue-level predictions at the region 
level using an average over the residues in the region and the maximal value of the average in the 
5-residues long sliding window. The latter features quantify a local (using a short sequence segment) 
putative propensity for each predicted function. The second category of features is extracted from 
the sequence of the considered regions. These features include 20-dimensional amino acid 
composition and the region length. We investigate the predictive value of each feature category and 
compare it to the use of both categories. 

2.2.2.  Prediction of protein region functions  

We use the region-level features to predict the region types (disorder function or structured) using 
two alternative approaches. Both approaches use only the information extracted from the regions 
without the knowledge of their types (labels), which ensures that they do not overfit the dataset. 
First, we utilize the most direct approach in which we use the features based on the average of the 
residue-level predictions of a given function to predict regions for the same function. In other words, 
we predict each function individually by using the features extracted from the corresponding 
residue-level function prediction, and we predict a given region as structured if none of the functions 
is predicted. Second, we use the features extracted from the residue-level predictions of all functions 
together and we combine them with the sequence-based features to concurrently predict multiple 
region types. We compare these two approaches, and investigate whether inclusion of the sequence-
based features in the second approach results in improvements.  

The first approach is straightforward. We represent each region using the average-based features 
for the given function and model these values using z-scores.  Z-scores are obtained by transforming 
each attribute to zero mean and unit variance over the entire dataset. We predict a given function if 
the corresponding z-scores is the maximum among all function prediction methods.  A single z-
score threshold for function classification was set based on maximized MCC, above which disorder 
function classifications were retained and below which regions were classified as structured.  The 
select threshold was a z-score of 1.18. A non-parametric transformation was explored but performed 
poorly relative to z-scores (data not shown). 

The second approach relies on an unsupervised learning where we first cluster the regions using 
their feature-based representation and then we label the resulting clusters with the region types. 
Clustering finds natural groupings of regions in which the regions within a given cluster are similar 
with each other when compared to the regions outside the cluster. To prepare the features for 
clustering, we scale them to mean zero and the standard deviation of one. We compare results 
obtained using four feature sets: (1) all features that include features extracted from the residue-
level predictions and from the sequences; (2) features extracted from the sequence; (3) features 
extracted from the residue level predictions; (4) a subset of (1) that includes only average region 
scores. The latter set is the same as the feature set utilized by the z-score-based approach. Each of 
these feature sets is used either directly or after it is transformed using the Principal Component 

Pacific Symposium on Biocomputing 25:171-182(2020)

173



Analysis (PCA), resulting in eight setups. PCA is an unsupervised method that extracts linearly 
uncorrelated features using linear combination of the (possibly correlated) input features [28]. We 
use PCA as a pre-processing step to reduce correlations between the inputs for the subsequent 
clustering since this is likely to improve the results of the clustering [29]. We cluster each of the 
eight feature sets using the most popular clustering method that relies on the pre-define knowledge 
of the number of clusters, the K-means clustering [30]. We use the K-means++ version, which 
utilizes an improved way to initialize clusters, and the Euclidian distance that is suitable for our 
features. We set k = 5, which corresponds to the number region types that include protein-binding, 
RNA-binding, DNA-binding, linker and structured regions. We label the resulting clusters with the 
region types to maximize the micro MCC measure (which we define in Section 2.2.3). We compare 
these methods with an approach that uses all features (with and without PCA) for regions with 
randomly shuffled region types (labels). This is to verify that our methods in fact do not overfit the 
dataset, in which case the model based on the shuffled region types would obtain similarly good 
results.   

2.2.3.  Assessment of the function prediction and clustering 

We quantify the quality of the clustering results using three popular measures: purity [31], 
Normalized Mutual Information (NMI) [32] and Adjusted Rand Index (ARI) [33]. These external 
measures quantify the relationship between cluster membership and region types. Purity is 
equivalent to the accuracy of prediction when we label each cluster with the most common region 
type within the cluster. Mutual Information quantifies the amount of information that we obtain 
about the region types by knowing which cluster they belong to. NMI is a variation of the Mutual 
Information that is adjusted to account for chance [32]. ARI is an adjusted version of the Rand 
Index that measures similarity of two data groupings (clustering vs. region types).  

