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Intrinsically disordered proteins (IDPs) are important functional proteins, and their deregulation 
are linked to numerous human diseases including cancers. Understanding how disease-associated 
mutations or drug molecules can perturb the sequence-disordered ensemble-function-disease 
relationship of IDPs remains challenging, because it requires detailed characterization of the 
heterogeneous structural ensembles of IDPs. In this work, we combine the latest atomistic force 
field a99SB-disp, enhanced sampling technique replica exchange with solute tempering, and GPU-
accelerated molecular dynamics simulations to investigate how four cancer-associated mutations, 
K24N, N29K/N30D, D49Y, and W53G, and binding of an anti-cancer molecule, epigallocatechin 
gallate (EGCG), modulate the disordered ensemble of the transactivation domain (TAD) of tumor 
suppressor p53. Through extensive sampling, in excess of 1.0 µs per replica, well-converged 
structural ensembles of wild-type and mutant p53-TAD as well as WT p53-TAD in the presence of 
EGCG were generated. The results reveal that mutants could induce local structural changes and 
affect secondary structural properties. Interestingly, both EGCG binding and N29K/N30D could 
also induce long-range structural reorganizations and lead to more compact structures that could 
shield key binding sites of p53-TAD regulators. Further analysis reveals that the effects of EGCG 
binding are mainly achieved through nonspecific interactions. These observations are generally 
consistent with on-going NMR studies and binding assays. Our studies suggest that induced 
conformational collapse of IDPs may be a general mechanism for shielding functional sites, thus 
inhibiting recognition of their targets. The current study also demonstrates that atomistic 
simulations provide a viable approach for studying the sequence-disordered ensemble-function-
disease relationships of IDPs and developing new drug design strategies targeting regulatory IDPs. 
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1. Introduction

As key components of cellular signaling and regulatory networks, intrinsically disordered proteins 
(IDPs) do not have stable structures under physiological conditions and deviate from the traditional 
protein structure-function paradigm1-10. Sequence analysis have shown that IDPs are highly 
prevalent in biology11, suggesting that intrinsic disorder provides major advantages in supporting 
related functions. Many IDPs have been shown to interact with multiple targets, often working as 
signaling hubs in protein interaction networks5, 7-8, 11-13. Mutation of IDPs or altered IDP abundance 
are frequently associated with human diseases, including cancers, neurodegenerative diseases, 
cardiovascular disorders, and diabetes11, 13-16. Nearly one fourth of disease mutations could be 
mapped to disordered regions15, 17, and many of them may alter the residual structure level of 
IDPs15. Therefore, there is a strong need to understand the molecular mechanisms of how IDPs 
carry out various biological functions and contribute to various diseases. A persisting bottleneck, 
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however, is the challenge of detailed characterization of the structural and dynamic properties of 
disordered protein states. The highly dynamic conformations of IDPs do not lend themselves to 
traditional experimental characterizations, which are geared toward determining well-defined 
structures of folded proteins18-24. Several approaches have also been described to generate models 
of the disordered ensembles using experimental data from nuclear magnetic resonance (NMR) 
spectroscopy, small angle X-ray scattering, and others.25-30 However, a key challenge is that 
experimentally measured ensemble averages are generally insufficient to define the heterogeneous 
ensemble by themselves. The underdetermined nature renders the resulting ensembles prone to 
inevitable biases in the model generation protocol.20 Instead, physics-based molecular dynamics 
(MD) simulations have a crucial and unique role to play in understanding IDPs. It can generate 
structural ensembles with atomistic details, given highly accurate force fields and adequate 
sampling of relevant conformational space.  When properly validated using experimental data, the 
simulated ensembles could provide the molecular details required for establishing the physical 
basis on how intrinsic conformational disorder mediates protein functions and how such functional 
mechanisms fail in human diseases.  

Figure 1. (A) Domain structure of p53, sequence of p53-TAD and its key interaction partners (blue 
ovals). Phosphorylation sites are colored in red and known cancer mutants are listed below the 
sequence. Mutants studied in this work are underlined. (B) Chemical structure of EGCG. 

