
Addressing the Credit Assignment Problem in Treatment Outcome Prediction
using Temporal Difference Learning

Sahar Harati†

Department of Psychiatry and Behavioral Sciences, Stanford University,
Stanford, CA, USA

†E-mail: harati@stanford.edu

Andrea Crowell

Department of Psychiatry and Behavioral Sciences, Emory University,
Atlanta, GA, USA

E-mail: andrea.crowell@emory.edu

Helen Mayberg

Center for Advanced Circuit Therapeutics, Mount Sinai,
New York City, NY, USA

E-mail: helen.mayberg@mssm.edu

Shamim Nemati

Department of Biomedical Informatics,UC San Diego Health,
San Diego, CA, USA

E-mail: shamim.nemati@alum.mit.edu

Mental health patients often undergo a variety of treatments before finding an effective one.
Improved prediction of treatment response can shorten the duration of trials. A key challenge
of applying predictive modeling to this problem is that often the effectiveness of a treatment
regimen remains unknown for several weeks, and therefore immediate feedback signals may
not be available for supervised learning. Here we propose a Machine Learning approach to
extracting audio-visual features from weekly video interview recordings for predicting the
likely outcome of Deep Brain Stimulation (DBS) treatment several weeks in advance. In the
absence of immediate treatment-response feedback, we utilize a joint state-estimation and
temporal difference learning approach to model both the trajectory of a patient’s response
and the delayed nature of feedbacks. Our results based on longitudinal recordings from 12
patients with depression show that the learned state values are predictive of the long-term
success of DBS treatments. We achieve an area under the receiver operating characteristic
curve of 0.88, beating all baseline methods.
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1. Introduction

Major Depressive Disorder (MDD) is a common psychiatric illness, but unfortunately lacks
an objective, non-verbal, automated biomarker that can reliably predict treatment outcome.
These patients often suffer from psychomotor slowing and limited emotional reactivity and
affective range. Patients with MDD are diagnosed with treatment-resistant depression (TRD)
according to non-response or poor response to standard antidepressant treatments. Deep brain
stimulation (DBS) of the subcallosal cingulate cortex is a promising treatment for TRD pa-
tients.1 It has been reported that increased facial expressivity and other psychomotor factors
are correlated with improvement in patients who have received DBS.2

Response to treatment is typically measured with the Hamilton Depression Rating Scale
(HDRS),3 a standardized clinician-administered measure based on the patient’s self-report and
the current gold standard for measuring treatment response in depression studies. Recovery
from DBS treatment is usually non-linear, with transient subjective worsening sometimes inter-
rupting the improvement trajectory.2 Automatically predicting the outcome of DBS treatment
has several useful implications for clinical management of TRD patients, such as optimization,
stopping, or continuation of the ongoing treatment. Furthermore, being aware of the stability
and time course of patient’s state during the recovery process has the potential to help clinical
trial design. In this paper, we propose an automated biomarker of patient progress based on
vocal and facial dynamics that can serve as an early predictor of DBS treatment outcomes.

Recently, there has been increasing interest in quantifying and predicting depression and
treatment outcomes from both video and audio recordings. Biomarkers of depression from
speech signals are shown to be useful for classifying presence or severity of depression.4–6 For
example, Darby et al.7 reported a quantifiable change in the pitch, speaking rate, loudness,
and articulation of depressed patients before and after treatment. Harati et al.8 used emotion-
related features from audio recordings of TRD patients to train a deep neural network capable
of predicting the treatment outcomes. Moreover, facial expression features derived from video
recordings has been shown to be a good predictor of depression and recovery. For instance,
Cohn et al.9 used a support vector machine (SVM) classifier to measure spontaneous facial ex-
pressions in a small group of subjects. Others have used facial expressivity to predict depression
severity either empirically10 or using accepted clinical classification of severity: Pampouchi-
dou, et al11 achieved 55% accuracy , Ramasubbu, et al12 reported 52-66% accuracy , Anis, et
al13 achieved an accuracy of 66%, and Dibekliouglu, et al14 reached an accuracy of 66-84%.
Recently, Harati et al.15 explored the use of video analysis of facial expressivity in a cohort
of MDD patients before and after DBS, to propose a feature set and leveraged them to build
predictive models for depression.