We quantify quality of the region type predictions for both considered approaches: z-score-
based and clustering-based. We measure predictive quality with a comprehensive set of measures 
for each region type: sensitivity, specificity, F1 and Mathew’s Correlation Coefficient (MCC):  
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where TP is the number of regions of a given type that are correctly predicted as this type, TN is the 
number of regions of other types that are correctly predicted as the other types, FP is the number of 
the regions of the other types incorrectly predicted as the given type, and FN is the number of regions 
of a given type predicted as any of the other types. F1 is a harmonic average of precision and recall. 
MCC values around zero show lack of correlation between the predicted and actual region types 
while higher MCC values correspond to a stronger correlation.   

Besides the per-region type measures, we calculate three measures of the overall quality that 
considers all region types. The accuracy is the number of correctly predicted region types divided 
by the number of all regions. We compute the overall F1 and the overall MCC values using micro 
and macro averaging. The macro averaging is an average of the five corresponding per-region-type 
values and by definition, it assumes that prediction for each region type has equal weight. The micro 
averaging quantifies predictive quality proportionally to the number of samples in each region type, 
i.e., regions types with more sample, like the protein-binding and structured, have proportionally 
larger influence on the micro averaged score. The micro averaging is computed using the same 
formula as the per-region type case where TP, FP, TN and FN are the sum of the five corresponding 
per-region type values. 
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We use the scikit-learn library to compute PCA, K-means and NMI and ARI cluster quality 
measures. We use in-house scripts to compute the purity measure and the prediction scores. 

3.  Results and Discussion 

3.1.  Prediction of individual functions of IDRs 

The dataset includes IDRs annotated with protein-binding, DNA-binding, RNA-binding or linker 
function. Selection of these function types was based on the availability of prediction methods for 
each. A control set of structured regions provides a set of hard negatives that should not be predicted 
to have any disorder-based function. For the exploratory analysis here, this is preferable to 
unannotated disordered region, which are likely to have an undiscovered function. This is in contrast 
to IDRs with annotated functions, which have been the subjects of experimental study and less likely 
to have unannotated functions.  For these proteins, we made disorder-based function predictions for 
protein-binding, DNA-binding, RNA-binding and linkers. We did not consider function prediction 
methods developed for structured proteins; these methods were previously determined to perform 
poorly for disordered regions [13]. Further, inclusion of general methods would complicate our 
analysis since our structured, hard-negative set was not designed to exclude any particular structure-
based function. 

Fig. 1. Distributions of the per-region scores 
generated by the disorder function predictors. 
Each set of box plots show the distribution of 
the per-residue scores averaged over each 
region from three subsets of regions: regions 
with relevant disorder function for that 
predictor (right), disordered regions with 
other functions (center), and structured 
regions (left). Whiskers indicate the 95% and 
5% extent of the data. The six prediction sets 
shown here are: (A) DNA-binding by 
DisoRDPbind, (B) RNA-binding by 
DisoRDPbind, (C) linkers by DFLPred, (D) 
protein-binding by DisoRDPbind, (E) protein-
binding by ANCHOR, and (F) protein-
binding by fMoRFpred. 

 
 
 
 
 
 
 
 
 

For a simple classification of regions, we use the average of the residue-level predictions over 
each region as predictions of region function propensity. The distributions of these averages for each 
region type generated by the corresponding predictors are contrasted against the values for the other 
disordered regions and the structured regions in Fig. 1. Ideally, the average prediction scores would 
be greater for the predicted function than for other functions, and still greater than structured regions. 
This expectation is based on structured regions being hard negatives, while disordered regions with 
other types are soft negatives since they may be multifunctional. The distributions of the putative 
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protein-binding scores (Fig. 1D, E, and F) reflect this expectation, though protein-binding scores 
are not well separated from these scores for regions with other functions. The putative DNA-binding 
and RNA-binding scores (Fig. 1A and 1B, respectively) show mixed results. The DNA-binding 
regions have greater scores than structured regions, but overlap with a lower median when compared 
to other functions. The putative RNA-binding regions have slightly higher medians than other 
functions and structured regions, but these distributions largely overlap.  The linker scores (Fig. 1C) 
have the poorest performance on this dataset, with structured regions having higher scores than other 
functions. However, the median predictions for the linkers are higher than other functions. 

