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As genetic sequencing costs decrease, the lack of clinical interpretation of variants has be-
come the bottleneck in using genetics data. A major rate limiting step in clinical interpreta-
tion is the manual curation of evidence in the genetic literature by highly trained biocura-
tors. What makes curation particularly time-consuming is that the curator needs to identify
papers that study variant pathogenicity using different types of approaches and evidences—
e.g. biochemical assays or case control analysis. In collaboration with the Clinical Genomic
Resource (ClinGen)—the flagship NIH program for clinical curation—we propose the first
machine learning system, LitGen, that can retrieve papers for a particular variant and filter
them by specific evidence types used by curators to assess for pathogenicity. LitGen uses
semi-supervised deep learning to predict the type of evi+dence provided by each paper. It is
trained on papers annotated by ClinGen curators and systematically evaluated on new test
data collected by ClinGen. LitGen further leverages rich human explanations and unlabeled
data to gain 7.9%-12.6% relative performance improvement over models learned only on the
annotated papers. It is a useful framework to improve clinical variant curation.

Keywords: Machine learning; Natural Language Processing; Clinical Genome; Variant
pathogenicity curation

1. Introduction

The diversity of genetic variations that exist in the modern human population are slowly been
recognized and discovered. Some of these variations are responsible for well-known physical
differentiation across humans (e.g. hair color1), other variants can predict the development
of inherited diseases like sickle-cell anemia or cystic fibrosis, and a few others are protective
of disease, like some variations of PCSK9 which lowers the risk for coronary heart disease.2

However, little is known overall about the more than 650 million variants known to date
across the human genome.3 In PubMed using the search term genetic variation returns over
one million manuscripts, with almost half of them generated in the last 10 years.

Our understanding of previous published studies linking human genetic variants with medi-
cal syndromes and phenotypic traits is still limited. In 2013, the United States National Center

c© 2019 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.

Pacific Symposium on Biocomputing 25:67-78(2020)

67



for Biotechnology Information (NCBI) established the Clinical Genome program,4 with the
goal of defining the clinical relevance of key genes and variants through several gene and variant
curation expert panels. These experts meet regularly to consider new evidence in the litera-
ture to curate and assess the pathogenicity of variants. The variant curation process combines
clinical, genetic, population, and functional evidence with expert review to classify variants
into 1 of 5 categories (Pathogenic, Likely Pathogenic, Variant of Unknown Significance, Likely
Benign, Benign) according to the joint 2015 American College of Medical Genetics (ACMG),
and Association for Medical Pathology (AMP) guidelines on clinical significance.5

The ACMG/AMP guidelines provide a set of criteria, and a curator searches for evidence
and evaluates whether or not the evidence is sufficient to mark each criterion as met. A
pathogenicity classification for each variant is calculated from the totality of the evidence
evaluated using the ACMG/AMP criteria. Many of these criteria are mostly evaluated using
pertinent information gleaned from publications, and finding the relevant publications that
contain relevant evidence is a significant challenge to curators.

The workflow of curating variants of clinical relevance. The ClinGen procedure for
biocuratorsa defines four steps to assess the pathogenicity of a variant: 1) select a variant
of interest with and the suspected disease or mode of inheritance; 2) review available litera-
ture evidence about the disease; 3) curate evidence according to the ACMG/AMP criteria; 4)
propose a level of pathogenicity. This process is assisted by ClinGens Variant Curation Inter-
faceb. Biocurators outside of the ClinGen environment follow a similar procedure. In the third
step, when biocurators consider each of the ACMG/AMP criteria to systematically evaluate
if the considered variant has some available literature. VCI further groups ACMG/AMP cri-
teria into evidence types, many of which require evidence from published literature. Assessing
which paper is relevant for each of the evidence types has a high burden of time and effort
on the biocurator. To the best of our knowledge, there is currently no tool to automatically
facilitate this task.

Our contribution We built a machine learning system LitGen that recommends papers to
biocurators based on the evidence types presented in the paper. We believe this is the first
system that analyzes papers for content on clinically relevant evidence types beyond variant
name normalization or information matching.6–8 We also contribute to the research area of
semi-supervised learning with explanations. LitGen effectively uses explanations to guide semi-
supervised learning. A thorough evaluation on new ClinGen data demonstrates that LitGen
outperforms competitive baselines by a large margin.

