
Scaling structural learning with NO-BEARS
to infer causal transcriptome networks

Hao-Chih Lee1,3, Matteo Danieletto1,2,3, Riccardo Miotto1,2,3,

Sarah T. Cherng1,3 and Joel T. Dudley1,2,3,†

1Institute for Next Generation Healthcare
2Hasso Plattner Institute for Digital Health

3Department of Genetics and Genomic Sciences
Icahn School of Medicine at Mount Sinai

New York, NY 10065, USA
†E-mail: joel.dudley@mssm.edu

Constructing gene regulatory networks is a critical step in revealing disease mechanisms from
transcriptomic data. In this work, we present NO-BEARS, a novel algorithm for estimating
gene regulatory networks. The NO-BEARS algorithm is built on the basis of the NO-
TEARS algorithm with two improvements. First, we propose a new constraint and its fast
approximation to reduce the computational cost of the NO-TEARS algorithm. Next, we
introduce a polynomial regression loss to handle non-linearity in gene expressions. Our
implementation utilizes modern GPU computation that can decrease the time of hours-long
CPU computation to seconds. Using synthetic data, we demonstrate improved performance,
both in processing time and accuracy, on inferring gene regulatory networks from gene
expression data.

Keywords: Gene regulatory network; Bayesian network; Optimization; GPU acceleration

1. Introduction

Determining causal relations between attributes of observed data is a fundamental compo-
nent of understanding biological systems. At a lower level, these systems typically consist of
thousands of interacting attributes. While being observable individually, it is the intangible
interactions among these attributes that provide mechanistic basis for the emergence of higher
order biological functions. Using a transcriptome (i.e., a collection of genes expressed in an or-
ganism) as an example, a mutation in genetic codes can change interactions between genes and
eventually manifest phenotypic disorders, such as cancer.1 Quantifying the attributes and esti-
mating the interactions are both important components of developing a deeper understanding
of these systems. With recent advances in omics technologies, system-wide measurement of
transcriptomic expressions is becoming a new paradigm within biomedical research. Efficient
and accurate construction of biological networks from large-scale omic data is paramount for
identifying the mechanisms of various interactions between attributes.

Bayesian networks (BNs) is a methodological framework that can be used to infer prob-
abilistic causal networks from biological data.2 Combined with omic technology, BNs have

c© 2019 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.

Pacific Symposium on Biocomputing 25:391-402(2020)

391



been used to predict genetic drivers of complex diseases including inflammatory diseases and
Alzheimers disease.3,4 However, constructing a BN from observed data is computationally chal-
lenging, with computational complexity growing exponentially with the number of attributes
measured.5 This is typically achieved using score-based methods to sample structures from the
discrete space of all possible networks that can lead to slow inference. Recently, NO-TEARS
has been proposed as an alternative solution for estimating BNs by using continue-valued
optimization.6 This method utilizes a novel constraint that enables solving structural learning
problems via an efficient optimization method. Despite being non-convex optimization, Zheng
et al. demonstrate the possibility of the algorithm converging toward the global solution.
However, evaluating the constraint used in the NO-TEARS algorithm requires numerical op-
erations that grows as a cubic function of the number of attributes, imposing a computational
bottleneck for practical use.

This work aims to improve the NO-TEARS algorithm for a fast construction of BNs from
transcriptomic data using principled optimization methods. Our contributions include:

• Introducing a new constraint that is theoretically equivalent to the one used in the
NO-TEARS algorithm, and can be approximately evaluated in O(n2) steps.

• Proposing a new regression loss to handle non-linearity in gene expression data
• Combining the proposed constraint and the regression loss to develop a new algorithm,

named NO-BEARS, and demonstrate its superior performance in both processing time
and accuracy.

• Accelerating computation using a graphical processing unit (GPU) that can substan-
tially decrease processing time from hours to seconds

The implementation is available at https://github.com/howchihlee/BNGPU.