Our proposed model based on Machine Learning is an extension to our previous work 15

and it differs from the other works that are mentioned above in four ways. First, both audio
and visual features are considered and combined to achieve improved prediction accuracy.
Second, we utilize the framework of temporal difference (TD) learning to model the sequential
nature of treatment and assessment/feedback delay over course of time. Third, we use state-
estimation to infer the hidden state of the patient over time, thus exploiting the temporal
information embedded in longitudinal patient recordings. Fourth, the proposed deep neural
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network structure for state-estimation and outcome prediction (via value iteration) is trained
end-to-end using gradient descent optimization. The key shortcoming of the existing methods
is that their utilized learning labels are based on short-term feedback (either subjective or
clinical assessments), which may not correspond to the long-term trajectory of the patient.

Temporal Credit Assignment refers to the problem of determining how the ultimate success
(or failure) of a sequence of treatments is attributable to the various intermediate clinical
states of the patient. We demonstrate that temporal patterns in the data captured by the
proposed joint state-estimation and TD-learning framework are useful for future prediction
by showing that credit assignment via back-propagation allows us to train the model without
immediate feedback. We learn from the accumulated rewards rather than HDRS value, which
is a self-reported integration of what happened over the previous week only, thus noisy.

The proposed framework for predicting long-term success of a trial from quantifiable au-
dio/video features is novel due to its utilization of a TD-learning method known as Value Iter-
ation to estimate the long-term accumulated reward associated with a patient state, which is
indicative of a patient’s long-term recovery trajectory. Figure 1 shows the overall architecture
of the proposed method to be elaborated later in this paper.

The rest of this manuscript is organized as follows. Section 2 introduces the DBS dataset
that was used to develop the proposed method. Section 3 describes the utilized features,
proposed prediction and state-estimation modules, and the baseline techniques. We present
the experimental results in Section 4, and finally the paper is concluded in Section 5 with
discussions and several directions for future works and extensions.
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Fig. 1. The proposed model. SGLM modules estimate the latent state of the patients at different
time steps while value networks predict the treatment outcome given the patient state.

2. Dataset

We have collected our audio-visual data in an ongoing TRD DBS study performed at Emory
Universitya. A cohort of 12 TRD patients were evaluated weekly by study psychiatrists starting
1 month before DBS surgery and throughout the first 6 months of chronic stimulation. Due to
some missing weekly videos for all subjects (either due to missed acquisition or unprocessable
recordings), we restricted analyses to a common dataset of 14 videos per subject covering

awww.clinicaltrials.gov, Identifier: NCT00367003, NCT01984710
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the full 7 months for each patient. The videotaped interviews document the evolution of
DBS treatment and clinical response. The subjects included in the analysis were primarily
Caucasian (one African American patient) and female (two male participants) and were aged
between 35 and 68. Treatment response was measured with the Hamilton Rating Scale for
Depression (HDRS),3 which is based on the patient’s self-report of their depression symptom
relative to the previous week and is the gold standard assessment tool for depression. According
to Crowell et al.,2 stable clinical treatment response to DBS is typically not achieved until at
least 12 weeks of chronic stimulation. So, two clinical phases are considered here: depressed
and improved. Treatment response for the purpose of this outcome prediction model is defined
as 30% decrease from the pre-surgical baseline HDRS after 6 month, resulting in nine improved
and three depressed subjects.

All of the data gathering and analytic procedures were approved by the Emory University
Institutional Review Board (IRB).

3. Methods

First, we introduce the features that are being extracted from videos of patients, including
visual and audio features. Second, the temporal difference learning method in association with
a parametric value-network is presented to estimate the long-term value of each patient state.
Finally, we present the baseline methods and measures with which we compare our method.