2. Clinical Variant Curation Data

2.1. ClinGen’s Variant Curation Interface (VCI)

The data that we use to develop LitGen are collected through ClinGens Variant Curation
Interface (VCI). VCI is a curation web tool that was designed to support variant curation
based on the ACMG/AMP Guidelines and serves as a platform for the standardized curation

ahttps://clinicalgenome.org/site/assets/files/3677/clingen variant-curation sopv1.pdf
bhttps://clinicalgenome.org/curation-activities/variant-pathogenicity/
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of clinical variants by ClinGens Variant Curation Expert Panels. This pool of evidence can
then be utilized by all VCI users when evaluating each of the ACMG/AMP criteria in turn
within the interface. The VCI allows a user to provide an explanation comment describing
the rationale for their evaluation in a text field, and to provide a PubMed ID linking to the
relevant published literature that contains the data that supports their evaluation. The VCI
allows the curator to assert whether the paper is relevant for a subset of evidence types. Here
we focus on the five most common evidence types (Fig. 1).

Title: Identification and Functional Characterization of GAA Mutations in 
Colombian Patients Affected by Pompe Disease. 

Abstract: Pompe disease (PD) is a recessive metabolic disorder characterized by acid 
?-glucosidase (GAA) deficiency, which results in lysosomal accumulation of glycogen in all tissues, 
especially in skeletal muscles. PD clinical course is mainly determined by the nature of the GAA 
mutations. Although ~400 distinct GAA sequence variations have been described, the 
genotype-phenotype correlation is not always evident.In this study, we describe the first clinical and 
genetic analysis of Colombian PD patients performed in 11 affected individuals. GAA open reading 
frame sequencing revealed eight distinct mutations related to PD etiology including two novel 
missense mutations, c.1106 T > C (p.Leu369Pro) and c.2236 T > C (p.Trp746Arg). In vitro 
functional studies showed that the structural changes conferred by both mutations did not inhibit 
the synthesis of the 110 kD GAA precursor form but affected the processing and intracellular 
transport of GAA. In addition, analysis of previously described variants located at this position 
(p.Trp746Gly, p.Trp746Cys, p.Trp746Ser, p.Trp746X) revealed new insights in the molecular basis 
of PD. Notably, we found that p.Trp746Cys mutation, which was previously described as a 
polymorphism as well as a causal mutation, displayed a mild deleterious effect. Interestingly and 
by chance, our study argues in favor of a remarkable Afro-American and European ancestry of the 
Colombian population. Taken together, our report provides valuable information on the PD 
genotype-phenotype correlation, which is expected to facilitate and improve genetic counseling of 
affected individuals and their families.

Allele Data

VCI Evidence Types

Experimental Studies

Segregation Data

Specificity of Phenotype

Case Control

2 Columbian individuals - 1 hom, 1 het with 
c.1106T >C (p.Leu369Pro)

Class A - transfected HEK293 cells with 
variant shows deleterious effect on GAA 

processing and activity

VCI Explanation Comments

Fig. 1. Paper annotation workflow. From a paper on PubMed (left), the curator selects which subset
of the five variant curation (VCI) evidence types that the paper is relevant for (middle), and provide
explanations for the selection (right). We highlight some keywords for emphasis. LitGen’s goal is to
predict which evidence types are relevant given a paper.

2.2. Labeled papers

We extracted all papers entered by VCI users between October 2016 and March 2019. The
collected data include 1543 unique papers which contained clinical information on 932 unique
variants. We randomly split this set of papers into train, dev, and test set by 0.9/0.05/0.05.
Additionally, we collected a new set of 358 papers entered from April 2019 to May 2019 as a
holdout evaluation dataset. Papers in this holdout evaluation dataset are entirely new. Table
1 shows the distribution of these two datasets. Each paper contains information that can be
categorized into different evidence types that curators used to assert clinical pathogenicity.
Curators can optionally provide an explanation comment for each type of evidence. In this
manuscript, we focused on the top 5 VCI evidence types by the number of unique papers—
these are Case Control, Specificity of Phenotype, Allele Data, Experimental Studies, and
Segregation Data. These 5 evidence types covers 84% of all papers annotated in the VCI.

2.3. Unlabeled papers

In order to investigate whether semi-supervised learning can improve our model’s performance,
we collect a larger set of unlabeled papers through the following pipeline. We use ClinGen
Allele Registry3 to find the rsid of the variant if a clinical variant ID is provided. We use
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Table 1. Labeled data summary: number of papers and explanations by VCI evi-
dence type.