2. Background

2.1. Gene regulatory network and the linear structural equation model

The expression of genes are tightly regulated to maintain biological functions. The regulatory
mechanism can be modeled as7

xi =
∑

j∈pa(xi)

Wijxj + ε. (1)

This model, derived from the Hill equation for chemical reactions, assumes that the ex-
pression of a gene xi is jointly regulated by its parent genes xj ∈ pa(xi) that are “upstream”
in the pathway. The regulatory effects are assumed to be linearly additive where Wij specifies
the size of the effect exerted from gene j to gene i. Overall, the gene regulatory network can
be seen as a weighted directed graph, represented by W . In this directed graph, a node is
a gene and an edge from xj to xi encodes the regulatory effect from gene j to gene i. In
the broader context of causal relation inference, this model is also called the general linear
structural equation model.

Pacific Symposium on Biocomputing 25:391-402(2020)

392



2.2. NO-TEARS Algorithm

Determining how best to measure W from observed values xi is the key to identifying gene
regulatory networks. In many cases, directed acylic graphes (DAGs) are utilized to represent
the causal system for its interpretability. The NO-TEARS algorithm is a new approach to
identify the causal DAG using a continuous-valued objective function. At the core of the NO-
TEARS algorithm is the matrix exponential exp(A), which measures whether a non-negative
matrix A represents a DAG. Specifically, Zheng et al. show that, the condition tr(exp(A)) = d,
where tr(·) is the trace operation, is equivalent to that the graph represented by the d × d
adjacency matrix A is acyclic. This is deducted from the fact that tr(Ak) = 0 is equivalent to
there being no k-cycle in the adjacency matrix A. Given that there is no k-cycle for all k ≥ 1

in a DAG, one can conclude that

tr(exp(A)) =

∞∑
k=0

1

k!
tr(Ak) = tr(Id) +

∞∑
k=1

1

k!
tr(Ak) = tr(Id) = d

Zheng et al. thus propose to solve a constrained optimization problem to learn the causal
structure: given an observed data matrix X ∈ Rn×d of n d-dimensional samples, find W ∈ Rd×d

that solves

minW∈Rd×d
1
2n‖X −XW‖

2
F + β‖W‖1

subject to tr(exp(W �W )) = d

This optimization problem can be interpreted as follows: among all possible weighted DAGs,
we want to identify one that is most consistent with the equation (1). The l1 loss is used to
regularize the learning algorithm when the sample size is small. One drawback of the NO-
TEARS algorithm is its computational complexity. Evaluating a matrix exponential requires
O(d3) numerical operations, making this optimization problem computationally expensive to
solve. Another is that the regression loss assumes linearity in gene expressions, which may not
be true. We seek to address these two issues to improve the NO-TEARS algorithm.

3. Original contribution

In Section 3.1, we present an alternative constraint, the spectral radius of a matrix, that
also enforces directed acyclic properties, similar to the matrix exponential. The advantage of
using this alternative penalty term is that it can be approximated with O(d2) computational
complexity, compared to the O(d3) method of evaluating the matrix exponential used in the
NO-TEARS algorithm. Importantly, the approximation is sufficiently scalable to infer a d× d
gene regulatory network. In addition, we propose a new regression term that incorporates
polynomial regression to address potential non-linearity of the dynamics of gene expression
(Section 3.2). Putting these two terms together, we propose a new optimization problem for
learning causal networks from data (Section 3.3).

3.1. Alternative characterization of DAG

To justify the proposed characterization for DAGs, we first demonstrate that the condition
of no cycles for a non-negative matrix is equivalent to that its eigenvalues are all zero. The
mathematical proof of this assertion can be found in the appendix.

Pacific Symposium on Biocomputing 25:391-402(2020)

393



Theorem 1. Given A ∈ Rd×d a real square matrix, the following statements are equivalent:

(1) tr(Ak) = 0 for k = 1, . . . d, where tr(·) is the trace of a matrix.
(2) σ(A) = {0}, where σ(A) is the set of eigenvalues of A.