In this work, we focus on the intrinsically disordered N-terminal transactivation domain (TAD) 
of tumor suppressor p53, one of the most frequently mutated proteins in cancers31-32. The stability 
and activity of p53 are tightly regulated by interactions with other proteins, such as the E3 ubiquitin 
ligase MDM2 and transcriptional coactivator CBP/p30033. These interactions are mediated by p53-
TAD, which contains two functional sites, AD1 and AD2, for specific recognition of target 
proteins (see Figure 1). In unstressed cells, the level of p53 remains low, since it binds tightly to 
the E3 ubiquitin ligase MDM2 through TAD and becomes polyubiquitinated and degraded34-35. 
Under genotoxic stress, p53 becomes phosphorylated at multiple sites in TAD (Figure 1), which 
reduces binding affinity to MDM2 and enhanced binding affinity to CBP, thus stabilizing and 
activating p5336-40. The underlying mechanisms of how phosphorylation and cancer-associated 
mutations modulate p53 interactions with these key regulators remains unclear. Importantly, many 
of these phosphorylation and mutation sites are not located at the known binding interfaces (AD1 
and AD2) identified in known structures of p53-TAD complexes41-44. Therefore, modulation of 
binding affinities by phosphorylation at many sites cannot be explained by disruption of inter-
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molecular interaction itself. Instead, the unbound structural ensemble of p53-TAD is likely poised 
to respond to various cellular signals, including phosphorylation and mutations, which can shield 
key binding sites and affect the entropic and enthalpic costs of binding. As such, the unbound state 
of p53-TAD can provide a central conduit that integrates various cellular signals to regulate the 
activity of p53. Indeed, it has been shown that modulating the helicity of p53-TAD alone can have 
important consequences on binding and potentially activation in cells.45 Along this line, detailed 
characterization of the unbound ensemble is critical to understanding the sequence-disordered 
ensemble-function-disease relationship of p53. 

Recent advances in developing more accurate protein force fields and enhanced sampling 
techniques have paved the way for using atomistic simulations to study IDPs of biological and 
biomedical importance23, 46. We have critically examined the ability of several latest force fields 
for describing both local and long-range structural features of wild-type (WT) p53-TAD47. In 
comparison with a wide array of experimental observables, including NMR chemical shifts, 
paramagnetic relaxation enhancement (PRE) effects and single-molecule and time resolved FRET 
measurements, we found that the force field a99SB-disp48 in particular could accurately describe 
virtually all key structural features of WT p53-TAD, including overall dimension, secondary 
structural properties and transient long-range contact formation. a99SB-disp has also been shown 
to reliably model many other folded proteins and disordered proteins and peptides48, thus providing 
a solid base for us to integrate atomistic simulation and biophysical experiment to further 
investigate how cancer-associated mutations and ligand binding may modulate the disordered 
ensemble of p53-TAD to perturb its interactions with key regulators and biological activities. 

Here, we combined the highly accurate atomistic force field a99SB-disp48, enhanced sampling 
technique replica exchange with solute tempering (REST2)49-50, and GPU-accelerated MD 
simulations to investigate how four cancer-associated mutations, K24N, N29K/N30D, D49Y, and 
W53G, and binding of an anti-cancer drug, epigallocatechin gallate (EGCG) (Fig. 1), may 
modulate the disordered ensemble of p53-TAD. Combination of enhanced sampling and GPU 
acceleration proves effective in overcoming the computational demand of sufficient sampling of 
the disordered conformational space. The effects of cancer-associated mutations and EGCG 
binding were examined at multiple levels, including the overall dimension, secondary structures 
and conformational distributions, and compared with on-going NMR and binding studies. 

2. Methods 

2.1 Simulation details  

The 61-residue p53-TAD domain (MEEPQ SDPSV EPPLS QETFS DLWKL LPENN VLSPL 
PSQAM DDLML SPDDI EQWFT EDPGP D) and its four cancer-associated mutants, K24N, 
N29K/N30D, D49Y, and W53G, were studied in this work. Each peptide was capped with an 
acetyl group at the N-terminus and N-methyl amide at the C-terminus. The a99SB-disp force 
field48 was used in all simulations. To study the effects of an anti-cancer drug EGCG, another 
system was constructed with one WT p53-TAD and 10 EGCG molecules simulated together, 
where EGCG was modelled using the general AMBER force field51. For each WT and mutant p53-
TAD, we performed two independent REST2 simulations starting from contrasting structures, 
either highly helical or fully extended extracted from our previous simulations of p53-TAD52. This 
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allows us to critically evaluate simulation convergence, because well converged ensembles should 
be independent of the starting conformation.  In the case of EGCG molecules interacting with WT 
p53-TAD, two independent REST2 simulations were also performed, but the starting structures 
were centroids of top 16 most populated clusters derived from previous clustering analysis of WT 
p53-TAD47, with 10 EGCG molecules randomly inserted into the simulation box. The protein was 
solvated using ~24,000 water molecules in a truncated octahedron box, whose volume was ~710 
nm3.  Counter ions (14 Na+ ions in all systems, except for 15 Na+ in K24N and 13 Na+ in D49Y) 
was included to neutralize the system. 

