
Improving survival prediction using a novel feature selection and feature reduction framework 

based on the integration of clinical and molecular data* 

Lisa Neums†, Richard Meier, Devin C. Koestler and Jeffrey A. Thompson 

Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd. 

Kansas City, KS 66160, USA 

Email: lneums@kumc.edu 

University of Kansas Cancer Center, 8919 Parallel Parkway, Suite 326 

Kansas City, KS 66112, USA 

The accurate prediction of a cancer patient’s risk of progression or death can guide clinicians in the 

selection of treatment and help patients in planning personal affairs. Predictive models based on 

patient-level data represent a tool for determining risk. Ideally, predictive models will use multiple 

sources of data (e.g., clinical, demographic, molecular, etc.). However, there are many challenges 

associated with data integration, such as overfitting and redundant features. In this paper we aim to 

address those challenges through the development of a novel feature selection and feature reduction 

framework that can handle correlated data. Our method begins by computing a survival distance score 

for gene expression, which in combination with a score for clinical independence, results in the 

selection of highly predictive genes that are non-redundant with clinical features. The survival distance 

score is a measure of variation of gene expression over time, weighted by the variance of the gene 

expression over all patients. Selected genes, in combination with clinical data, are used to build a 

predictive model for survival. We benchmark our approach against commonly used methods, namely 

lasso- as well as ridge-penalized Cox proportional hazards models, using three publicly available 

cancer data sets: kidney cancer (521 samples), lung cancer (454 samples) and bladder cancer (335 

samples). Across all data sets, our approach built on the training set outperformed the clinical data 

alone in the test set in terms of predictive power with a c.Index of 0.773 vs 0.755 for kidney cancer, 

0.695 vs 0.664 for lung cancer and 0.648 vs 0.636 for bladder cancer. Further, we were able to show 

increased predictive performance of our method compared to lasso-penalized models fit to both gene 

expression and clinical data, which had a c.Index of 0.767, 0.677, and 0.645, as well as increased or 

comparable predictive power compared to ridge models, which had a c.Index of 0.773, 0.668 and 0.650 

for the kidney, lung, and bladder cancer data sets, respectively. Therefore, our score for clinical 

independence improves prognostic performance as compared to modeling approaches that do not 

consider combining non-redundant data. Future work will concentrate on optimizing the survival 

distance score in order to achieve improved results for all types of cancer. 
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1.  Background 

Cancer is the second leading cause of death in the United States with approximately 600,000 deaths 

in 2016 [1]. Accurate prediction of survival has immense importance to cancer patients for treatment 

and life-planning. This includes the regulation of personal affairs and the decision whether 

additional aggressive or experimental treatment options should be used. Therefore, for a patient with 

poor prognosis beyond a few weeks, the question arises whether that patient should initiate an 

exhausting chemotherapy or should concentrate on the remaining quality of life [2, 3]. For health 

care professionals, a good predictive model of the risk of an event is important for the decision-

making process of treatments. For any individual with a life-threatening condition, the benefit that 

a treatment presents might be outweighed by its risks the shorter their expected survival time is.  

In many cases, predictive models are generated based on clinical data, such as patient age or 

tumor status [4-7]. Other possibilities include the use of biological markers, such as gene expression, 

because cancer is due to mutated behavior of the cells [8]. A potential way to improve the 

performance of predictive models involves using both clinical data and biological markers, because 

when they provide non-redundant information, a more accurate picture about the course of cancer 

might be built. However, integrating data in this way increases the number of features, which leads 

to an increased computational burden, an increased risk of overfitting, and an increased risk of 

correlation between the features [9]. Highly correlated features create redundant information which 

could lead to imprecise regression coefficients and very large standard errors. To get around this 

problem, intensive research has been conducted in recent decades to reduce the number of features 

without losing information needed to predict risk. In addition, feature selection can help clinicians 

to better understand key factors and their relationships, by providing a more interpretable model. 