The implication of this theorem is that one can impose the directed acyclic property by
restricting the solution space to be matrices with zero eigenvalues. We thus propose to use
the spectral radius ρ(A) to measure whether the graph A has cycles or not. The spectral
radius of a matrix is defined as the maximum of the absolute values among all eigenvalues of a
matrix. Although evaluating the spectral radius of a d×d matrix may appear to require O(d3)

operations inherited from eigenvalue decomposition, we later present a way to approximate
the spectral radius with O(d2) operations.

3.2. Polynomial regression loss

The dynamics of gene expression are intrinsically nonlinear such that the equation (1) may be
a poor approximation. To handle the nonlinearity associated with gene expression, we instead
extend the equation (1) to

Xi =
∑

j∈pa(i)

Wijfj(Xj) + ε,

where fj is a scalar function that maps a gene Xj into a space where equation (1) holds true.
The function fj is assumed to be not dependent on the response xi for the purpose of reducing
the number of parameters. In practice, we parameterize fj to be a polynomial of degree K,
where K is set to be 3 in all of our experiments. This leads to a regression term, which we call
the polynomial regression loss, defined as

PR(X,W,α) =
∑
il

Xil −
∑

j∈pa(i)

Wij

K∑
k=0

αjk(Xjl)
k

2

.

3.3. Proposed optimization problem

Combining the spectral radius and the polynomial regression loss, we propose an alternative
optimization problem for structural learning: Given a data matrix X ∈ Rn×d representing n

samples of d measured gene expressions, we estimate the causal network of d genes by solving
W ∗ that minimize the following problem

minW∈Rd×d, α∈Rd×K
1
2nPR(X,W,α) + L(W,α)

subject to ρ(W �W ) = 0

where L(W,α) = β1(‖W‖2F + ‖W‖1) + β2‖α‖2F is the regularization loss controlling model com-
plexity and � is the Hadamard product.

4. NO-BEARS Algorithm and approximations

We use the augmented Lagrangian method to solve the optimization problem. The augmented
Lagrangian method consists of two general steps:

Pacific Symposium on Biocomputing 25:391-402(2020)

394



(1) solve the unconstrained problem

W, α← argminW,α
1

2n
PR(X,W,α) + L(W,α) + ξρ(W �W ) +

η

2
ρ(W �W )2; (2)

(2) update the Lagrange multiplier ξ ← ξ+ηρ(W �W ); optionally one can increase η for faster
convergence.

In principle, any gradient-based optimization algorithm can be used to iteratively solve the
unconstrained problem. The major challenge lies in whether we can efficiently evaluate the
gradient of ρ(W �W ) with respect to W . We next present our method, named the NO-BEARS
algorithm, for estimating the gene causal network. The NO-BEARS algorithm is summarized
in Algorithm 1 and 2.

Algorithm 1 NO-BEARS inner iteration

input W , α, u ≥ 0 and v ≥ 0, η
solve the problem in equation (2) by
repeat

compute Ŵ = W �W + ε. Use burn-in without re-initializing u and v.
compute u← ŴTu

‖ŴTu‖2
and v ← Ŵv

‖Ŵv‖2
for 5 iterations.

obtain W+, α+ using any gradient based algorithm to minimize

1

2n
PR(X,W,α) + L(W,α) + ξ

uT Ŵv

uT v
+
η

2
(
uT Ŵv

uT v
)2

by one step. Assign W ←W+, α← α+

until converged or a maximum number of iterations is reached
return W,α, u, v

Algorithm 2 NO-BEARS algorithm

initialize W , α, u ≥ 0 and v ≥ 0, η
repeat
W,α, u, v ← NO-BEARS inner iteration(W,α, u, v, η)
update the Lagrange multiplier ξ ← ξ + ηρ(W �W ), η ← η × 1.1

until converged or a maximum number of iterations is reached
return W

4.1. Make NO-BEARS differentiable

To solve an optimization problem using a gradient based algorithm, we must first determine
whether the objective function is differentiable. Unfortunately, the spectral radius ρ(W ), as a
function of a matrix W , is not necessarily differentiable. To resolve this problem, we instead
minimize a perturbed objective function whose gradient can be evaluated. Specifically, we
propose to solve

