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Accurate identification of pathways associated with cancer phenotypes (e.g., cancer
subtypes and treatment outcomes) could lead to discovering reliable prognostic and/or pre-
dictive biomarkers for better patients stratification and treatment guidance. In our previous
work, we have shown that non-negative matrix tri-factorization (NMTF) can be successfully
applied to identify pathways associated with specific cancer types or disease classes as a prog-
nostic and predictive biomarker. However, one key limitation of non-negative factorization
methods, including various non-negative bi-factorization methods, is their limited ability
to handle negative input data. For example, many types of molecular data that consist of
real-values containing both positive and negative values (e.g., normalized/log transformed
gene expression data where negative values represent down-regulated expression of genes)
are not suitable input for these algorithms. In addition, most previous methods provide just
a single point estimate and hence cannot deal with uncertainty effectively.

To address these limitations, we propose a Bayesian semi-nonnegative matrix tri-
factorization method to identify pathways associated with cancer phenotypes from a real-
valued input matrix, e.g., gene expression values. Motivated by semi-nonnegative factoriza-
tion, we allow one of the factor matrices, the centroid matrix, to be real-valued so that each
centroid can express either the up- or down-regulation of the member genes in a pathway. In
addition, we place structured spike-and-slab priors (which are encoded with the pathways
and a gene-gene interaction (GGI) network) on the centroid matrix so that even a set of
genes that is not initially contained in the pathways (due to the incompleteness of the cur-
rent pathway database) can be involved in the factorization in a stochastic way specifically,
if those genes are connected to the member genes of the pathways on the GGI network.
We also present update rules for the posterior distributions in the framework of variational
inference. As a full Bayesian method, our proposed method has several advantages over the
current NMTF methods, which are demonstrated using synthetic datasets in experiments.
Using the The Cancer Genome Atlas (TCGA) gastric cancer and metastatic gastric cancer
immunotherapy clinical-trial datasets, we show that our method could identify biologically
and clinically relevant pathways associated with the molecular subtypes and immunother-
apy response, respectively. Finally, we show that those pathways identified by the proposed
method could be used as prognostic biomarkers to stratify patients with distinct survival
outcome in two independent validation datasets. Additional information and codes can be
found at https://github.com/parks-cs-ccf/BayesianSNMTF.
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1. Introduction

Accurate identification of pathways associated with cancer phenotypes (e.g., cancer subtypes
and treatment outcomes) enables us to understand better molecular biology processes in can-
cer and could lead to discovering reliable prognostic and/or predictive biomarkers for better
patients stratification and treatment guidance. Non-negative matrix tri-factorization (NMTF)
models can provide an intuitive and efficient way to identify associations between two different
entities by simultaneously clustering rows and columns of the data matrix.1 In our previous
work2 (referred to as NTriPath), we use NMTF to identify pathways associated with can-
cer types from mutation data: the mutation data matrix is decomposed into the cancer-type
indicator matrix, the association matrix between cancer types and pathways, and the cen-
troid matrix (each centroid corresponds to the pattern of gene mutations within each path-
way). Pathway membership information, e.g., gene-pathway annotations from Kegg pathway
database, and a gene-gene interaction (GGI) network are incorporated into the factorization
model through the framework of regularized optimization. It is shown from the The Cancer
Genome Atlas (TCGA) data that the top pathways ranked by the method are closely related
to clinical outcomes.2 However, this approach has several limitations. First, the input matrix
is restricted to be non-negative and hence cannot readily model many types of genomic data,
including copy number alteration and normalized/log transformed gene expressions, which are
real-valued. Second, the method provides just a single point estimate of the model’s parame-
ters and thus cannot deal with uncertainty well. Moreover, it involves many hyper-parameters,
e.g., regularization constants, which should be tuned carefully. However, since the association
identification from the input (mutation) matrix is clearly an unsupervised problem, i.e., there
is no corresponding output for the input matrix, it is not clear how to find the optimal hyper-
parameter values for the given input data.