# unique papers # explanations
Evidence types in the VCI ACMG criteria Train Holdout Train Holdout

Experimental Studies BS3, PS3 385 74 732 80

Allele Data BP2, PM3 441 86 971 103

Segregation Data BS4, PP1 232 40 271 40

Specificity of Phenotype PP4 482 26 993 28

Case Control PS4 656 264 952 331

Total 1543 358 3919 582

Training data collected during Oct 2016 to Mar 2019. Holdout evaluation data
collected during April 2019 to May 2019. Note that we do not allow the algorithm
to use explanations during test time. We have 1543 labeled data points for training.

LitVar API, a new service provided by NCBI,9 to retrieve relevant literature of a given variant.
LitVar scanned and indexed all of PubMed abstracts and PubMed Central full papers. We
use this pipeline to retrieve all relevant papers to all variants curated through the ClinGen
VCI. ClinGen Allele Registry found rsid for 877 of 932 variants (94.1%). We further found 742
(79.6%) variants that have been mentioned in the literature indexed in LitVar. We queried
4477 papers in total from LitVar, and 650 of these papers overlap with papers that have
already entered into ClinGen by curators. Excluding these papers, we have 3827 new papers.
We release all of our code and data at https://github.com/windweller/ClinGenML/.

3. Method

We use the following notations to describe our data. Each paper in our dataset is annotated
with at least one VCI evidence type and the associated explanation comments on the rationale
of selection. For the labeled papers dataset, we have (x,y) ∈ (X ,Y) where y ∈ [0, 1]m for m
labels and m = 5 in our case. Here x represents the paper title and abstract. This is a
multi-label setting because each paper can contain multiple evidence types. Each explanation
comment is associated with exactly one evidence type. We can regard it as (e, y) ∈ (E,Y),
where e is the explanation text and y ∈ {1, ...,m} describes the evidence type.

3.1. BiLSTM baseline

We aim to train a competitive supervised learning algorithm on the labeled data. We use the
state-of-the-art text processing algorithm for our model: long-short-term memory networks
(LSTMs). It has been used in many natural language processing applications,10 generating
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complex human responses,11 and well-adopted in clinical text processing.12,13 We use the
bidirectional variant of this algorithm proposed by Graves et al..14

For each paper abstract x = w1, ..., wT , we compute the hidden state vectors H = [h1, ..., hT ].
We compute the vector representation of the abstract c(x) using the global max-pooling over
the temporal dimension suggested by Collobert & Weston.15 At last, we predict whether an
evidence type yi exist through a sigmoid binary classifier with parameter θi. We compute the
binary cross-entropy loss through the predicted labels ŷ = [ŷ1, ..., ŷm] and true labels y.

H = [h1, ..., hT ] = BiLSTM(w1, ..., wT ), H ∈ RT×d (1)

c(x) = [max(H·,1),max(H·,2), ...,max(H·,d)], c(x) ∈ Rd (2)

P (yi) = ŷi = σ(θᵀi c(x)), for i = 1, ...,m (3)

LBCE(x, ŷ,y) = − 1
m

∑m
i=1 yi log(ŷi) + (1− yi) log(1− ŷi) (4)

3.2. Leveraging unlabeled data

After training a competitive baseline model only on limited labeled data, we explore the
possibility of leveraging unlabeled paper by using a proxy labeling model. Proxy-label approach
to semi-supervised learning has been generally shown to improve the performance of the final
model. This approach aims to produce proxy labels on unlabeled data, which later are used as
targets together with labeled data to train the final model. These proxy labels do not reflect
the ground truth labels, but they might provide some signals for learning.16,17

Cowden disease, also known 
as multiple hamartoma 

syndrome ... Recently, the 
tumour suppressor gene 

PTEN / MMAC1
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...

1

0

0

1

0

1

...
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Fig. 2. Naive Unlabeled: The two views of inputs for the proxy labeling model and the BiLSTM
model.

We train a random forest model to predict evidence types on our labeled dataset (repre-
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sented as bag-of-words). We then apply this random forest to predict labels for each unlabeled
paper; we call these the proxy labels. Finally we train our BiLSTM model on proxy-labeled
unlabeled data and labeled data together. We refer to this strategy as Naive Unlabeled,
because it is a simple and direct approach to use the unlabeled papers. The point of using the
random forest to generate the proxy labels is that it contains different inductive bias compared
to the original BiLSTM. Zhou & Goldman17 showed that when the proxy labeling models have
different bias compared to the final classifier, the generated proxy labels can often improve
the model’s performance.