W ∗, α∗ = argminW,α
1

2n
PR(X,W,α) + L(W,α) + ξkρ(W �W + ε) +

η

2
ρ(W �W + ε)2

Pacific Symposium on Biocomputing 25:391-402(2020)

395



where ε is a small constant, chosen to be 10−6 in our implementation, added to all elements of
the matrix W . The approximated problem provides an upper bound to the original problem
since ρ(W �W ) ≤ ρ(W �W + ε) is always guaranteed by the Wielandt’s Theorem.8 In the
appendix we show that ρ(W �W + ε) is differentiable with a gradient

∂ρ(W �W + ε)

∂Wi,j
= 2

Wijviuj
uT v

,

where u and v are left and right eigenvectors of W �W + ε. Any gradient descent algorithm
can then be used to solve the proposed optimization problem, assuming that u and v can
be computed accordingly. The question that then naturally arises is determining whether the
eigenvectors can be estimated efficiently.

4.2. Make NO-BEARS scalable

We describe how to efficiently compute the right eigenvector of W �W + ε associated with its
largest eigenvalue by using power iteration. The left eigenvector can be computed in a similar
way. Power iteration is an iterative method that computes the eigenvector associated with the
largest eigenvalue of a matrix. Starting from a vector v0 ∈ Rd, it recursively computes

vk+1 =
(W �W + ε)vk
‖(W �W + ε)vk‖2

.

Since W �W + ε has a dominant eigenvalue that is strictly larger than other eigenvalues in
absolute value, the sequence vk is guaranteed to converge to the eigenvector of the dominant
eigenvalue, despite presenting with a slow convergence rate. To further accelerate convergence,
we adapt the idea of spectral normalization, a technique recently propose to regularize deep
neural networks.9 Specifically, we use the estimated eigenvector v from the previous iteration
as a start from burn-in, and refine it using power iteration (see Algorithm 1). In practice we
find that a few iterations is sufficient to obtain the eigenvector with reasonable accuracy using
this burn-in strategy. Since this method requires only a fixed number of multiplications of the
matrix W by a vector v, the computational complexity to approximate ρ(W �W + ε) and its
gradient is O(d2) for any d× d matrix W .

5. Implementation details of NO-BEARS algorithm

We implement the proposed algorithm using tensorflow.10 All of our experiments are conducted
on 32-core server with a NVIDIA TITAN X Graphics card. In the following, we discuss a few
techniques that empirically improve the performance of the proposed NO-BEARS algorithm.

5.1. Initialization

We initialize the weight matrix W by fitting the equation (1) without the acyclic constraint.
While fitting the equation (1) requires utilizing the unknown set of parent genes, we instead
estimate the multiple linear dependencies of the gene Xi on a set of highly correlated genes.
Specifically, we first select up to 30 genes based the absolute values of their Spearman corre-
lation with respect to Xi. The edge weight Wij of these genes is then estimated using multiple

Pacific Symposium on Biocomputing 25:391-402(2020)

396



linear regression while Wij is set to be 0 if the gene j is not selected. We further refine W by
solving a minimization problem

W+, α+ = argminW,α
1

2n
PR(X,W,α) + L(W,α) (3)

using a first-order gradient descent optimizer. We used the ADAM optimizer11 for all of our
experiments to iteratively update W and α for 200 steps.

5.2. Data augmentation

Augmenting data is known to facilitate the training of deep neural networks. Here, we discuss
two strategies for data augmentation. The first method involves adding random noise to input
data at every iteration. We find that adding 10% Gaussian noise, model training generally
improves. We adapt the idea of bootstrapping, a technique for reducing variance in statistical
estimation, as well. Specifically, at every iteration, we shuffle the data while allowing the same
sample to be drawn twice, at most. To create a GPU-friendly implementation, we first replicate
the data matrix two-fold, reshuffle the order, and then perform a mini-batch iteration of batch
size that is the same as the sample size. We empirically find that this strategy performs better
than sampling with replacement.