To address the aforementioned limitations of NTriPath, we propose a novel Bayesian semi-
nonnegative matrix factorization model, where the biological prior knowledge represented by
a pathway database and a GGI network is incorporated into the factorization through struc-
tured spike-and-slab sparse priors.3 First, in order to handle real-valued input data, e.g., gene
expression values, we allow one of the latent (factor) matrices, the centroid matrix, to have
positive and negative values so that each centroid (corresponding to a pathway) can express the
up-regulation or the down-regulations of the member genes in the pathway. Second, we encode
pathway membership information and a GGI network into the factorization model through
the framework of Bayesian learning. Specifically, we model the priors over the centroid matrix
matrix using the structured spike-and-slab distributions, where our prior knowledge of the
sparsity pattern is encoded into the prior distributions thorough underlying Gaussian pro-
cesses (GPs).3 To conclude the prior modeling for the centroid matrix, we define the mean
vectors and covaraince matrices of the GPs using the pathway membership information and
the GGI network. As a result, even non-member genes of the pathways can be involved in the
factorization in a stochastic manner. Note that our method is a full Bayesian approach: priors
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are placed on the model’s parameters (the latent matrices) and hyper-parameters (e.g., the
noise precision) and are updated by observations (resulting in the posteriors). Thus, in contrast
to NTriPath, which relies on only the single most probable setting of the model’s parameters
and hyper-parameters (regularization constants), our method produces more robust factoriza-
tion results by averaging over all possible settings. Finally, we propose the update rules for the
posterior distributions by utilizing the framework of variational inference. Using experiments
on synthetic datasets, we show the superiority of our proposed method over NTriPath (where
a folding approach4 is used to deal with negative values in the input matrix). Using TCGA
gastric cancer and metastatic gastric cancer immunotherapy clinical-trial datasets,5 we show
that the proposed method could identify biologically and clinically-relevant pathways associ-
ated with TCGA gastric cancer molecular subtypes and immunotherapy response. Finally we
show that those pathways identified by our method could be used as prognostic biomarkers
to stratify patients with distinct survival outcome in two independent validation datasets.

Notations: For a matrix A, ai represents its ith row vector, i.e., (Ai,:)
>. Similarly, ~aj , A:,j

refers to its jth column vector. The (i, j)th element of the matrix A is expressed by Aij.

2. Background

Non-negative matrix factorization (NMF), which here refers to the matrix bi-factorization
(decomposing a matrix into two smaller matrices), has been applied to many different biolog-
ical problems as a tool for clustering, dimensionality reduction and visualization (please see
references herein6). It provides a parts-based local representation, making NMF unique com-
pare to other linear dimensionality reduction methods such as principal component analysis
(PCA). However, NMF is limited to non-negative input data. When the input matrix contains
positive and negative values, a natural way is to decompose the input matrix into a centroid
matrix (assumed to be real-valued) and a cluster membership indicator matrix (assumed to
be non-negative). This approach is the main motivation of semi-nonnegative factorization,7

and we use this same idea to allow our method to find patterns from real-valued input data.
The spike-and-slab prior is the standard approach for sparse learning, which is the selection

of a subset of features from high-dimensional input data. It can be expressed as a mixture of
a point mass at 0 (spike) and a continuous distribution (slab):

V ij ∼ ρijN (V ij |0, σVjr) + (1− ρij)δ0(V ij) (1)

where N (·) is a Gaussian distribution, ρij ∈ [0, 1] is a mixing coefficient, and δ0(·) is Dirac
delta funciton, i.e., δ0(V ij) = 1 at V ij = 0, and 0 elsewhere. The mixture structure of the
spike-and-slab prior can produce a bi-separation effect where the posterior distributions over
the coefficients for irrelevant features are peaked at zero while those over the coefficients of
relevant features have a large probability of being non-zero. The spike-and-slab prior (1) can
be equivalently rewritten with a binary variable, and the posterior mean of this binary variable
indicates how the corresponding coefficient is actually different from zero.