3.1. Feature Extraction

In this paper, we used both audio and visual features to test the hypothesis that fusion of
multimodal data can improve prediction accuracy.

For the audio features we used the same technique described in a previous work by our
group,8 summarized as follows. First, audio signals are extracted from video recordings. Then,
from each 0.2-second frame of each utterance, time-domain variables (e.g. energy and en-
tropy) and frequency-domain variables (e.g. Spectral Entropy and Mel-Frequency Cepstral
Coefficients (MFCCs)) are extracted, resulting in a vector of size 34 per frame per utterance.
Then, on these raw features, a Long Short Term Memory (LSTM)-based emotion recognition
neural network is applied to get a 4-dimensional representation corresponding to emotions:
angry, happy, sad, and neutral. Due to the lack of training data on depression, the LSTM
network is pre-trained on the Interactive emotional dyadic motion capture (IEMOCAP)16

dataset with replicated architecture used in other studies. For pre-training, we used a stacked
LSTM network17 that has two hidden LSTM layers. The hidden state output of the second
LTSM is carried to a fully connected layer (with softmax activation) to predict the probability
of each emotion. After training the network on the labeled IEMOCAP dataset, we feed the
unlabeled utterances of the DBS patient interviews to the network and use the output of the
softmax layer to get the probability of emotions. We use these probabilities to create a new
feature set of size 4. The loss function is categorical cross entropy and the optimizer is root
square RMSprop. The batch size is set to 320 and number of epochs is 25. Finally, per emo-
tion, seven statistics over all utterances in each interview session is computed. The statistics
include Minimum, Maximum, Mean, Variance, Skewness, Kurtosis, and Variability leading
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to a 28-dimensional representation as a distillation of emotion features of an interview. These
audio features have proven to be effective for studying depressed subjects.8

For the visual features, we leveraged another previous work to extract facial features for
MDD subjects15 that are shown to be effective in distinguishing the recovery phases of DBS
patients during treatment. Briefly, first the images are put through face detection, contrast
normalization, and image registration and alignment. Then, three types of dynamical features
are extracted using a Multiscale Entropy (MSE) and Switching Linear Dynamical Systems
(SLDS) approach. MSE measures the randomness or unpredictability exists in a sequence of
patient’s facial expression. We used scales from 1 to 12 to get 12 features, and calculated the
average entropy across all the video pixels. Second, a SLDS is fit to the data, which has the
advantage of being multivariate and thus capable of extracting correlated activity of facial
muscle groups. To capture the dynamical behavior of the video recordings of facial expression,
15 significant eigenvalues (or spectral properties) of the state transition matrix of the most
dominant dynamical mode were used as another variability feature set. Third, the top 15

largest singular values of the observability matrix were taken for a comprehensive coverage
of dynamical behavior of facial expression. These led to an overall feature set size of 42. For
more details please refer to our previously published work .15 In summary, we extracted 28

audio and 42 facial expression-related features per video recording. ‘Time since start of the
trial’ and the ‘HDRS from the preceding week’ constituted two additional features, resulting
in a total of 72 features per video recording.

3.2. Temporal Difference Learning

We developed a TD-learning approach that leverages the value iteration algorithm to predict
treatment outcome.18 Given the multivariate time series of features described in the previous
section, a Switching Generalized Linear Model (SGLM) 19 was utilized to identify patient-
specific clinical states, which was then fed into the value iteration network to assess the long-
term value of a given clinical state. The overall model was optimized end-to-end as described
next.