5.3. Moving averaging

Weight-averaged solutions can sometimes contribute to more accurate models.12 We experi-
ment with this technique and find that calculating the moving average of weight matrix W

over the outer iterations indeed results in improved model performance. For our experiments,
we specifically chose the moving average rule to be Wt+1 = 0.975×Wt+ 0.025×W+, where W+

is the output from Algorithm 1. The last Wt is outputted as the estimated weight matrix.

5.4. Stopping criteria

We design the stopping criteria based on an empirical observations: the best performing so-
lution is typically attained after the regression loss rebounds from its minimum. Generally
speaking, a good solution requires balancing the regression loss that enforces data faithfulness
and the spectral-radius penalty that enforces acylicness. While a low spectral-radius penalty
encourages acylicness, too much acylicness would eventually override data faithfulness. We
thus stop the NO-BEARS algorithm when 1) the spectral radius is smaller than a threshold
t0 and 2) the regression loss is t1-fold larger the observed minimum over iterations. We choose
t0 and t1 to be 0.005 and 1.5 for all our experiments.

6. Evaluation

We compare NO-BEARS with two baseline models, NO-TEARS (section 6.1) and GENIE3
(section 6.2). We evaluate the performance using two sets of synetic data simulated by Syn-
thetic Transcriptional Reg-ulatory Networks (Section 6.3) and GeneNetWeaver (Section 6.4).

6.1. Baseline model: NO-TEARS algorithm using GPU

We implement the NO-TEARS algorithm using tensorflow as follows:

Pacific Symposium on Biocomputing 25:391-402(2020)

397



(1) initialize W
(2) (inner iteration) use ADAM algorithm to minimize

1

2n
‖X −XW‖2F + β‖W‖1 + ξh(W ) + ηh(W )2, (4)

where h(W ) = tr exp(W�W )−d. Iterate until converge or a maximum number of iterations
is reached. We iterate the solution for 100 steps.

(3) update the Lagrange multiplier ξ+ = ξ + ηh(W ) and η+ = 1.25× η
(4) repeat 2 and 3 until converge (h(W ) is less than 10−8) or a maximum number of iterations,

which we choose to be 50, is reached.

We re-implemented the NO-TEARS algorithm to evaluate and benchmark its performance.
The original implementation uses only CPU computation that results in the algorithm being
too slow to compare with other methods. For example, the original implementation, using 32
cores in parallel, takes ∼ 4000 seconds to process simulated data with 300 genes while our
GPU implementation of the algorithm only requires ∼ 40 seconds.

6.2. Baseline model: GENIE3

We use another baseline model, GENIE3, which is the top performing model in DREAM4 chal-
lenges13 as another benchmarking method. GENIE3 is designed based on a linear structural
equation model. Instead of using linear regression to fit the structure model, GENIE3 utilizes
Random Forest regression and ranks the gene-gene dependency by feature importance. We
use the original Python implementation with recommended parameters in our experiments.
GENIE3 is benchmarked using parallel processing on 20 CPUs.

Table 1. Characteristics of benchmark datasets

DAG-100 DAG-300 Ecoli-100 Ecoli-300 Yeast-100 Yeast-300 Ecoli-1565 Yeast-4441

#nodes 100 300 100 300 100 300 1565 4441
#edges 121 427 164 463 149 543 3648 12873
#parents 1.2± 4.3 1.4± 5.4 1.6± 5.3 1.5± 5.6 1.5± 3.0 1.8± 4.7 2.3± 18.2 2.9± 21.8

#samples 100, 500, 1000 and 2000 1565 4441

simulator SynTReN GeneNetWeaver

6.3. Benchmark datasets

To benchmark performance, we use two sets of synthetic data that are simulated based on
curated transcriptome networks. The first set is generated by Synthetic Transcriptional Reg-
ulatory Networks (SynTReN14). We use SynTReN to simulate expression data of 100 and 300
genes. The sample size of each simulation ranges from 100, 500, 1000 and 2000. Three different
types of ground truth graphs, including a directed acylic graph, an E. coli gene network and
a S. cerevisiae gene network, are used to simulate data. The second set of data is simulated
using GeneNetWeaver.15 We use a data set generated in a previous study.16 This dataset in-
cludes data simulated based on E. coli and S. cerevisiae gene networks, each with 1565 and
4441 genes, respectively. Table 1 summarizes characteristics of all data that we use for data
simulation.