3. Bayesian Semi-Nonnegative Tri-Matrix Factorization (Bayesian SNTMF)

We propose a Bayesian method to identify associations between cancer phenotypes (e.g.,
molecular subtypes) and pathways from human cancer genomic data. In this work, we consider
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only gene expression data, but our method can be applied to other data types that can be
formed into real-valued matrices, e.g., copy number and miRNA expression. We develop a semi-
nonnegative matrix tri-factorization method in the framework of Bayesian learning, where the
prior knowledge represented by a pathway membership information and a GGI network is
taken into account in the factorization through structured spike and slab prior distributions.3

3.1. Model formulation

We assume that observations are given in the form of a matrix X ∈ RN×D where Xij represents
the ith patient’s expression value for the jth gene, and N and D are the number of samples
and genes, respectively. We assume that pathway information is also given in a form of a
matrix Z0 ∈ RD×R, where R is the number of the pathways and each element represents the
membership of a gene to a pathway, i.e., Z0

jr = 1 if the jth gene is a member of the rth pathway,
and Z0

jr = 0 otherwise. Our main objective is to approximate X as a product of three latent
matrices added with residuals E ∈ RN×D:

X = USV
>

+ E (2)

where U ∈ RN×K+ , S ∈ RK×R+ , V ∈ RD×R and K is the number of the subtypes. We assume that
the matrix U is constructed from patient clinical data: K is the number of subtypes we are
interested in, and Uij = 1 indicates that the ith patient is of the jth subtype (1-of-K encoding,
i.e., Uik ∈ {0, 1} and

∑K
k=1 Uik = 1). The real-valued matrix V consists of R basis vectors,

and its rth column is a pattern associated with a corresponding pathway: only few elements
(corresponding to the member genes of a pathway, i.e., {j|Z0

jr = 1}) would have non-zero
values, representing either over-expression (V jr > 0) or under-expression (V jr < 0), and all
other elements are set to zero. Then, the non-negative matrix S encodes associations between
the subtypes and the pathways, where each element Sij represents the association between
the ith subtype and the jth pathway. Once S is learned, we can easily identify pathways
related to a certain subtype by selecting the top pathways that have the largest values in
the corresponding row in S. As all the latent variables are learned in the Bayesian learning
framework, the likelihood of the model and the prior distribution over the latent variables are
defined according to our model assumptions.

Assuming the residuals Eij in eq. (2) to be sampled from i.i.d. Gaussian distributions with
mean zero and precision γ, we can specify the likelihood of the factorization model:

Xij ∼ N (Xij |u>i Sv>j , γ−1), (3)

where the precision γ (the inverse of the variance) is sampled from a Gamma distribution.
The following discusses how we define the priors over the latent variables. For S, each ele-

ment is assumed to be sampled from an Exponential distribution to ensure its non-negativity:

Skr ∼ Exponential(Skr|λS0
kr ). (4)

For V , the simplest inference approach would be to calculate the posterior distributions (with
Gaussian distribution priors) over only the elements in the matrix that are corresponding to
the member genes in the pathways, i.e., M , {(j, r)|Z0

jr = 1}, and leave the other elements
as zero. However, it is widely accepted that pathway databases are not complete, that there
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are unknown missing genes in a pathway. To include unknown missing member genes in the
pathways into the factorization, we use the concept of sparse learning, where sparse prior
distributions (e.g., spike-and-slab or Laplace distributions) are placed over all the elements
of V and only few elements (including those in the set M) are encouraged to have non-zero
values. We make use of a gene-gene interaction network as well as of the pathway information
Z0 to determine the the positions of non-zero elements in V based on the assumption that two
connected genes in the graph would more likely to be active together in a pathway. Denote a
gene-gene interaction network by A ∈ RD×D, where Ajj′ = 1 if genes j and j′ are connected on
the network, and Ajj′ = 0 otherwise, and assume that there is no self connection, i.e., Ajj = 0.
We then will show that the priors incorporating Z0 and A can be defined using the structured
spike and slab prior model3 which imposes spatial constraints on spike-and-slab probabilities
through a Gaussian process (GP). We define a GP for each pathway and encode the mean
vector and covariance matrix of the GP using our prior knowledge given by Z0 and A.