3.2.1. State-Estimation

In order to track the treatment process, we first identified the state (st) that the patient is in
at any given point in time, which encodes all the useful information from the past required
to predict the future state of the patient. We chose a supervised approach to hidden state-
estimation (known as the SGLM model) under the assumption of Markovianity and a linear
state transition model.19 In the top layer, there were J possible hidden states (or modes),
and the likelihood function of states takes the form of a softmax classifier with parameter α;
mapping the observations to the likelihood of the J latent states. The network used a forward
pass over the time series data to predict the latent states using the J × J transition matrix Z

and the supervised likelihood model. To further elaborate, consider the posterior probability
of the latent state at time t given the set of observations up to that time is given by

P (st = j| {x1:t}) = 1
C · Pα (xt|st = j) ·

∑J
i=1 Z(i, j) · P (st−1 = i| {x1:t−1}) , (1)
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where, P (st = j| {x1:t}) denotes the probability that the latent state s at time t is equal to j

given the observations x1:t, Pα (xt|st = j) is the likelihood function (the computed probability
of the observation xt given the latent state st is j) parameterized by α, and C is a normalizing
factor. The set {α,Z} consists of model parameters to be learned using training data. In our
supervised setting, the likelihood function was a softmax classifier that was trained along with
the rest of the value iteraton network.

3.2.2. Value Iteration

After decoding a patient’s mode or latent state (st) using the SGLM network, we use the
inferred latent state along with other available data to build a predictive model of the outcome
of the treatment. Given a patient in state s, this outcome is called the value of the state or
the long-term reward associated with the state, where a positive reward corresponds to an
improved HDRS score and vice versa. We leverage three sources of information at each time
step t to model the value function:

• observations (xt), including image and audio features of the patient’s interview video;
• covariates (c), comprised of constant features of patient during the treatment (including

age, gender, and body mass index or BMI); and
• inferred state (st), which is the hidden state deriving patient’s treatment dynamics.

Let yt = [xt, st, c] then, V (yt) is the expected value of the patient treatment, corresponding
to the observations, hidden state and covariates at time t. In other words, V (yt) = E[

∑T
i=t ri]

where T is total number of treatment steps and ri is the instantaneous reward or wellness of
the patient at step i. From this definition it’s clear that V (yt) corresponds to accumulated
reward or long-term return. In our case, ri is the HDRS in the corresponding intermediate
steps i < T . Moreover, we set rT = 1 if the patient is treated and rT = 0 otherwise. In this
study, we use a neural network to model the value function parameterized with β. The value
iteration algorithm tries to find the best value network satisfying

Vβ(yt) = rt + γVβ(yt+1). (2)

γ is the discount factor to control the importance of future rewards and is set to 1. The 0.95
quantile of the expected return Vβ(y) in weeks 8-11 is then used as our prediction of treatment
outcome at the end of the 14th week, and is used to calculate the prediction accuracy.

3.2.3. Optimization

Our neural network model uses a forward pass over the time series data to predict the latent
states using the transition matrix Z and the supervised likelihood model parameterized by α.
Learning of the model parameters is achieved by unrolling the model into a neural network
and training the resulting network to find a set of states and parameters that gives the best
value function parameterized by β. Training is done end-to-end similar to deep reinforcement
learning models.

Defining Θ = {Z,α, β} as the parameter set, our SGLM-RL network aims to minimize
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following loss function:

L(Θ) =

T−1∑
t=1

(Vβnew(yt)− (rt + γVβold(yt+1)))2 , (3)

where the dependence yt on Z and α are omitted for brevity, and the βnew and βold corre-
spond to the updated and the previous values of the network parameters. The overall network
parameters can be jointly optimized via gradient descent:

Θnew = Θold + η∇ΘL(Θ), (4)

where, η is the learning rate. With each pass through the observational data, not only will
the model learn to better predict the outcome given the patient state, but also the SGLM
model learns to better predict the hidden state of the patient at each time point. The overall
architecture of the proposed model is depicted in Figure 1.

Due to the relatively small sample size, we utilize a simple model that includes a 7 state
markov model for state estimation (we test 5 − 10 states using grid search on a single fold
and select 7 states, although the model is not sensitive to this parameter choice) and a single
hidden layer neural network for value function approximation with (7 states + 5 covariates) 12

input to 15 hidden states, to 1 output. These parameters are fixed across all subsequent folds
to avoid overfitting. Therefore, all models (across all folds) have the same hyperparameters.
The only remaining parameter is the regularization constant (lambda) that is also selected
using grid search (1e− 5 to 0.1, with optimal value of 1e− 4).