Pacific Symposium on Biocomputing 25:391-402(2020)

398



6.4. Metrics

We treat the gene-network inference as a binary prediction problem. The task is to predict the
existence of an gene-gene edge using gene expression data. We therefore measure the accuracy
of inferring gene-gene dependency using the area under the receiver operating characteristic
curves (AUC-ROC) and the average precision score (AP) by using the absolute values of
outputted weights W as scores to predict gene-gene edges.

7. Result

7.1. Benchmarks on SynTeRN simulations

Benchmarks on data simulated by SynTeRN are reported in Figure 1. In general, NO-BEARS
outperforms the other two methods by a significant margin in AP scores when the sample size
of edges is larger than 500. Despite observing a drop in AUC-ROC, we note that the edge
classification is highly imbalanced, with no more than 10% positive gene-gene dependencies
over the combination of all possible edges which can bias AUC-ROC. For all cases tested,
NO-BEARS and NO-TEARS are able to return results in 1 minute while GENIE3 took ∼20
minutes to process cases of 2000 samples. We note that processing time measures the total
convergence time, and is not expected to be square for NO-BEARS nor cubic for NO-TEARS.

Fig. 1. Performance benchmark on SynTReN. From left to right, data points of the same color are
arranged with sample sizes increasing from 100, 500, 1000 to 2000. Circles, stars and cross marks
indicate results obtained using NO-BEARS, NO-TEARS and GENIE3 respectively. Panels from left
to right show average precision scores (AP), area under a ROC curve (AUC-ROC) and processing
time.

7.2. Benchmarks on GeneNetWeaver simulations

Table 2. Benchmark on data sets simulated by
GeneNetWeaver. AP: average precision (%). ROC: Area
under a ROC curve (%). time: processing time (s).

NO-BEARS NO-TEARS GENIE3

Ecoli-1565
AP 36.1 35.2 12.2
ROC 78.7 83.0 88.0
time 154.9 352.5 5538.5

Yeast-4441
AP 64.5 56.9 9.8
ROC 95.6 88.9 92.9
time 2484.1 4842.8 89431.2

Benchmarks on data simulated by
GeneNetWeaver are reported in Ta-
ble 2. In these two cases, NO-BEARS
achieved the highest average precision
scores using least amount of time. The
significantly shorter processing time
for NO-TEARS and NO-BEARS sug-
gests the advantage of using GPUs

Pacific Symposium on Biocomputing 25:391-402(2020)

399



for solving computationally challeng-
ing problems.

7.3. Effects of minimizing spectral radius

We also investigate whether imposing structural constraint improves performance. We compare
initial solutions that are computed as described in section 4.1 to final solutions that are further
refined by minimizing the full objective function (equation 2) until stopping criterion are met.
Figure 2 shows the AP scores of these initial solutions and their corresponding final solutions.
As it can be seen, enforcing directed acycliness improves estimating gene networks.

Fig. 2. Comparing the performance
with and without minimizing the spec-
tral radius. Circles and cross marks in-
dicate average precision scores obtained
with and without applying spectral ra-
dius minimization respectively. From left
to right, data points of the same color
are arranged with sample sizes increas-
ing from 100, 500, 1000 and 2000.

7.4. Computational complexity

Last, to benchmark computational complexity of our problem, we measure the time to process
100 inner iterations for the NO-BEARS algorithm (equation 2) and NO-TEARS (equation
4). The results are reported in table 3. We note that these results only reflect the processing
time of a fixed number of iterations, but not the overall time till converge to a solution.

Table 3. real-world time to process 100 iterations. All numbers are reported in
seconds. OOM: Out-of-memory associated results are not available.