Feature selection methods can be categorized into supervised, semi-supervised and unsupervised 

algorithms [10]. Among the supervised methods are filter methods, wrapper methods, and 

embedded methods. Filter methods consider the relationship of feature and target variable to 

understand the importance of the feature. The feature selection takes place before the actual 

modelling. Wrapper methods generate models with subsets of features and determine model 

performance. They often provide good results, but these methods are computationally very 

expensive. Embedded methods were designed to bridge the gap between the accuracy of the wrapper 

methods and the computational efficiency of the filter methods. A well-known method is lasso [11], 

which is a further development of ridge regression [12]. Lasso introduces a constraint to estimating 

a model such that the sum of the absolute values of the regression coefficients must be less than a 

specified threshold. This causes many of the coefficients to be set to zero, thus selecting only a 

subset of the features for the model [13]. The general idea is applicable to many models. In this case 

it is applied to Cox regression [14], which is often used to predict the hazard of an event in survival 

analysis. In contrast to lasso, ridge regression reduces the values of the regression coefficients and 

thus reduces overfitting but does not perform any feature selection. 

Highly predictive genomic features most likely provide similar information about the outcome 

of the disease as the clinical variables because most clinical variables have an association with 

genomic predictors. To improve the predictive power, we want to select features which are still 

predictive of the outcome but are not redundant with the clinical variables. To achieve this, one 
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method is to select features before the actual model building process (in contrast to lasso) by 

choosing a filter feature selection method, specifically, a method which selects features that are the 

most consistent discriminators in their expression over time. So far, the applicability of filter feature 

selection methods to survival data is questionable due to censoring. Particularly, methods for feature 

selection in case-only analysis of time-to-event endpoint studies present a challenge.  

Here, we introduce a survival distance scoring algorithm, a novel filter feature selection method 

which scores genes according to their association with survival. In order to improve the predictive 

power of features selected by this score, we reduce correlated features with a novel feature reduction 

method and we combine those new created features with the clinical data of the subjects. In the 

following, the algorithm is explained. In addition, its performance is compared to lasso and ridge-

penalized Cox proportional hazards models, and models built from the clinical data alone, using 

gene expression data and clinical data from bladder cancer, lung cancer and kidney cancer. 

2.  Methods 

The workflow for the proposed method can be found in Figure 1. Briefly, we first separate the 

dataset into training and testing sets. Using the training data only, we use a combination of the 

survival distance score (score s) and the score for clinical independence (score c) to select the best 

performing genes. Using those genes, we then perform correlation-based feature reduction to meta 

genes, which are then used as features in a risk prediction model. The risk prediction will be 

Figure 1: Workflow for the model building process and gain of the performance metric (c.Index). 
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considered as a risk score and in combination with the clinical data will be used in the final model 

building process. The single steps will be explained in detail in the following sub-sections.  

2.1.  Survival Distance Score 

We devised two metrics for selecting genes associated with survival, described below. Consider a 

sample of subjects ranging from 1 to N. The censoring indicator 𝛿 (0 – censored, 1 – event) classifies 

each subject at time t, where t is the timepoint of an event (e.g. death) or the last follow-up time for 

a subject (censoring) (see Table 1). The group of subjects i with an event/censoring at timepoint t is 

denoted as 𝐴𝑡, whose size, 𝑛𝑡, can theoretically range from 1 to N. Let ygi represent the value of the 

gth attribute, g = 1,2, … , 𝐺 in subject 𝑖 = 1,2, … , 𝑁, where ygi is assumed to have variance σg
2. 

 

Table 1: Description of notation used for the method. 

Symbol Description 

i Subject, where 𝑖 = 1,2, . . . , N 

g Attribute 

𝛿 Censoring indicator (0-censored, 1-event) 

𝑡 Timepoint of event or last follow-up time 

𝐴𝑡 Group of subjects with event/censoring at timepoint t 

ygi Value of gth attribute in subject 𝑖,  
σg

2 Variance of ygi 

μgt
+ Average of attribute g of subjects who survived beyond time t 

μgt
- Average of attribute g of subjects who experienced event before time t 

nt
+ Group size of subjects who survived beyond time t 

nt
+ Group size of subjects who experienced event before time t 

nt Group size of subjects who experienced event at time point t 

2.1.1.  Score for survival distance s 

Inspired by the Fisher score [15], we devised a score (denoted s) for each attribute (e.g., genes, in 

our case), which increases when variation of that attribute is associated with variation in some 

endpoint of interest (e.g., survival). To achieve this, we compare the value of an attribute observed 

for a subject with event time, t, with the average of that attribute calculated amongst subjects who 

survived beyond time t (μgt
+) and those who experienced the event before time t (μgt