3.3. Baselines and Performance Measure

We compared our proposed algorithms with the following baselines. To better show the effec-
tiveness of our model we used both temporal (sequential) models and non-temporal (classic)
Machine Learning algorithms.

For the baseline temporal models we used the same features fed into our model:

• LSTM:20 This is a recurrent neural network consisting Long Short-Term Memory (LSTM)
units which are composed of a cell, an input gate, an output gate and a forget gate. These
cells provide an effective way to attend to the right historical data. Comparison with this
shows how state-estimation helps improve prediction.

• Value iteration with LSTM: This is similar to the proposed approach but the SGLM
network is replaced by an LSTM and it’s trained end-to-end. This comparison shows how
effective our SGLM is compared to the state-of-the-art recurrent modeling method, i.e.
LSTM.

For non-temporal methods, we unroll the features over time.

• SVM :21 Support Vector classifier with linear kernel and LASSO regularization trained via
stochastic gradient descent.

• Decision Tree:22 This is a decision tree with Gini’s diversity index as split criterion.
• Ensemble Learner:23 This method is an ensemble method trained via adaptive LogitBoost

(Adaptive Logistic Regression) over 100 learning cycles where the weak learners are decision
trees. The learning rate for shrinkage of the LogitBoost is set to 1.
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• Neural Network: A 2-layer neural network is also implemented as a deep learning baseline
while not benefiting from temporal information in the data.

For hyperparameter optimization and evaluation purposes cross-validation is typically
used, however, Parker et al.24 have shown that when considering the Area Under the Curve
(AUC) in small-sample studies, many commonly used cross-validation schemes suffer from
significant negative bias. Following Airola et al.25 we used leave-pair-out cross-validation as
an approach that provides an almost unbiased estimate of the expected AUC performance. We
report the performance of our model based on pooled AUC from a 66-fold leave-pair-out cross-
validation study, based on training the model on N − 2 patients and testing on the remaining
2, and repeating this process 66 times (or 12 choose 2). All scores were placed in a bucket to
calculate the pooled AUC. According Airola et al.,25 this approach leads to a robust measure
when the sample size is small. The confidence interval for reported AUC’s is calculated using
Hanley-McNeil method.26 The Matlab implementation codes can be found onlineb.

4. Results

First we report the effect of different features on the performance of the proposed method.
Our hypothesis was that combining vocal, facial, HDRS, and time features provide the best
performance. Figure 2 demonstrates the Receiver Operating Characteristic (ROC) curves for
the full and the individual feature sets. It’s apparent that using all the features together out-
performs using each of them individually. Using more features leads to a better representation
of patient’s state and its trajectory over over time, which in turn results in a stronger model.
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Fig. 2. Effect of feature set on performance

In order to demonstrate the significance of each feature we iteratively remove a single

bhttps://github.com/Saharati90/DBS Project
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feature from our feature set and measure the accuracy of the model. As it’s shown in figure 3,
including each of the features that are selected by the feature selection method is necessary for
the model to perform accurately. Moreover, besides HDRS and time, the combination of both
audio (e.g., a-03) and video features (e.g., v-35) contribute to achieving higher performance.
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Fig. 3. Feature importance: The importance is calculated as the decrease in AUC after iteratively
removing one feature at a time. Last seen HDRS (lst) from the previous week, time (t), features in
the audio feature set (a-i: ith), features in the video feature set (v-i: ith).

Second, we show that using only a part of the face is not sufficient for our facial variability
analysis. More specifically, we partition each face into three areas, i.e. upper part that includes
forehead, eyebrows and eyes, middle part that includes nose and cheeks, and lower part that
covers mouth and chin. Then each time we replace the 12 features corresponding to the MSE
of the whole face with the MSE of each part.