#genes 100 200 400 800 1600 3200 6400 12800 25600

NO-BEARS 0.96 0.70 0.74 0.73 0.79 1.14 3.14 9.70 OOM
NO-TEARS 1.05 1.04 1.56 2.98 9.00 36.97 241.10 OOM

8. Discussion and conclusion

We present the NO-BEARS algorithm for estimating gene regulatory networks. the NO-
BEARS algorithms is built on the basis of the NO-TEARS algorithm with a new penalty
term to improve scalability, and the application of a new regression loss function to combat
non-linearity in gene expression dynamics. We observe a faster and more accurate construction
of gene regulatory networks on several synthetic data sets using the NO-BEARS algorithm.
Despite these promising results, further evaluation is required to test the algorithm’s per-
formance on real-world data. We observed a sample-size dependency on the performance of
BN construction in three tested methods (Figure 1), suggesting that sample size is a critical

Pacific Symposium on Biocomputing 25:391-402(2020)

400



factor to consider when deploying BN construction in a real-world setting. In this work, we
demonstrate that GPUs can greatly accelerate BN construction, despite a trade off with GPU
memory, which limits the size of the BN. The NO-BEARS algorithm is memory efficient,
compared to the NO-TEARS algorithm, and can handle up to 12,800 genes using 1 GPU,
a capability that is applicable to most real world scenarios. As GPU hardware improves, we
believe constructing a full transcriptome network is possible in the near future. In addition
to rapidly evolving sequencing techniques to probe the molecular makeup of an individual,
we envision that this method will contribute to a better understanding on the role of gene
regulatory networks in personalized health.

Acknowledgments

The authors would like to thank support from the Hasso Plattner Foundation and a courtesy
GPU donation from NVIDIA.

9. Appendix

9.1. Proof of theorem 1

Theorem 1. Given A ∈ Rd×d a real square matrix. The following statements are equivalent:

(1) tr(Ak) = 0 for k = 1, . . . d, where tr(·) is the trace of a matrix.
(2) σ(A) = {0}, where σ(A) is the set of eigenvalues of A.

Proof. Assume A admits a Jordan form A = PJP−1, where J has eigenvalues of A on the
diagonal and 1 or 0 on the super diagonal and P is an invertible matrix. Then Ak = PJkP−1

and tr(Ak) = tr(PJkP−1) =
∑M

i=1miλ
k
i where mi are M positive integers that are the algebraic

multiplicity of an corresponding unique eigenvalue λi. Clearly M ≤ d.
(1) ⇒ (2): Given

∑
imiλ

k
i = tr(Ak) = 0 k = 1, · · ·M we have the linear system∑
i

miλ
k
i =

∑
i

(λimi)λ
k−1
i = 0 for n = 1, . . .M − 1,

or equivalently in the matrix form VM [λ1m1, . . . , λMmM ]T = 0, where VM is a Vandermonde
matrix formed by eigenvalues λi, i.e., the elements of VM are (VM )ij = (λi−1j ). Since VM is
invertible, we have λimi = 0, i.e., all nonzero eigenvaules are of algebraic multiplicity zero.
This concludes that the only eigenvalue with non-zero algebraic multiplicity is 0.
(2) ⇒ (1): tr(Ak) = tr(PJkP−1) =

∑M
i=1miλ

k
i =

∑M
i=1mi(0)i = 0

The spectral radius ρ(A) provides an upper bound of the penalty term tr(exp(A)) used in
NO-TEARS algorithm. To see this, using Jordan canonical decomposition, one can show that
tr(exp(A)) =

∑
λi∈σ(A) e

λi ≤
∑

λi∈σ(A) e
|λi| ≤ d · eρ(A). Hence, finding a nilpotent matrix with

ρ(A) = 0 enforces tr(exp(A)) = d, the condition for DAG used in NO-TEARS algorithm.