-). Additionally, 

we compensate for the group size used to achieve the particular averages of the groups (𝑛𝑡
+, 𝑛𝑡

−). In 

the case that more than one subject had an event at a specific timepoint, we add the average of the 

obtained scores at this timepoint to the overall score of the attribute. Finally, each score for an 

attribute will be weighted by the attribute variance over all timepoints. The score s is in [0, ∞). 

Increasing values of s represent a stronger dependency between the attribute and the timepoint of an 

event. Thus, the score will be large when attributes are dispersed with respect to subjects at all time 

points, rather than just a few of them, therefore, the score will be large for attributes that are the 

most consistent discriminators of expression values over time. The calculation of this score can be 

expressed in Eq. (1). Furthermore, we give the pseudo code for the calculation of the score below. 

 sg =
1

σ̂g
2 ∑

1

nt
∑ δi [nt

+(ygi − μ̂gt
+ )

2
+ nt

−(ygi − μ̂gt
− )

2
]i∈Att  (1) 
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Pseudo code for the calculation of score s: 

1. set all scores sg = 0 

2. for t in 1 to max time 

3.         for all subjects x with overall survival time > t 

4.                   μgt
+= mean value for each attribute 

5.                   𝑛𝑡
+ = number of subjects 

6.         for all subjects x with overall survival time < t and who are not censored 

7.                   μgt
- = mean value for each attribute 

8.                   𝑛𝑡
− = number of subjects 

9.         bgt = 0 

10.         for all subjects x with event at time t 

11.                   bgt = bgt + nt
+(ygi - μgt

+)2 + nt
-(ygi - μgt

-)2 

12.         sg = sg + bgt / nt 

13. sg = sg / σ̂g
2 

2.1.2.  Score for clinical independence c 

In addition, a score cg is created by fitting a linear regression to each attribute independently, 

including the clinical data as predictors and modeling attribute values as outcome. For each model, 

we calculate 1 minus the coefficient of determination (𝑅2). Therefore, when cg is close to one, the 

value of the attribute was not explained by the clinical data (e.g., gene g is independent of the clinical 

data). 

 cg = 1 − Rg
2 (2) 

2.1.3.  Combination of the scores 

Since score distributions differed in location and scale, both scores, sg and cg, were standardized. 

For optimized results in feature selection one of the scores is weighted while the other is held 

constant. In this case cg was weighted, where we tested weights w from 0 to 5 in increments of 0.1. 

For each weight, we performed the whole model building process and determined the optimal 

weight through cross validation using the c.Index (see Section 2.2 Model building). Adding those 

modified scores up leads to the final cumulative score mg for each attribute: 

 mg =
sg−s̅

√
1

G−1
∑ (sg−s̅)

2
g

+ w ∙
cg−c̅

√
1

G−1
∑ (cg−c̅)

2
g

 (3) 

2.1.4.  Feature reduction 

Feature reduction was performed to increase the stability of the algorithms. For this purpose, we 

decided to combine correlated attributes. Since pairwise correlation is computationally complex, we 

did this computation only on the j highest scoring attributes where j can be determined by cross 

validation (in our case the 75 highest scoring genes) using the cumulative score mg. The goal was to 

combine those attributes, which are correlated to each other, while preserving their unique 

information. To do this we weighted the attributes according to their cumulative score. Particularly, 
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taking the highest-ranking attribute we grouped it with all attributes to which it had a pairwise 

correlation greater than 0.6 and removed this group from the initial matrix. The attribute value ygi 

of each attribute g of subject i in this subgroup k was weighted according to their cumulative score 

mg and added up to a new feature Tki, which can be considered as a meta gene, as is shown in Eq. 