With reparametrization of the variable V jr = VjrZjr (Zjr is assumed to be a binary variable,
i.e., Zjr ∈ {0, 1}), where Vjr ∼ N (Vjr|0, σV 0

jr ) and Zjr ∼ Bernoulli(ρjr), the spike-and-slab prior
over V jr in (1) can be equivalently written for the new variables Vjr and Zjr:

Vjr, Zjr ∼ N (VjrZjr|0, σV 0
jr )ρ

Zjr
jr (1− ρjr)1−Zjr . (5)

We can consider the binary variable Zjr as a on-off switch which determines whether Vjr is
included into the factorization model. To connect Z0 and A to Zjr, we define the parameter
of the Bernoulli distribution ρjr in the following hierarchical way based on the frame of GP:

ρjr = Φ(Gjr), (6)

~gr|Z0,A ∼ N (~gr|mr,L) (7)

where Φ(w1) =
∫ w1

−∞N (w|0, 1) is a cumulative standard Gaussian distribution function and ~gr =

[G1r, G2r, ..., GDr]
>. Each element of the mean vector mr is set according to the membership

information encoded in Z0: mjr = ξ+ where ξ+ > 0 if Z0
jr = 1, and mjr = ξ− where ξ− < 0

otherwise (the more negative value ξ− is, the more sparse prior we get). The covariance matrix
L is set to a normalized Laplacian matrix L = I−D−1/2AD−1/2, where D is a diagonal matrix
whose ith diagonal element is a summation of the ith row of the matrix A. Combining all these
assumptions, we can see that if gene i (a nonmember of the rth pathway) has connections to
the member genes on the network, then Gir would become high and its on-off binary variable
Zir is more likely to be one. Note that V = Z ◦ V . The binary matrix Z is determined by a
stochastic process, and thus the elements in V that even are not in the set M (originally not
in the pathways) can contribute to the factorization model.

As a result, our factorization model can be summarized as follows:

X = US(Z ◦ V )> + E, (8)

Eij ∼ N(0, γ), ∀i, j (9)

γ ∼ Gamma(γ|α0
a, α

0
b), (10)

Skr ∼ Exponential(Skr|λS0
kr ), ∀k, r (11)

Vjr, Zjr|Gij ∼ N (VjrZjr|0, σV 0
jr )Φ(Gjr)

Zjr(1− Φ(Gjr))
1−Zjr , ∀j, r (12)

~gr|Z0,A ∼ N (~gr|mr,L), ∀r. (13)
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The conceptual view of our method is depicted in Figure 1.
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Fig. 1. The input matrix is decomposed into U (samples × subtypes), S (subtypes × pathways),
and V (genes × pathways). The centroid matrix V is further decomposed into the binary indicator
matrix Z and the genome-wide pattern matrix V . We encode the pathway membership information
Z0 and the GGI network A into the binary matrix Z through the structure spike-and-slab priors.

3.2. Variational inference

We approximate the posterior distributions over all the latent variables in the variational
inference framework as their close form expressions are not available. We assume that the
variational distributions are factorized as follows:

q(γ,S,Z,V ,G) = q(γ)
( K∏
k=1

R∏
r=1

q(Skr)
)( D∏

j=1

R∏
r=1

q(Vjr, Zjr)q(Gjr)
)
. (14)

Note that the elements in the latent matrices (S, V = Z ◦V , and G) are assumed to be fully
factorized. The form of each variational distribution is assumed to be as follows

q(γ) = Gamma(γ|αa, αb), (15)

q(Skr) = T N (Skr|µSkr, σSkr), (16)

q(Vjr, Zjr) = q(Vjr|Zjr)q(Zjr)