The performance when predicting each function individually using the corresponding average 
varies between region types. The protein-binding predictors have the highest accuracy; ANCHOR, 
DisoRDPbind, and fMoRFpred have MCC values of 0.66, 0.63, and 0.37, respectively. The poorer 
performance of fMoRFpred is not unexpected, since MoRFs are a subset of short (5 to 25 residues 
in length) protein-binding disordered regions [12]. Linker predictions by DFLPred show moderate 
performance with an MCC of 0.37. The poorest performing predictors, on this dataset, are DNA- 
and RNA-binding predictions by DisoRDPbind, with MCC values of 0.25 and 0.16, respectively. 
Further, two features of this dataset should be considered when evaluating performance. First, the 
dataset has been designed to exclude all proteins similar to the training sets of all predictors, so 
predictors are working in the difficult, extrapolatory regime. Second, only a small number of linker, 
DNA-binding, and RNA-binding regions are included in this dataset, so this evaluation should not 
be viewed as a general characterization of performance, only the difficulty of the current dataset. 

In contrast to binary (a single function) predictions provided by each predictor, regions of the 
current dataset have mutually exclusive functions, or no function. A simple approach to combining 
individual binary predictors to create a five-state predictor is to use scores to resolve conflicting 
predictions, with the highest score being the predicted function. We use z-score based approach 
described in Section 2.2.2 for that purpose. Table 1 shows that these predictions perform well for 
the largest region types, structure (MCC = 0.66) and protein binding (MCC = 0.49), and poorly for 
the other types (MCC ≤ 0.06). This is due to poor mean and variance estimation for the regions 
types with smaller number of samples and the lower quality of the underlying averages (Fig. 1). One 
feature of these data is that predictors generally do well in distinguishing disordered functional 
regions from structured regions, but not as well in distinguishing between functions. This suggests 
that function predictions should be considered simultaneously.  It should also be noted that the z-
score method does not distinguish structured and disordered regions as well as a dedicated disorder 
prediction. We tested this using predictions produced by a popular disorder predictor, IUPred [34]. 
The average region-level IUPred prediction scores have a higher MCC for the structured regions 
(MCC = 0.76). Note that we chose not to include disorder prediction as structured regions are used 
as a hard-negative set for disorder-based function; the current problem is not one of structure vs. 
disorder. 

3.2.  IDRs described in multidimensional space form function-related clusters 

An unsupervised approach to combining function predictions was explored by clustering regions 
based on the residue-level predictions and sequence features. Section 2.2.2 provides details. The 
resulting eight setups (using four different sets of features, each processed directly or after PCA) are 
compared with each other and with a control experiment where we cluster regions with randomly 
shuffled region types (Table 2).  

Clustering metrics are the strongest for clustering with all PCA-transformed features for NMI 
and ARI metrics, with purity being also near the maximum observed across all clusterings (Table 
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2). When comparing NMI across all clusterings (Fig 1A), they have high quality compared to the 
control, but inclusion of the residue-level prediction-based features results in better clustering than 
the sequence-based features (amino acid composition) alone. Clustering quality is nearly identical 
for PCA-transformed and non-transformed residue-level averaged scores, which suggest little 
redundant information in these features. This contrasts with the features that include the maximum-
windowed prediction scores (“prediction-scores only” and “all features”) that show modest 
improvement in clustering quality following PCA transformation, which reveals some redundancy 
in these features. 

Table 2. Clustering and classification results. Region types include structured (S), protein-binding IDRs (P), linker 
IDRs (L), DNA-binding IDRs (D), and RNA-binding IDRs (R). The best results for each row are in bold font. 