(4). In the next step we took the highest-ranking attribute from the remaining attributes from the 

initial matrix and repeated the proposed process. This procedure will be repeated until no attributes 

are left in the initial matrix. 

 Tki = ∑ y
gi

∙
mg

∑ mtt ∈ k
g ∈ k  (4) 

2.2.  Model building 

The new features derived in the feature reduction step are used to form a Cox regression model 

using Ridge penalization (R package glmnet [16, 17] using function cv.glment with 5 fold cross 

validation). The exponential function of the linear predictor from the model, derived by the value of 

the penalty coefficient lambda which gives minimum mean cross-validated error (lambda.min), is 

taken as a genomic risk score. The risk score of the training set is used together with the clinical 

data to form a Cox model (R package survival [18]). This model building process is called 

“unpenalized model building” [19].  

Using this model on the test data set, including the previously obtained risk score for the test 

data and the clinical data, we determined the linear predictor and calculated the concordance index 

(c.Index) (R package survcomp [20, 21], function concordance.index using the method ‘noether’  

[22]). The c.Index determines the probability that a randomly selected subject who has experienced 

an event has a higher risk score than a subject who has not experienced an event before the first 

subject. The c.Index is thus comparable to the area under the curve of the ROC curve, where the 

range is from 0.5 to 1. 

In the following we will call the model with the best performance at weight w for the score cg 

sdsc + clin. For further comparisons we will name a model sds + clin, when it was built without 

using the score cg. A model built without clinical data at all will be called sds. 

2.3.  Model validation 

For the model formation a training set of two thirds of the cases was used. The remaining cases were 

assigned to the test set. In order to obtain reproducible results, the training and test sets were created 

with 100 different seeds from seed 1 to seed 100. The average of the result over all seeds was 

considered as the final result. This is necessary because the predictive power of a model depends 

very much on the distribution of subjects within the training sets and test sets. 

2.4.  Comparison methods 

The performance of lasso and ridge with all gene expression data was determined by building the 

model with the R package glmnet (function cv.glmnet with 5 fold cross validation), receiving the 

linear predictor on the test set using lambda.min and calculating the c.Index using the R package 

survcomp with the function concordance.index using the method ‘noether’. Those models will now 
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be referred to as Lasso and Ridge. The same procedure was used to obtain the c.Index for the clinical 

data alone (clin). However, because this model is not penalized, the tool coxph from the R package 

survival was used to fit it. In addition, a combination of gene expression data and clinical data was 

tested with lasso and ridge by simply including all features in the penalized model (“Lasso + clin” 

and “Ridge + clin”) and in the same way as our method using the unpenalized model building 

process. Those models will be called “Lasso + clin unp” and “Ridge + clin unp”, respectively. 

2.5.  Data 

All data used in this work are from The Cancer Genome Atlas (TCGA). They are available from 

https://portal.gdc.cancer.gov/ [23]. 

Three sets of raw count gene expression (level 3) data from the TCGA database were used to 

analyze and create the model (see Table 2). We used bladder cancer with transitional cell carcinoma 

(335 cases, submitter id: TCGA-BLCA [24, 25]), kidney cancer (521 cases, submitter id: TCGA-

KIRC [26]) and lung cancer (521 cases, submitter id: TCGA-LUAD [27]). We only used samples 

of primary tumors with unique case ID. In addition, all cases considered have a survival time greater 

than 0 days after diagnosis. 

 
Table 2: Composition of data sets. 

 Bladder cancer Lung cancer Kidney cancer 

# cases 335 454 521 

median age 69.3 66.4 61.1 

# female 91 250 182 

# male 244 204 339 

# stage I 1 250 261 

# stage II 96 106 65 

# stage III 119 74 122 

# stage IV 120 24 82 

# events 155 172 172 

2.5.1.  Data preparation 

The raw count gene expression data were normalized using R tools edgeR and Limma [18, 19, 26]. 

Subsequently we wanted to remove genes with low variance and therefore not enough information 

for our purpose. We used median absolute deviation (MAD = median(|xi − x̃|)) instead of the 

standard deviation as it is more robust and resilient to outliers. All genes that have a smaller MAD 

than 1.4 for bladder cancer were filtered out so that approximately 12,000 genes remained. For 

comparability, the cut off values for MAD were set to 1.3 for kidney cancer and 1.34 for lung cancer 

so that as well approximately 12,000 genes remained. 