3.3. Explanations in multitask learning

Beyond building a strong BiLSTM baseline and incorporate proxy labeling methods on unla-
beled data, another important feature of our curation dataset is that we have human-provided
explanations associated with each paper. Each explanation is a concise summary of why the
curator asserted that a paper provides a particular type of pathogenicity evidence. We hypoth-
esized that these explanations could help us to generating features that are salient for evidence
predictions. Contrary to using humans to label each training example, which is very costly
both in terms of time and resource, recent works have explored whether human-provided ex-
planations will allow models to learn beyond instance-level labels. Early works focus on using
semantic parsing over human explanations to obtain labeling functions.18,19 However, such
approaches are limited to explanations that have fixed format such as “X because of Y and
Z”. The explanations provided by our curators are free text and do not conform to predefined
templates. An innovation of our work is on how to leverage these explanations.

ClinGen
(labeled papers)
Oct 2016 - Mar 

2019

ClinGen 
Human 

Explanations

BiLSTM Model
Multi-task Learning 

(MTL) Training

Evaluation 
(averaged accuracy, 

exact match, F1 
score)

ClinGen
(labeled papers)
Apr 2019 - May 

2019

Fig. 3. Multi-task learning pipeline that leverages labeled data and explanations

A simple way to use the explanations is to treat them simply as additional labeled examples
where the label is the associated VCI evidence type. We build a multi-task learning objective,
where the BiLSTM model is asked to optimize for two tasks: predicting whether a paper
contains information relevant to a VCI evidence type (original task, loss marked as L1), as
well as whether an explanation is provided as rationale for a VCI evidence type (explanation
prediction task, loss marked as L2). For each epoch, we train on two tasks separately: first on
the explanation prediction task, and after iterating through all batches of explanations, we
train on the original paper abstract prediction task. We use a scalar hyperparameter λ ∈ [0, 1]
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to scale the loss of the explanation prediction task. We call this approach Naive exp.
There are inherent problems to this approach. First of all, when we train on (e, y), the

explanations have a different length distribution compares to x, the paper abstracts. Expla-
nations tend to be shorter and more succinct. Since we are using the same BiLSTM model
to process both texts, we are learning from two data distributions. Second, even though both
explanations and papers are associated with a VCI evidence type, one explanation can only
exclusively be used to justify for one VCI evidence type, while a paper can be associated with
multiple VCI evidence types. Therefore, the nature of data-to-label mapping is different for
the two tasks. The last problem is that explanations are noisy. Curators submit these expla-
nations often as a comment or additional information to support their choice of paper. Not
all words in explanations are useful for the original task. We address all three problems by
proposing our new approach: use explanations to perform feature selection, and then use the
selected features to proxy label the unlabeled papers.

3.4. Explanations as feature selection for proxy labeling

Variant RSIDs
(e.g. RS1000)

ClinGen
(labeled papers)
Oct 2016 - Mar 

2019

ClinGen 
Human 

Explanations

BiLSTM Model

Proxy Labeling 
Model

Noisy 
Labeled  
papers

Loss-scaled Joint 
Training

ClinGen
(labeled papers)
April 2019 - May 

2019

Evaluation 
(averaged accuracy, 

exact match, F1 
score)

LitVar Indexed 
PubMed Papers

Text 
Featurizer

Lasso 
Classifier

Fig. 4. General training pipeline that leverages unlabeled data guided by explanations.

We first train a Lasso classifier (a logistic regression classifier with L1 regularization) on
the frequency-encoded unigram feature representation of the explanations. Our Lasso classifier
obtains a coefficient on each word that determines whether the word is important for the
prediction of which VCI evidence type an explanation is associated with. Our Lasso classifier
obtains 89.0% accuracy on this classification task. This shows that explanations are easier to
classify compared to paper abstracts and they contain useful signals that can be leveraged. We
extract words that have non-zero coefficients. We display some of these words in Figure 5. In
total, we are able to find 799 words that have non-zero coefficient out of 7550 words contained
in explanations. We use these 799 words as the selected features and then follow the same
proxy labeling strategy as the Naive Unlabeled algorithm.