GROMACS 201853-54 patched with PLUMED 2.3.055-57 was used to carry out all REST2 
simulations. Initial conformations were energy minimized to remove any steric clashes. The 
system was then equilibrated at 298 K for 1 ns under constant temperature (NVT) conditions, 
followed by 1 ns constant temperature and constant pressure (NPT) simulation. All production 
runs were carried out at 298 K under NVT conditions. Short-range nonbonded interactions were 
truncated at 1.2 nm, and long-range electrostatic interactions were calculated using the Particle 
Mesh Ewald (PME) method58. LINCS algorithm59 was applied to constrain lengths of all bonds 
involving hydrogen atoms. The MD time step was 2 fs. In the subsequent REST2 simulations, 16 
replicas were used with the effective temperatures of protein spaced exponentially between 298 K 
and 500 K. The higher effective temperature of protein facilitates its conformational transitions, 
which can be achieved by reducing potential energies. Specifically, we scaled the solute-solute 
and solute-solvent interactions by λ and √𝜆, respectively, with λ ranging from 1.0 to 0.6. Exchange 
between replicas was attempted every 2 ps, and the average acceptance ratio was approximately 
0.25. Trajectories were saved every 2 ps. All simulations lasted for at least 1 µs/replica. The total 
aggregated REST2 MD time was 192 µs, making this one of the most extensive explicit solvent 
simulations of p53-TAD. 

 

Figure 2. Distributions of Rg of p53-TAD at 298 K calculated from two independent REST2 runs. 
The corresponding ensemble averaged values are indicated using vertical bars on the x-axis. 
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2.2 Analysis  

The simulated ensembles were derived only from unbiased replicas of λ = 1.0, with the first 300 
ns trajectories of each simulation discarded to remove the initial equilibration phase. All analyses 
were conducted using the GROMACS toolset53-54 unless otherwise specified.  

3. Results and Discussion 

3.1 Assessment of simulation convergence 

Achieving a sufficient level of convergence is critical for examining how the disordered ensembles 
respond to mutations and/or ligand binding. In this work, the simulation convergence was 
examined by comparing the structural ensembles obtained from two independent runs (see 
Methods for details). As illustrated in Figure 2 and Figure 3, key structural features of p53-TAD, 
including the chain dimension, measured by radius of gyration Rg, and secondary structural 
properties, are quite consistent between two independent runs, suggesting that these simulations 
are reasonably well converged. We note that substantially differences persist between results from 
control and folding simulations, which reflects the highly challenging nature of generating 
extremely well converged disordered ensembles. This is an important limitation that will prevent 
one from reliably detecting and resolve small perturbations of mutations and/or drug binding on 
IDPs.  Nonetheless, it has been shown that a99SB-disp could accurately describe the key structural 
features of many biologically important IDPs48 and particularly p53-TAD47. These simulated 
ensembles thus should provide solid insights on how ligand binding and mutations may perturb 
the properties of unbound p53-TAD and modulate its interactions with key regulators. 

 

Figure 3. Residual helicity profiles of p53-TAD at 298 K calculated from two independent REST2 
runs. Each run was equally divided into three portions. Secondary structure of each snapshot was 
calculated using the DSSP60 program, and probabilities of forming α-helix were reported here.  
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3.2 Modulation of p53-TAD secondary structural properties 

IDPs could interact with different cellular targets under different conditions, thus often working as 
signaling hubs in protein interaction networks5, 7-8, 11-13. The secondary structural properties of IDPs 
are considered an important determinant of signaling fidelity8. For example, missense disease 
mutations in IDPs alter residual secondary structure with higher probabilities than neutral 
evolutionary substitutes15, which implies that changing IDP secondary structural properties may 
have detrimental impacts on their functions. Transiently formed partial helices have also been 
observed in unbound p53-TAD61-62, and they are critical in mediating interactions with p53 
regulators like MDM2 and CBP33. Therefore, we would like to examine how ligand binding and 
cancer-associated mutations may modulate p53-TAD secondary structural properties. As shown 
in Figure 3, p53-TAD in all cases contains residual helices in regions similar to those observed 
for the WT protein. This is generally consistent with ongoing NMR characterizations, where 
secondary chemical shift analysis has confirmed that mutations do not lead to significant changes 
in the secondary structural propensity (unpublished data, Prakash and Zolkiewski labs, Kansas 
State University). However, some subtle and local effects can also be observed. For example, 
N29K/N30D almost completely abolishes residual helicity at residues 25-35, while D49Y 
increases helical probability at residues 45-55. Since these regions often undergo disorder-to-order 
transitions upon binding to target proteins, such changes in helical propensities of unbound p53-
TAD may lead to changes in folding conformational entropy cost in the coupled binding and 
folding, thus affecting the binding affinities. 