Clinical data included tumor status, sex, and age, where the age at time of diagnosis had to be 

imputed using predictive mean matching (pmm) for one case of kidney cancer and 19 cases of lung 

cancer. For this the R package mice was used [28]. 
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Figure 2: For each type of cancer, a comparison was performed by Lasso and Ridge with gene 

expression data and clinical data alone. In addition, the combination of gene expression data and 

clinical data was tested with Lasso and Ridge using a penalized and an unpenalized model 

building process. For the diagnosis, the base value of sds was tested without the combination 

with clinical data. Finally, here the performance of sds in combination with clinical data is shown 

once without the use of cg and with the use of  cg at the best weight. The red vertical line marks 

the c.Index of the clinical data alone. 
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3.  Results 

3.1.  Bladder cancer 

The performance of score s improves significantly (p < 2.2e-16) when combined with clinical data. 

Here one can observe a rise in the c.Index from 0.599  for sds to 0.646 for sds + clin (see Table 3 

and Figure 2). The use of genes independent of the clinical data in combination with clinical data 

(sdsc + clin ) leads to a further, albeit slight, improvement of the predictive power with a c.Index 

of 0.648 (w = 2.3). This may be because genes have been selected by our method which provide 

independent information from the clinical data, but the results suggest that genomic risk score 

derived from score s is already mostly independent of the clinical variables. 

Lasso's performance is worse than Ridge's with c.Index’s of 0.608 and 0.635, respectively, 

suggesting that feature selection has lost important information. The clinical data have a c.Index of 

0.636. The combination of clinical data with gene expression data has no effect but using the 

unpenalized model building process leads to an improvement in the performance of both Lasso +
clin unp (c.Index = 0.645) and Ridge + clin unp (c.Index = 0.650), with both models performing 

better than the clinical data alone. It is noteworthy that sdsc + clin performs better than Lasso +
clin unp, although not significantly (p = 0.456). However, the performance of Ridge + clin unp is 

marginally better to that of sdsc + clin. Since Ridge + clin unp does not do feature selection, 

sdsc + clin is to be preferred, in part because clinically a panel of only 75 genes compared to 12,000 

is more interpretable, more affordable, and likely more reliable. For both sds + clin and sdsc +
clin, however, there is a strong improvement to Lasso + clin. 

 
Table 3: Results of prediction of survival risk with different models on bladder cancer, kidney cancer and 

lung cancer. The values in the cells are the c.Index. The best performing method for each cancer is shown 

in bold. 

 Bladder cancer Lung cancer Kidney cancer 

sdsc + clin 0.6484 0.6946 0.7733 

sds + clin 0.6457 0.6929 0.7693 

sds 0.5990 0.6310 0.6949 

Ridge + clin unp 0.6502 0.6676 0.7727 

Ridge + clin 0.6357 0.6256 0.7125 

Ridge  0.6354 0.6252 0.7115 

Lasso + clin unp 0.6450 0.6774 0.7670 

Lasso + clin 0.6073 0.6319 0.7445 

Lasso  0.6075 0.6315 0.6908 

clin 0.6357 0.6641 0.7548 

3.1.  Lung cancer 

As with bladder cancer, the performance of score s improves significantly (p < 2.2e-16) when 

clinical data is additionally used with an increase from 0.631 for sds to 0.693 for sds + clin. Also, 

further improvement can be noted if genes independent of clinical data were used (model sdsc +
clin). Also, there is again a slight improvement in predictive power from sds + clin to sdsc + clin 

with a rise from 0.693 to 0.695 (w = 1.3). 
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Unlike bladder cancer, Lasso's predictive power is better than Ridge's, suggesting that Ridge 

overfitted. The combination of clinical data with genomic data using the unpenalized model building 

process leads to an improvement in performance with c.Index’s of 0.677 for Lasso + clin unp and 

0.668 for Ridge + clin unp. The clinical data alone have a better performance than Lasso or Ridge, 

but a worse one than Lasso + clin unp or Ridge + clin unp. However, the best performance has 

sdsc + clin, which outperforms Lasso + clin unp significantly (p = 6.003e-05). Here, as with 

bladder cancer, one can observe that data integration leads to an improvement in the predictive 

power of clinical data. 