= N
(
Vjr|ZjrµVjr, ZjrσVjr + (1− Zjr)σV 0

jr

)
ρ̂
Zjr
jr (1− ρ̂jr)(1−Zjr), (17)

q(Gjr) = N (Gjr|µgjr, σ
g
jr), (18)

where T N (s|µ, σ) represents a truncated Normal distribution defined on the nonnegative region

s ≥ 0, i.e., T N (s|µ, σ) =

√
1/(2πσ) exp{− 1

2σ
(s−µ)2}

1−Φ(−µ/
√
σ)

if s ≥ 0, and T N (s|µ, σ) = 0 otherwise. Denoting
a set of all the latent variables by Θ = {γ,S,Z,V ,G}, the variational distribution, q(Θ), can
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be obtained by maximizing the variational lower bound with respect to q(Θ):8

maximizeqL(q) ,
∫
q(Θ) log

p(X,Θ)

q(Θ)
dΘ. (19)

Note that the variational bound L is a lower bound on the log-likelihood, i.e., log p(X) =

L(q) + KL(q(Θ)||p(Θ|X)), where the second term in RHS is the Kullback-Leibler (KL) di-
vergence between the variational distribution and the true posterior distribution and always
nonnegative. Thus, finding the optimal variational distributions by solving the optimization
problem (19) can be easily justified. For each step, we update one variational distribution,
fixing the others, and we then proceed to cyclically update all variational distributions in
this manner. Based on combining the inference methods for Bayesian non-negative matrix
tri-factorziation in9 and for spike-and-slab prior distributions, the variational distributions
q(γ), {q(Skr)} and {q(Vjr, Zjr)}, can be updated in closed form. For {q(Gjr)}, their means
and variances can be updated by any iterative gradient-based optimization methods, e.g.,
limited-memory BFGS used in our experiments. More detailed derivations are found in our
supplementary material available at https://github.com/parks-cs-ccf/BayesianSNMTF.

4. Experimental results

We conduct experiments on both simulation and real-world datasets: 1) using the simulation
datasets, we show how our method works and display the superiority of our method over
NtriPath (which is a point estimate method); 2) using the two gastric cancer datasets, we
demonstrate that the our method can identify biologically and clinically-relevant pathways
associated with the molecular subtypes in gastric cancer as well as immunotherapy response
and validate these results on independent validation datasets.

We here discuss how to find pathways closely associated with each subtype based on the
factorization results from our method, as the final outputs of our method are the variational
distributions (the approximate posteriors) over the latent variables, including the association
matrix S. Specifically, we simply use the posterior mean of each variable as its estimate. We
denote the estimate of each latent matrix M by M̂ , where each element represents the poste-
rior mean of the corresponding element in the matrix M (please refer to our supplementary
material to see how to calculate the mean value of each posterior distribution). For the esti-
mate association matrix Ŝ, which is always non-negative, we can easily see that the larger Ŝij
is, the stronger association between the ith subtype and the jth pathway. Lastly, we explain
how to initialize some variables in our model. For the mean vectors of the GPs (G), we set
ξ+ = 5 and ξ− = −5 for all the experiments, which means that we assume a strong prior belief
on the initial pathway information Z0. However, as we will see from the experiment with
simulation datasets, our method is able to recover missing pathway membership. The detailed
information on the initialization for our method is included in the supplementary material.

4.1. Simulation datasets

With this simple example, we first show how our method works in the case of incomplete
pathway membership information. We generate the observation matrix X ∈ R300×400, where
the matrix contains 3 subtypes and each subtype shows a unique pattern, one or two blocks

Pacific Symposium on Biocomputing 25:427-438(2020)

433



of up- or down-regulated genes in each subtype (X in Figure 2-(a)). Elements in the pattern
blocks are drawn from either N (2, 2) for the up-regulation case or N (−2, 2) for the down-
regulation case, but elements in the non-pattern blocks are assumed to be background noise
and are sampled from N (0, 0.12). We construct the subtype indicator matrix U based on
our knowledge on the subtype information. We generate a pathway membership matrix Z0

according to the block structure of the input matrix X such that the true associations between
the subtypes and the pathways can be easily identifiable (Z0T in Figure 2 (b)). Note that we
assume the pathway membership matrix Z0 incomplete: we randomly remove 80% of member
genes from one of the blocks in the 3rd pathway. For the gene-gene interaction network, we
randomly connect two genes on the network with probability 0.1.