Table 2 shows the proposed prediction method compared to the baselines in terms of pooled
AUC. We used both temporal models and non-temporal models to show that not only the
sequential nature of the data should be considered, but also among the temporal methods our
proposed approach that combines state-estimation and value iteration outperforms the rest.
The inferior performance of LSTM compared to other methods that include value iteration
shows that state-estimation and modeling of long-term accumulated reward is essential to
drawing a better representation of the recovery status of the patients. Finally, the better
performance of (SGLM + value iteration) over (LSTM + value iteration) is likely due to the
relative simplicity of the SGLM model (i.e., smaller number of model parameters) compared
to the more complex LSTM network, which tend to overfit on smaller datasets.
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Table 1. AUC comparison when MSE is
calculated only for forehead and eyes (Up-
per), nose and cheeks (Middle), mouth
and chin (Lower), and for the whole face

MSE Features Pooled AUC PPV

Upper 0.72 0.80
Middle 0.75 0.79
Lower 0.74 0.80
Whole 0.88 0.89

Table 2. Comparison of AUC of the proposed method
and the baselines

Non-Temporal Methods Pooled AUC CI

SVM 0.70 [0.63-0.79]
Ensembled Trees 0.71 [0.60-0.79]
Decission Tree 0.74 [0.65-0.81]
Neural Network 0.71 [0.61-0.80]

Temporal Methods

LSTM 0.80 [0.78-0.91]
LSTM + value-iteration 0.83 [0.79-0.89]
SGLM + value-iteration 0.88 [0.83-0.94]

To further investigate the results of the prediction model, we demonstrate the predicted
state values for three randomly sampled subjects in figure 4. It schematically shows how the
measures are intuitively compared against each other. The blue curve is our derived measure,
which represents the likelihood of the patient improving over the next weeks. The purple
horizontal line shows the 95% quantile of the expected estimated value in weeks 8-11. The red
curve represents the HDRS measure in each week. When the blue line crosses the purple line
it means that our model predicts a highly likely successful trial. It’s worth noting that our
measure is based on the value function (or return) and the higher value shows a better state
of improvement. Firstly, our measure better predicts the treatment result weeks in advance.
Moreover, it produces a more stable and robust estimation in contrast to the fluctuations of
the HDRS.

5. Discussion and Conclusion

In this paper, we proposed a value iteration-based prediction model for treatment outcomes,
when the intermediate assessments of a patient’s progress are likely noisy and imprecise.
The framework combines the intermediate clinical feedbacks (i.e., HDRS) with information
from success or failure of a trial to define an aggregated and accumulated learning signal
for supervised learning. The resulting value network was able to learn the long-term value
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Fig. 4. Trajectory of the estimated state value and HDRS for three subjects. The weekly clinical
scores (red circles; higher values indicate decline) are often noisy and may fluctuate from week to week.
The proposed machine learning-based scores (blue diamonds; higher values indicate improvement)
are less prone to weekly fluctuations and are able to predict the trajectory of a patient and success
of the trial weeks in advance.

associated with a given clinical state. We showed that a feature derived from the learned
state values over weeks 8-11 is able to predict the outcome of a DBS trial during the week
14 (i.e., three weeks in advance) with an AUC of 0.88. Such foresight can enable the clinical
team to optimize the stimulation parameters, to devise an updated treatment plan, or to
simply ignore outlier high HDRS values that may reflect temporary mood fluctuations rather
than a change in illness state. Our future work includes using model-based RL (which is
known to be more data efficient) and multi-task learning (which leverages a correlated set of
prediction tasks) to achieve better performance. Other promising research directions include
utilization of continuous measures of patient recovery based on wearable devices, and design
of more comprehensive reward functions that take into account patient performance metrics
measured at different time scales.27 Also, extracting and analyzing visual and audio features
altogether to feed to a deep learning model directly is another direction for future research.
Generalizing these findings to a wider clinical population is limited both by the relatively
small number of subjects included here, as well as their uniqueness as a clinical population.
Moreover, interpretability of the measures derived from machine learning methods remains
for future work and research in the field of computational psychiatry.
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