 
Clusters were used directly for classification of regions into mutually exclusive function classes 

by assigning regions types that maximize the overall MCC. For overall classification performance 
– macro and micro F1 and MCC, and accuracy (Table 2) – clustering on all PCA transformed 
features shows the best performance. Note that these performance metrics include both unbalanced 
– micro F1, micro MCC, and accuracy – and class balanced – macro F1 and MCC – metrics. 
Examining the macro MCC across all clusterings and z-score normalization-based classification 
(Fig. 2B) shows the relative contribution of each feature set. Macro MCC values of each clustering 
are consistent with cluster quality measured by NMI (Fig. 2B), with the residue-level prediction-
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Clustering 
Scores 

NMI    0.03 0.27 0.33 0.34 0.35 0.04 0.22 0.36 0.34 0.39 
ARI    0.01 0.27 0.26 0.30 0.45 -0.01 0.19 0.33 0.30 0.50 
Purity    0.54 0.72 0.78 0.78 0.75 0.54 0.72 0.79 0.78 0.78 

Classification 
Scores 

Macro F1  0.34 0.25 0.33 0.36 0.41 0.46 0.22 0.31 0.41 0.41 0.51 
Macro MCC  0.24 0.10 0.26 0.30 0.34 0.41 0.08 0.23 0.35 0.34 0.45 
Micro F1  0.65 0.34 0.51 0.46 0.51 0.64 0.34 0.43 0.53 0.50 0.71 
Micro MCC  0.56 0.18 0.39 0.33 0.39 0.55 0.18 0.29 0.41 0.38 0.64 
Accuracy  0.65 0.34 0.51 0.46 0.51 0.64 0.34 0.43 0.53 0.50 0.71 
Sensitivity S 0.82 0.35 0.67 0.48 0.44 0.83 0.19 0.52 0.53 0.46 0.83 

P 0.59 0.37 0.29 0.43 0.67 0.39 0.65 0.33 0.57 0.61 0.61 
L 0.14 0.29 0.57 0.71 0.57 0.57 0.29 0.43 0.71 0.71 0.43 
D 0.14 0.29 0.57 0.14 0.14 0.43 0.29 0.14 0.14 0.14 0.43 
R 0.00 0.20 0.00 0.60 0.40 0.60 0.00 0.40 0.40 0.40 0.60 

Specificity S 0.84 0.77 0.89 0.96 0.99 0.90 0.87 0.91 0.96 0.99 0.93 
P 0.88 0.76 0.95 0.95 0.92 0.95 0.44 0.94 0.94 0.92 0.90 
L 0.90 0.91 0.90 0.87 0.96 0.90 0.92 0.90 0.90 0.94 0.95 
D 0.93 0.75 0.70 0.97 0.97 0.97 0.85 0.95 0.99 0.98 0.96 
R 0.97 0.93 0.97 0.66 0.62 0.84 0.99 0.64 0.68 0.63 0.89 

F1 S 0.84 0.45 0.76 0.63 0.61 0.87 0.29 0.65 0.68 0.62 0.88 
P 0.65 0.40 0.42 0.56 0.73 0.53 0.47 0.46 0.67 0.69 0.67 
L 0.09 0.18 0.32 0.32 0.47 0.32 0.20 0.24 0.39 0.48 0.35 
D 0.11 0.09 0.15 0.15 0.17 0.40 0.13 0.13 0.22 0.18 0.38 
R 0.00 0.13 0.00 0.11 0.07 0.19 0.00 0.07 0.07 0.07 0.25 

MCC S 0.66 0.13 0.56 0.49 0.50 0.73 0.08 0.46 0.53 0.51 0.76 
P 0.49 0.14 0.34 0.47 0.62 0.44 0.08 0.36 0.57 0.57 0.54 
L 0.03 0.14 0.31 0.34 0.45 0.31 0.16 0.21 0.39 0.47 0.32  
D 0.06 0.02 0.12 0.12 0.14 0.37 0.08 0.09 0.25 0.16 0.34  
R -0.03 0.09 -0.03 0.10 0.01 0.21 -0.02 0.02 0.03 0.01 0.27 
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based features outperforming sequence-based features. Importantly, the results for the control 
experiments (where we shuffle the region types) are poor (macro MCC ≤ 0.1) which suggest that 
our models do not overfit the dataset. The best results are secured when combining both feature 
categories, which suggests that they provide complementary predictive input. Moreover, as expected 
[29], use of PCA boosts the predictive performance. The macro and micro MCCs of the best solution 
are 0.45 and 0.64, respectively, which corresponds to high correlation between the predicted and the 
native region types.  