9.2. Gradient of the spectral radius

In section 4.1, we propose to minimize a perturbed problem. The primary reason of adding
a small constant to W �W is to make the the objective fucntion differentiable. It is known

Pacific Symposium on Biocomputing 25:391-402(2020)

401



that, if an eigenvalue λ(A) of a matrix A is simple, the gradient of λ with respect to A is
∂λ
∂Ai,j

= viuj

uT v , where u and v are the left and right eigenvectors associatedd with the eigenvalue
λ. Furthermore, when A is strictly positive, its largest eigenvalue is guaranteed to be simple by
the Perron-Frobenius theorem.8 Adding a small constant ε to the nonnegative matrix W �W
can make the function ρ(W �W + ε) strictly positive and therefore differentiable with a well-
defined gradient, which can be computed as ∂ρ(W�W+ε)

∂Wi,j
= 2Wijviuj

uT v , where u and v are left and
right eigenvectors of W �W + ε.

References

1. A. Califano and M. J. Alvarez, The recurrent architecture of tumour initiation, progression and
drug sensitivity, Nature reviews Cancer 17, p. 116 (2017).

2. N. Friedman, M. Linial, I. Nachman and D. Pe’er, Using bayesian networks to analyze expression
data, Journal of computational biology 7, 601 (2000).

3. B. Zhang, C. Gaiteri, L.-G. Bodea, Z. Wang, J. McElwee, A. A. Podtelezhnikov, C. Zhang, T. Xie,
L. Tran, R. Dobrin et al., Integrated systems approach identifies genetic nodes and networks in
late-onset alzheimers disease, Cell 153, 707 (2013).

4. I.-M. Wang, B. Zhang, X. Yang, J. Zhu, S. Stepaniants, C. Zhang, Q. Meng, M. Peters, Y. He,
C. Ni et al., Systems analysis of eleven rodent disease models reveals an inflammatome signature
and key drivers, Molecular systems biology 8 (2012).

5. D. M. Chickering, D. Heckerman and C. Meek, Large-sample learning of bayesian networks is
np-hard, Journal of Machine Learning Research 5, 1287 (2004).

6. X. Zheng, B. Aragam, P. K. Ravikumar and E. P. Xing, Dags with no tears: Continuous opti-
mization for structure learning, in Advances in Neural Information Processing Systems, 2018.

7. J. C. Liao, R. Boscolo, Y.-L. Yang, L. M. Tran, C. Sabatti and V. P. Roychowdhury, Network
component analysis: reconstruction of regulatory signals in biological systems, Proceedings of the
National Academy of Sciences 100, 15522 (2003).

8. C. D. Meyer, Matrix analysis and applied linear algebra (Siam, 2000).
9. T. Miyato, T. Kataoka, M. Koyama and Y. Yoshida, Spectral normalization for generative ad-

versarial networks, arXiv preprint arXiv:1802.05957 (2018).
10. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin et al., Tensorflow: Large-scale machine learning on heterogeneous distributed
systems, arXiv preprint arXiv:1603.04467 (2016).

11. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980 (2014).

12. A. Tarvainen and H. Valpola, Mean teachers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning results, in Advances in neural information
processing systems, 2017.

13. A. Irrthum, L. Wehenkel, P. Geurts et al., Inferring regulatory networks from expression data
using tree-based methods, PloS one 5, p. e12776 (2010).

14. T. Van den Bulcke, K. Van Leemput, B. Naudts, P. van Remortel, H. Ma, A. Verschoren,
B. De Moor and K. Marchal, Syntren: a generator of synthetic gene expression data for design
and analysis of structure learning algorithms, BMC bioinformatics 7, p. 43 (2006).

15. T. Schaffter, D. Marbach and D. Floreano, Genenetweaver: in silico benchmark generation and
performance profiling of network inference methods, Bioinformatics 27, 2263 (2011).

16. A. Statnikov, S. Ma, M. Henaff, N. Lytkin, E. Efstathiadis, E. R. Peskin and C. F. Aliferis, Ultra-
scalable and efficient methods for hybrid observational and experimental local causal pathway
discovery, The Journal of Machine Learning Research 16, 3219 (2015).

Pacific Symposium on Biocomputing 25:391-402(2020)

402