For each paper abstract, we record the frequency of these 799 unique words in the abstract
and ignore all other words. Originally, in section 3.2, we naively encode the paper abstract
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Experimental 
Studies

Coefficients Allele Data Coefficients
Segregation 

Data
Coefficients

Specificity of 
Phenotype

Coefficients
Case 

Control
Coefficients

transfected 3.69 c.-32-13t 3.93 meiosis 4.47 arg1295x 4.10 rasopathy 3.18

class 3.54 varid 3.61 segregation 3.30 omit 3.01 mody 2.75

mouse 3.26 hom 3.10 asn346his 3.18 fibroblast 2.87 review 2.71

binding 3.25 path 3.04 segregated 2.97 explanation 2.75 indicated 2.53

crim-negative 3.24 trans 2.90 six 2.52 leukocyte 2.48 fh 2.26

product 2.73 homozygote 2.90 son 2.38 osteosarcoma 2.40 diabetes 2.20

breath 2.41 genotype 2.81 relative 2.28 asn346his 2.28 identify 2.09

protein 2.39 pathogenic 2.61 sibling 2.19 towards 2.07 lopd 1.86

splicing 2.38 variationid 2.35 daughter 1.94 muscle 2.07 gsdii 1.85

wt 2.37 p/lp 2.26 mother 1.64 xanthoma 1.96 obesity 1.83

Fig. 5. We display a set of keywords that are the most positively associated with each VCI evidence
types from human explanations by training a lasso model on unigram features. Coefficients refer to
Lasso coefficients.

obtaining a vector equivalent to the size of the entire vocabulary space (after removing stop
words and punctuation), which is 16860. We have now restricted the dimension of the vector
representing the paper abstract from 16860 to 799. We refer to this feature selection process as
Exp-guided. We then train our random forest proxy labeling model on the paper abstracts
and use it to generate proxy labels for unlabeled data. At last, we train the BiLSTM model
on both proxy labeled unlabeled data and ground-truth data. We refer to this setting as the
LitGen model.

Another advantage to our explanation-guided feature selection process is that we can
now automatically generate labeling functions without semantic parsing. We use a simple
heuristic to binarize the coefficients in our Lasso classifier: each of the 799 words is a labeling
function. If the word has a positive coefficient, we output +1 when we encounter this word.
If the word has a negative coefficient, we output -1. When the word is missing, we output 0.
This allows us to leverage labeling function aggregation algorithm such as Snorkel-MeTal.20

We include this result to show that by selecting features from explanations, we are able to
leverage multiple approaches in semi/weakly supervised learning. We refer to this setting as
Exp-guided Snorkel.

4. Experimental results

4.1. Evaluation metrics

We use the following metrics to evaluate model performance in predicting the evidence types
given a paper. We compute the average accuracy (Avg Accu) across VCI evidence types.
Accuracy reflects how correctly the model can determine whether the paper contains a type of
evidence or not. We compute the exact match ratio (EM) as well, which is a more strict metric
that requires the model’s predictions to exactly match every ground truth label. Finally, we
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also compute the average F1 score weighted by the number of examples in each evidence type
(Wgt F1). All the models are trained on data up to March 2019 and are evaluated on new
ClinGen paper annotated from April to May 2019.

4.2. Performance comparison

We train the LitGen model based on the strategies described in the method section. We
also consider a baseline classifier that randomly predicts the value of each label based on the
class balance of the training data. We evaluate all trained models on a final holdout set of 347
disjoint papers. In Table 2, we show the performance of our proposed methods to incorporate
explanations into the supervised learning and proxy-label semi-supervised learning pipelines.

Table 2. Performance of different training strategies for LitGen model.

Apr 2019 to May 2019
Strategy Avg Accu EM Wgt F1

Baseline (Majority) 62.9 8.7 36.0

BiLSTM 82.6 45.2 62.7
BiLSTM + Naive Exp 83.8 48.7 66.5
BiLSTM + Naive Unlabled 83.9 50.1 65.7
BiLSTM + Naive Exp + Naive Unlabeled 82.9 48.4 66.4

BiLSTM + Exp-guided Snorkel 84.0 50.1 66.8
LitGen: BiLSTM + Exp-guided Unlabeled 85.0 51.6 68.1

Unlabeled data and explanations both help We observe the improvement over BiLSTM
model when training on proxy-labeled paper abstracts and leveraging explanations: both BiL-
STM + Naive Unlabled and BiLSTM + Naive Exp outperform BiLSTM on all the evaluation
metrics. That naive training on explanations leads to improvement shows that explanations
do provide learning signals for the model.