3.3 Modulation of p53-TAD overall chain dimension 

The activity of p53 is tightly regulated by TAD’s interaction with MDM2 (the degradation 
pathway) and transcriptional coactivator CBP (activation pathway), forming ternary complexes 
that mediate p53 turnover37. Multi-site phosphorylation of TAD under prolonged genotoxic stress 

 

Figure 4. Probability distributions of Rg of p53-TAD subdomain AD1 (residues 10 - 40) calculated 
from two independent simulations. 
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stabilizes p53 and activates its tumor suppressor function by weakening binding to MDM2 and at 
the same time enhancing binding to CBP36-40. Considering the cooperative nature of p53 regulation 
and existence of multiple binding and phosphorylation sites in p53-TAD, changes in overall chain 
dimension may directly affect the availability of binding sites, thus perturbing the balance between 
degradation and activation pathways. As summarized in Figure 2, cancer-associated mutations do 
not appear to dramatically change the overall dimension of p53-TAD, while EGCG binding leads 
to significant compaction of peptide chain. Such effect of EGCG binding is consistent with NMR 
studies, where enhanced R2 relaxation rate have been observed across the entire sequence of p53-
TAD in the presence of EGCG (unpublished data, Wang lab, Rensselaer Polytechnic Institute). 
Surface plasmon resonance competition assay has further confirmed that EGCG binding indeed 
could disrupt the interaction between p53 and its regulator, the E3 ubiquitin ligase MDM2, thus 
stabilizing p53 (unpublished data, Wang lab, Rensselaer Polytechnic Institute). 

We further examined the local compactness of around AD1, which is a key recognition site, 
such as for with high binding affinity to MDM2 and moderate binding affinity to CBP domains37 
(see Figure 1). As shown in Figure 4, the results reveal that N29K/N30D can induce significant 
compaction around AD1, with a greatly enhanced probability adopting highly compact structures 
with Rg ≤ 1.25 nm. This is consistent with NMR results showing that N29K/N30D is the only 
mutant among the four examined here that leads to significant increase in R2 relaxation rates 
(unpublished data, Prakash lab, Kansas State University). Importantly, preliminary binding assay 
has also revealed that the N29K/N30D double mutation abolishes binding of p53-TAD to MDM2 
and CBP domains (unpublished data, Zolkiewski lab, Kansas State University). The 
conformational consequence of N29K/N30D appears to be similar to those caused by EGCG 
binding (Figure 4), and both lead to impairment of binding. These results support our hypothesis 
that increasing chain collapse may shield the functional sites of p53-TAD and perturb its 
interaction network. 

3.4 Mutations and ligand binding dramatically shift p53-TAD conformational equilibria 

The above analyses of peptide chain dimension and secondary structural properties suggest that 
these cancer-associated mutations and ligand binding could perturb the structural ensemble of 
unbound p53-TAD. To directly visualize the conformational space available to p53-TAD and 
changes induced by mutations and ligand binding, we have performed principal component 
analysis (PCA). For this, we combined conformational ensembles obtained from all simulations, 
and performed featurization on peptide backbone heavy atoms using the DRID algorithm, 
distribution of reciprocal of interatomic distances63, as implemented in MSMBuilder 3.6.164. PCA 
analysis in DRID space (see Error! Reference source not found.) reveals that WT p53-TAD and 
all four mutants could visit a very large conformational space, as expected for a highly dynamic 
and disordered peptide. On the other hand, the conformational space available to p53-TAD 
becomes highly restricted in the presence of EGCG molecules (Error! Reference source not 
found.). As illustrated by the representative snapshots, the conformational ensemble of p53-TAD 
becomes dominated by compact conformers in the presence of EGCG. This is consistent with the 
previous observation that EGCG could lead to significant compaction of peptide chain (Figure 2). 
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Interestingly, D49Y appears to slightly increase the conformational heterogeneity of p53-TAD, 
leading to a broader distribution (Figure 5). 

 

 
Figure 6. Projection of simulated structural ensembles of p53-TAD subdomain AD1 (residues 10 - 
40) onto the first two principal components. The heat maps indicate probability distributions derived 
from simulation statistics. Values in the parenthesis are percentages of variance in each direction. Ten 
representative snapshots are shown for each of the two selected states, with the color changing from 
red at the N-terminus to blue at the C-terminus. 