3.2.  Kidney cancer 

As with bladder cancer and lung cancer, predictive power increases significantly (p < 2.2e-16) when 

score s is linked to clinical data with an increase from 0.695 for sds to 0.769 for sds + clin. Also, 

further improvement was noted when genes independent of clinical data were used in model sdsc +
clin (c.Index = 0.773), although again very slight. 

As with bladder cancer, the predictive power of Lasso (c.Index = 0.691) is weaker than that of 

Ridge (c.Index = 0.712). Both Lasso and Ridge have a weaker performance than the clinical data 

(c.Index = 0.755). However, when genomic data are linked to clinical data using the unpenalized 

model building process, the performance is better than clinical data alone with a c.Index of 0.767 

for Lasso + clin unp and 0.773 for Ridge + clin unp. Here, too, it can be observed that sdsc + clin 

provides a better predictive power than Lasso + clin unp, although not significant (p = 0.08369). 

4.  Conclusion and Discussion 

In this work, we have proposed a method for selecting features that work well together across 

divergent datasets to build improved risk models for cancer. We have shown that the combination 

of gene expression data and clinical data is superior to the predictive power of gene expression data 

or clinical data alone, for these datasets. This applies to standard feature selection methods such as 

lasso-penalized models as well as a survival distance score (sds) inspired by Fisher’s score. To 

achieve this result, we proposed combining a single genomic risk score with clinical data into a final 

model (this was done for all comparison methods). It is worth noting that this is a modified way of 

model building using ridge regression, as we have described, with better performance than a naïve 

approach would have. However, the advantage from further constraining the features to be 

independent, although always advantageous, was very slight. This suggests that the genomic risk 

score generated using sds was already fairly independent of the clinical variables, although in 

principle the approach appears to have worked. Nevertheless, our results suggest that the feature 

selection and reduction methods we introduced in this work are effective, irrespective of the 

independence part of the methodology. 

Although these gains are relatively modest, we have shown that it is possible to improve the 

power of predicting the risk of an event in different cancers by combining clinical data and genomic 

data using a method that tries to find the best combination of data across datasets. Thus, it seems 

likely that further development of these ideas will yield even greater gains. However, we note that 

our idea may have general applicability to other types of data integration (e.g. DNA methylation). 
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It is important to mention that we are not proposing clinical models for the different cancer types. 

Rather, we are demonstrating that the proposed novel filter feature selection method, which 

combines clinical data with non-redundant molecular data, achieves an improved prognostic 

performance in a case-only analysis of a time-to-event endpoint compared to modeling approaches 

that do not consider combining non-redundant data. To compare the three cancer types, we reduced 

the clinical data to the most common predictive clinical variables.  

Although ridge-penalized Cox proportional hazards models resulted in adequate prognostic 

performance and are comparatively easy to employ, ridge penalization does not enable feature 

selection, and is therefore harder to interpret given the high-dimensionality of genomic data. 

Furthermore, it is more cost efficient to analyze only a few dozen features instead of thousands. On 

the other hand, while lasso-penalized Cox proportional hazards models perform feature selection, 

they can perform poorly when applied to correlated data [29]. As genomic features are often highly 

correlated, application of lasso-penalized models to such data could hinder prognostic performance, 

which is consistent with what we observed in this study. Our method on the other hand, incorporates 

both feature selection and feature reduction. Additionally, the survival distance score can 

accommodate a large fraction of censored observations. One limitation of the survival distance score 

however, is the use of a tuning parameter in the form of the number of top scoring genes, which are 

selected before the feature reduction step. We derived this tuning parameter empirically but note 

that this number may not be globally applicable across studies. Additionally, future work will 

examine if the performance of sdsc+clin could be further enhanced and how it performs compared 

to other filter feature selection methods. 
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