Naive joint training hurts performance However, even though training on explanation
prediction task or training on proxy-labeled paper abstracts each improves the final model’s
performance, such effect is not additive when we train on both. BiLSTM + Naive Exp +
Naive Unlabeled performs relatively poorly. We have discussed potential drawback of training
naively on explanations such as text length distribution mismatch and noisy explanation text.

Using explanations for feature selection outperforms all Explanations contain valu-
able learning signals but are noisy in its writing. When we use them for feature selection,
choosing words that are determined important by a Lasso classifier, we accomplish two goals
at once: 1) reducing the overall document feature vector dimension for the random forest
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proxy labeling model; 2) provide a set of labeling functions that can be leveraged by algo-
rithms like Snorkel-MeTal. We can see in Table 2, this approach produces two best performing
final models.

4.3. Performance of Proxy Labeling Model

Table 3. Evaluation of the quality of generated
proxy labels on the holdout test set.

Apr 2019 to May 2019
Labeling model Avg Accu EM Wgt F1

Naive Unlabeled 81.2 40.3 53.2
Exp-guided Unlabeled 82.8 46.1 60.0
Exp-guided Snorkel 11.5 2.6 42.3

We performed additional analysis to gain more insights into the improved performance of
LitGen due to proxy labels on the unlabeled papers. Since we do not have access to ground
truth labels for the unlabeled papers, we evaluate the performance of the proxy labeling models
on the holdout evaluation dataset that we used to evaluate our BiLSTM model. It is notable
that the random forest with explanation-guided feature selection (Exp-guided Unlabeled) gives
reasonably accurate proxy labels, and is indeed more accurate than the Naive Unlabeled which
does not have this feature selection. Moreover because this random forest derived proxy label
provides complementary signal, training the original BiLSTM on this additional data leads to
additional improvements and give rise to our final LitGen algorithm. We note that popular
weak supervision algorithm, Snorkel, performs poorly with our automatic labeling functions.

4.4. Performance by Evidence Types

Table 4. Accuracy of baseline (always guess the majority class),
BiLSTM and LitGen model for each evidence type.

Evidence type Baseline (Majority) BiLSTM LitGen

Experimental Studies 63.1 85.6 86.7
Allele Data 65.7 80.4 83.0
Segregation Data 73.8 88.8 88.8
Specificity of Phenotype 66.0 87.0 90.2
Case Control 45.8 71.2 76.4

We show the performance of our model on each of the evidence types in Table 4. We can
see that one of the most difficult class to predict is the evidence type “segregation data”.
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We conjecture that this is because we only used paper abstracts. Most segregation data are
mentioned in the actual content of the paper. However, it remains a major challenge for a
deep learning system to consume input as long as a full scientific paper. One of the easiest
evidence types to learn is “experimental studies” because curators mostly look for experimental
procedure keywords and most of them are present in the abstracts.

5. Discussion

Automatic literature recommendation for variant curation We propose a new goal for
the field of literature recommendation: automatically generate semantic tags according to VCI
evidence types to aid biocurators in filtering papers. We are operating under a low-resource
setting where few papers have currently been annotated by experts. However, such annotations
are very rich and often contain explanations to justify curator’s decisions to submit a paper
as evidence. We propose a pipeline that leverages explanations beyond semantic parsing and
can be automatically learned by training a Lasso classifier.

Implication for the curation pipelines In the era of implementing genomic medicine,
machine assistance is needed for scalability. Human time should be reserved for steps that need
true domain expertise and critical interpretation. A feasible model for systematic curation at
scale would automate the generation and delivery of gene or variant level information to expert
biocurators that can then critique the quality and relevance of the evidence in the context
of a specific disease. This reduces the time it takes to identify evidence of interest that need
more in depth human review.

Our machine learning model for predicting relevant literature by variant and evidence type
is well suited for a semi-automated model of curation at scale. Early efforts in automated lit-
erature curation have been able to recommend papers by matching for the variant of interest.
The added functionality suggests what type of evidence helps to further streamline curation
workflow and efficiency by pre-mapping evidence onto predicted ACMG/AMP criteria. Dis-
playing papers by evidence type also matches the natural organization of curation interfaces
such as the VCI, making this an even more feasible tool to implement and have true clini-
cal impact. LitGen is not meant to replace biocurators, but rather to facilitate the curation
process by prioritizing papers that are more likely to contain particular types of evidence.
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