Figure 2 (c)-(f) shows that our factorization method works well even with the incomplete
pathway information. Figure 2 (c) indicates that our method can accurately estimate true
associations between subtypes and pathways. For example, the pathway associated with the
2nd subtype (which includes the samples 101 to 200 in the input data) is the 3rd pathway as
we designed, and we can easily confirm this association from the estimate association matrix Ŝ

because only Ŝ23 has a significantly high value and the others, Ŝ21 and Ŝ22, are zero. This result
is the same for the other subtypes. we also see that our method can successfully recover the

pathway membership information from the data (Ẑ
>

in Figure 2 (e)). This is a promising result
considering current pathway databases might be incomplete as our knowledge on molecular
biology processes is incomplete. Finally, we can see that our method can correctly find the

up/down regulation patterns from the real-valued input data (V̂
>

in Figure 2 (f)).
We also test our method on an additional simulation dataset to show the superiority of our

method over NTriPath. For non-negative factorization methods, one of standard ways to deal
with negative values in the input matrix is to fold the matrix by columns:4 every column will
be represented in two new columns in a new matrix, one of which contains only positive values
and the other only the magnitudes of negative values. This approach doubles the number of
columns in the original matrix and thus causes additional computational burdens, e.g., the
GGI network becomes 22 times larger. Moreover, it breaks the original patterns in the input
matrix because non-negative and negative values are separately processed. In addition, we
can see that our method is more robust against noise in general than NTriPath, as Bayesian
methods deal with uncertainty more effectively than point estimate methods which rely on
a single most probable setting of the model’s parameters. Detailed information about this
experiment is included in our supplementary material.

4.2. TCGA gastric cancer and metastatic gastric cancer immunotherapy
clinical-trial datasets

We first identify the top pathways associated with: 1) molecular subtypes in the TCGA gastric
cancer (GC) data; and 2) response/non-response in the metastatic gastric cancer (mGC)
immunotherapy clinical-trial data.5 We then validate the pathways identified by our method
in both datasets by investigating if these pathways could be used as prognostic biomarkers
to stratify patients from two validation datasets, ACRG10 and MDACC,11 into groups with
distinct survival outcomes.
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Fig. 2. Factorization results of the simulation data under the assumption that the pathway mem-
bership information might be incomplete: multiple member genes in one of the pathways are missed
(b). The results indicate that our method can successfully recover the membership information (e).

We provide brief descriptions of the datasets with the notations used in Section 3. For
TCGA GC data (N = 277), we download the normalized gene expression (mRNA) dataa. The
samples are divided into K = 4 groups according to their molecular subtypes: Epstein-Barr
virus (EBV), microsatellite instability (MSI), genomically stable (GS), and chromosomal in-
stability (CIN). For the immunotherapy response for mGC data (N = 45), we download
the gene expression data from,5 which is normalized by FPKM, and additionally apply log-
transformation and standardization. The data includes the patients’ treatment outcomes,
which are categorized into 4 subtypes: complete response (CR), partial response (PR), pro-
gressive disease (PD), and stable disease (SD). In order to find more distinguishable patterns
between groups, we here divide the samples into just K = 2 groups: responders (CR+PR) and
non-responders (PD+SD). Next, we download a GGI network (A) from b and use R = 4, 620

sub-networks from12 to define the pathway membership matrix Z0. After combining all these
different data sources, the numbers of the input genes are D1 = 14, 787 and D2 = 15, 347 for
TCGA gastric cancer data and the immunotherapy response data, respectively. The informa-
tion of both datasets is summarized in Table 1.