We quantify significance of differences between the best solution (clustering with PCA and all 
features) and each of the other 10 results (including controls and z-score approach) with t-test for 
normal data and Wilcoxon test otherwise; we assess normality with the Anderson-Darling test at 
0.05 significance. We draw 50% of regions at random 10 times and compare the corresponding 10 
sets of results; this reveals whether the improvements are robust to different datasets. The micro F1, 
micro MCC and accuracy of the best solution are significantly higher than the 10 alternatives (p-
value < 0.05). The macro F1 and macro MCC of the best method are higher but the difference is not 
significant when compared to the clustering with all features and no PCA (p-value = 0.21 and 0.20, 
respectively), while the difference is significant for the other 9 alternatives (p-value < 0.05). Overall, 
this reveals that the approach that uses all features together offers significantly better results. 

 
Figure 2. Clustering and classification quality. Clustering quality measured by NMI (A) and overall classification quality 
measured by macro MCC (B) are shown for both PCA-transformed (circles and orange lines) and non-transformed 
(diamond and purple lines) results.  (C) Per-class MCC are shown for z-score (blue) and clustering results – both PCA-
transformed (circles) and non-transformed (diamond) data for all features with shuffled labels (black and grey), function 
prediction average features (pink and red), and all features (light green and green). 
 

Classification performance was also evaluated per-region type, where each region type in turn 
is taken as the positive prediction and the others negative, and evaluated by sensitivity, specificity, 
F1, and MCC (Table 2). The all PCA-transformed features clustering (the best solution) has good 
per-class performance across all classes (MCC ≥ 0.27), with the best performance for structured 
and RNA-binding regions by all metrics except specificity. Comparing the per-class MCC values 
for a subset of clusterings (Fig. 2C) shows that, generally, prediction performance is better for the 
larger classes – structure and protein-binding regions – than for the smaller classes – linker, DNA-
binding, and RNA-binding regions. 

To visualize clusters in the feature space, dimensions of the full feature set were reduced to two 
dimensions using second degree polynomial kernel-based PCA [35] (Fig. 3). Note that in this 
representation distances between points are not meaningful, due to the arbitrary non-linear 
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transformation. We observe an excellent separation between the cluster of structured regions (in 
gray) and the four clusters with the disordered regions (color-coded in red, yellow, green and blue). 
Though protein-binding regions are the most common contaminant in other function clusters, this 
is likely attributable to the relatively large size of this set relative to the other functional sets. The 
RNA-binding (green) and DNA-binding (blue) clusters are close to each other, which possibly 
reflects the relatively similar nature of these interactions. Comparing DNA- and RNA-prediction 
scores for DNA- and RNA-binding regions shows that these two predictions are modestly correlated 
for these region types (r=0.54), but these prediction scores are not correlated over the entire dataset 
(r=0.08). However, examining region cluster assignments, while 4 of the DNA-binding regions and 
2 of the RNA-binding regions are incorrectly assigned, there is no DNA/RNA cluster cross 
assignment. This indicates that, while DNA- and RNA- binding disordered regions share sequence 
features, simultaneous consideration of function predictions provides sufficient information to 
distinguish these functions.  

Fig. 3. Visualization of the clustering based on the all 
PCA-transformed features. Cluster membership is 
indicated by color and the region type is represented 
by shape. Correctly (incorrectly) classified regions are 
represented with lighter (darker) colors. Indicated 
regions (A, B, C, D, and E) are discussed in the case 
studies section. Axes are non-linear combinations of 
features derived from polynomial kernel-based PCA. 
 

 
 
 
 
 
 

3.3.  Case studies 

Clustering results can be used to gain potentially novel functional insights and include 
misclassifications.  We examined several examples of each (Fig.  3, indicated points).   