 

Figure 5. Projection of simulated structural ensembles of p53-TAD onto the first two principal 
components. The heat maps indicate probability distributions derived from simulation statistics. 
Values in the parenthesis are percentages of variance in each direction. Ten representative snapshots 
are shown for each of the two selected states, with the color changing from red at the N-terminus to 
blue at the C-terminus. 
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We have further examined the impacts of four cancer-associated mutations and EGCG binding 
on the conformational space of residues 10 – 40, which includes AD1 subdomain of p53-TAD. As 
shown in Figure 6, PCA analysis of AD1 conformations in DRID space suggests that besides 
EGCG binding, the double mutation N29K/N30D could also significantly perturb the 
conformational equilibria of AD1 subdomain, which is consistent with above observation that both 
EGCG binding and N29K/N30D could induce more compact AD1 structures (Figure 4). The 
apparent changes induced by D49Y cannot be faithfully evaluated, since AD1 conformations in 
this system are not well converged (e.g., Figure 4). 

3.5 Nonspecific binding of EGCG to p53-TAD  

To further understand how EGCG induces collapse of p53-TAD conformations, we computed the 
contact probabilities between EGCG molecules and each residue of the peptide. A contact is 
considered formed when the minimum heavy-atom distance between any EGCG molecule and the 
residue in p53-TAD is less than or equal to 0.42 nm. As shown in Figure 7, although the contact 
profiles are not well converged at the level of each individual residue, it’s obvious that most 
residues in the peptide sequence could form contacts with EGCG molecules with significant 
probabilities. This seems to suggest that EGCG binds to p53-TAD through highly nonspecific 
interactions. The EGCG molecule is rich in hydroxyl groups and aromatic rings, which could then 
form various hydrogen bonds and hydrophobic contacts with the peptide. We have also observed 
similar nonspecific interactions of small drug molecules that could induced local compaction of 
Aβ42, another IDP that is associated with Alzheimer's diseases, to suppress oligomerization and 
potentially aggregation65. Taken together, these results suggest that nonspecific interaction may 
likely be a common and effective mode of action for small molecules targeting IDPs. 

4. Conclusions 

IDPs are important functional proteins in cellular signaling and regulation, and their mutations are 
often associated with human diseases. 
However, it remains challenging to 
determine the underlying molecular 
mechanisms of IDP function and design 
effective therapeutic strategies to target 
these IDPs. In this work, we combined 
the state-of-the-art atomistic force field 
a99SB-disp with enhanced sampling and 
GPU accelerated MD simulation to 
investigate how cancer-associated 
mutations and ligand binding may 
modulate the disordered ensemble of 
unbound p53-TAD. Through 
microsecond-timescale REST2 
enhanced sampling, all simulated 
ensembles are reasonably converged at 

 

Figure 7. Probability of forming contacts between each 
residue of p53-TAD and any EGCG molecule calculated 
from two independent simulations. 
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levels of overall dimension and secondary structural propensities. The impacts of K24N and W53G 
on the unbound state of p53-TAD do not seem to be obvious according to this study. D49Y, on the 
other hand, has local effect on the intrinsic helical propensities of p53-TAD. Similar local effects 
have been observed in N29K/N30D as well, but this double mutation could also induce long-range 
effects, like the collapse of p53-TAD subdomain AD1. The impacts of EGCG binding seems to be 
the most dramatic, which bind nonspecifically to p53-TAD and lead to a highly restricted compact 
conformational ensemble. These observations are generally consistent with ongoing experimental 
studies, which have also confirmed the ability of N29K/N30D and EGCG binding to affect p53-
TAD binding to key regulators. Structural insights derived from these simulations will lay the 
foundation for establishing the sequence-disordered ensemble-function-disease relationship of 
p53-TAD and shed light on new drug design strategies targeting p53 and other regulatory IDPs. 
 
Our studies suggest that induced compaction may to be a general mechanism for shielding 
functional sites of IDPs to achieve inhibitory effects. This is consistent with previous studies 
suggesting a key role of entropic modulation in IDP-drug interactions65-66. Furthermore, 
nonspecific interaction is likely a common and effective mode of action for small molecules 
targeting IDPs, which is in contrast to traditional drug design strategy relying on specific 
interactions between drug molecules and target proteins. Our study also demonstrates a viable 
approach that integrates physics-based atomistic simulation and biophysical experiments to 
unravel how the disordered ensemble of IDPs may be modulated by various cellular signals 
including mutations, post-translational modifications and ligand binding. We note that generating 
reliable structural ensembles of IDPs remains a formidable task, due to the sampling requirement 
and more importantly persisting limitations in atomistic force fields. It is thus imperative to 
examine the properties of the simulated ensembles across of a series of mutations and/or with and 
without the presence of drug molecules, such that systematic biases may be cancelled and reliable 
features identified. 
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