After training our factorization model on each dataset, we select the top 3 ranked path-

aThe data was downloaded from CBioportal (http://www.cbioportal.org/). The downloading option
was ’TCGA stad rna seq v2 mrna’ (RNASeq V2 RSEM normalized expression values).
bhttps://thebiogrid.org/. The version is BIOGRID-ORGANISM-Homo sapiens-3.4.153.
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Table 1. Summary of the two datasets, TCGA GC and mGC datasts.

data N D K phenotypes

TCGA gastric cancer 277 14, 787 4 {CIN vs EBV vs GS vs MSI}

Immnotherapy response 45 15, 347 2 {responder vs non-responder}

ways for each subtype based on the estimated association matrix Ŝ (12 = 3 × 4 pathways
consisted of 83 genes are selected for TCGA GC data, and 6 = 3× 2 pathways consisted of 36
genes for the immunotherapy response for mGC data). To assess biological relevance of iden-
tified top pathways from TCGA GC and immunotherapy for mGC datasets, we perform gene
set enrichment analysis using PANTHER (http://www.pantherdb.org). We find that genes in
the pathways identified by our method are enriched with biologically relevant pathways that
are associated with cancer phenotypes. For example, 36 genes from mGC immunotherapy re-
sponse data are enriched with positive regulation of TGFbeta pathway, T-cell migration, etc.
Specifically, member genes of 36 gene signatures such as FN1 and FBLN1, involved with TGF-
beta regulation are down-regulated and CCL5, CCL21, and CXCL13 which are involved with
T-cell migration are up-regulated in response group compared to non-response group, respec-
tively. Activation of TGFbeta pathway serves as a central mechanism to suppress the immune
system, thus deactivation of TGFbeta may increase response to immunotherapy.13 Active T-
cell migration into tumor microenvironment could increase response rates to immunotherapy
and increase survival.14 These indicate that our proposed method utilizing real-valued input
data could successfully identify down and/or up-regulated pathways that are biologically rel-
evant to and associated with immunotherapy response. It is worth noting that these findings
were not reported in the original work.5 Further details of pathway analysis are available at
https://github.com/parks-cs-ccf/BayesianSNMTF.

To evaluate prognostic utility of 83 and 36 genes in the top 3 pathways from TCGA
GC and mGC immunotherapy datasets, we perform consensus clustering to stratify gastric
cancer patients using two validation cohorts ACRG (N = 300) and MDACC (N = 267),
respectively. Setting the number of clusters to 4, we run a consensus clustering method (500
NMF repetition with bootstrapping15) on gene expression values of the selected genes in each
dataset and generate Kaplan-Meier (KM) plots using overall survival. Figure 3 shows that
subtypes identified by 83 and 36 genes from TCGA GC and mGC immunotherapy datasets
have distinct survival outcomes which suggests that the pathways identified by our method
can serve as prognostic biomarkers to stratify GC patients.

5. Conclusion

We have proposed a Bayesian semi-nonnegative matrix tri-factorization method to identify
associations between cancer phenotypes e.g., molecular subtypes or immunotherapy response,
and pathways from the real-valued input matrix, e.g., gene expressions. Motivated by semi-
nonnegative factorization,7 we allow the centroid matrix to be real-valued so that each centroid
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Fig. 3. KM plots from ACRG and MDACC cohorts. In each of ACRG and MDACC validation
cohorts, four subtypes clustered based on gene expression values of the 83 and 36 gene signatures
from TCGA GC and the mGC immunotherapy response datasets, respectively. KM plots with log-
rank test indicate that the subtypes identified by the 83 and 36 gene signatures have statistically
significant different survival outcomes.

vector can capture the up/down-regulated patterns of member genes in the pathways. We in-
corporate pathway membership information and a GGI network into the factorization model
using the framework of Bayesian learning through structured spike-and-slab priors.3 We also
present efficient variational update rules for the posterior distributions. We show the useful-
ness of our methods on the synthetic and the gastric cancer data sets. To get a more complete
understanding of molecular biology processes, it is necessary to integrate multiple types of ge-
nomic data, e.g., gene expression, copy number, miRNA, etc. We believe that data integration
can be easily implemented in our factorization model, as similarly done in.16
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