We show three cases of function insights that stem from disagreement between cluster labels 
and annotated region types. The homeobox protein NKX3.1 (DisProt ID DP00683) has been 
characterized as largely disordered [36], including a homeodomain that interacts with DNA. The 
region N-terminal to the homeodomain contains an acidic region that interacts transiently with the 
homeodomain [36], where transient interactions are one mode of IDR protein-protein interactions. 
This IDR (Fig. 3, point A) is annotated only as DNA-binding, but its placement in a protein-binding 
cluster could be due to the above interaction. Another IDR misclassified this way is a single-stranded 
DNA-binding (SSB) protein from T. maritima (DisProt ID DP00996), which contains several 
disordered regions interspersed with a structured domain [37]. There is no direct functional evidence 
associated with these regions; annotations have apparently been made based on association, i.e. 
IDRs in an SSB. The C-terminal IDR in this protein (Fig. 3, point B) is an extension to the canonical 
SSB, where such an extension in E. coli has been found to transiently interact with the DNA binding 
surface and may recruit other proteins [38]. In both of these cases, these regions are likely multi-
functional DNA- and protein-binding IDRs, where annotations do not reflect the protein-binding 
functions. Another example is a protein-binding IDR classified as DNA-binding IDR.  The 
Antitoxin CcdA (DP00928) contains an C-terminal IDR (Fig. 3 point C) that interacts with the toxin 
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CccdB [39] and an N-terminal DNA binding domain [40].  The definition of the IDR region used 
by De Jonge et al. [39] overlaps with the DNA binding domain.  A different definition of the C-
terminal domain is shorter by 9 residues [40] eliminating the overlap.  Removing these residues 
increases the distance to the DNA-binding cluster center, suggesting this misclassification may be 
due to inaccurate definition of this domain.  

One of the reasons for incorrect classification of region types could be a lack protein-level 
context in the region level prediction. The structure of C5a peptidase (PDB ID 3EIF) contains five 
domains, catalytic, protease-associated, and three fibronectin type III (FN) domains. A 36 residue 
region from the third of the FN domains is included in our structured region set (Fig. 3, point E). 
This region is highly negatively charged, contributing to a large electronegative surface that plays a 
role in protein substrate recruitment [41]. The highly charged nature of this sequence, its role in 
protein interactions, and the lack of consideration of the larger sequence context in our approach 
likely contributes to misclassification of this region as a protein-binding IDR. An example of a 
protein-binding IDR classified as structured region is the N-terminal IDR from the photosystem I 
subunit psaH (DisProt ID DP00803, Fig. 3, point D), which is responsible for binding to other 
proteins. The C-terminus of psaH contains several transmembrane helices with the IDR proximal to 
the membrane [42].  The IDRs of transmembrane proteins often differ significantly from the IDRs 
of soluble proteins [43]. It is possible that the context of this IDR may be influencing its 
classification. 

4.  Conclusions 

Our goal with this work was to investigate the feasibility of simultaneous classification of multiple 
IDR functions. For this goal, we adapted residue-level predictors to the region-level task. We 
carefully selected a difficult dataset, which had no protein similar to training proteins of all the 
prediction methods. This ensured that results would not be deterministic due to any possible 
predictor bias. The results presented here demonstrate that existing predictors are useful for the 
region level-predictions and that simultaneous multi-region-type prediction is feasible. We also 
show that this prediction benefits from the inclusion of the information extracted directly from the 
sequence of the regions. Development of an accurate tool for prediction of multiple functions of 
IDRs would require combining results of multiple residue-level predictors that address different 
functions, would likely benefit from a supervised approach, and needs a larger dataset to derive 
sufficiently large training and test sets.  

There are several practical issues to consider in the development of such a tool. Many disordered 
regions are likely to be multi-function, which contrasts to the mutually exclusive approach taken 
here. While we attempted to use single function IDRs, in fact some of them are multifunctional, 
which we describe in section 3.3. An IDR annotation tool and the associated evaluation protocol 
must be able to contend with inaccuracy and incompleteness of functional annotations of IDRs. 
Also, inaccurate IDR definitions can introduce extraneous residues or leave out crucial residues that 
can complicate function prediction. Moreover, consideration of the sequence context of an IDR may 
be helpful for accurate function prediction. Finally, practices for annotating IDRs is to reflect the 
regions determined by experiments. There is little theory and no methods for dividing large IDRs in 
to functional domains. Since IDRs can reach lengths of a thousand residues [44], it seems likely that 
functional domains exist. Multifunctional IDRs can also be due to pleiotropy, e.g. acting as both a 
linker and binding to other proteins [45]. These considerations suggest that a multistate approach 
may be more appropriate for IDR function prediction. 
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