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Shortest path length methods are routinely used to validate whether genes of interest are functionally 
related to each other based on biological network information. However, the methods are 
computationally intensive, impeding extensive utilization of network information. In addition, non-
weighted shortest path length approach, which is more frequently used, often treat all network 
connections equally without taking into account of confidence levels of the associations. On the other 
hand, graph-based information diffusion method, which employs both the presence and confidence 
weights of network edges, can efficiently explore large networks and has previously detected 
meaningful biological patterns. Therefore, in this study, we hypothesized that the graph-based 
information diffusion method could prioritize genes with relevant functions more efficiently and 
accurately than the shortest path length approaches. We demonstrated that the graph-based 
information diffusion method substantially differentiated not only genes participating in same 
biological pathways (p << 0.0001) but also genes associated with specific human drug-induced 
clinical symptoms (p << 0.0001) from random. Furthermore, the diffusion method prioritized these 
functionally related genes faster and more accurately than the shortest path length approaches 
(pathways: p =  2.7e-28, clinical symptoms: p = 0.032). These data show the graph-based information 
diffusion method can be routinely used for robust prioritization of functionally related genes, 
facilitating efficient network validation and hypothesis generation, especially for human phenotype-
specific genes. 
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1.  Introduction 

Biological networks, such as protein-protein interaction (PPI) networks, facilitate functional 
interpretation of large omics data1 and knowledge discovery of disease genes2 and drug targets3. 
One of the major applications of biological network validation is validating functionally related 
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genes, in which genes of interest that are highly connected to genes annotated with specific functions 
in the networks are more likely to have the same functions. Biological networks extensively support 
this application because they aggregate biological associations of a large number of genes1,4, thus 
allowing exploration of functionality of uncharacterized genes in a context of other genes. 
Biological networks also characterize the complexity of biology as they support integrating 
information of different types of biological processes from multiple data sources. For example, 
STRING4, a PPI network database, provides network information of different biological processes, 
such as physical protein-protein interaction, protein fusion, and co-expression. The network 
information comes from experimental data, computational predictions, and text mining, adding 
different levels of confidence for the network associations. Biological networks, therefore, are often 
very complex with thousand nodes and million edges, often with confidence weight features. 
Methods that can handle the complicated nature of biological networks and efficiently explore 
network information are necessary to speed up knowledge discovery. 

Shortest path length methods are routinely used to validate functionally related genes using 
biological network information5. Non-weighted shortest path is the path that requires smallest 
number of edges to travel between two nodes. On the other hand, weighted shortest path is the path 
with smallest sum of edge weights between two nodes. The general idea is that genes that are in 
closer distance or have shorter paths are often more likely to be involved in same biological 
processes. Non-weighted shortest path length is more often used than weighted shortest path length 
because it is easier to interpret how genes of interest interact directly with each other. However, 
without considering confidence weights of edges, the method could prioritize the interactions that 
are not supported by many evidences. The edge weights demonstrate how strongly genes are 
interacted with each other based on experimentally derived data1 and/or the number of supporting 
publications from text mining4 for given associations. Therefore, edge weights contain useful 
information to interpret biologically associations better and should be integrated.   

A problem with shortest path length approaches is that they are computationally expensive. 
Multiple methods have been proposed yet it is still challenging, especially when computing for 
weighted graphs. For example, Dijkstra's algorithm 6 is a popular method to compute shortest path 
length, both weighted and non-weighted. To determine shortest path, Dijkstra's algorithm goes 
through unvisited nodes with the smallest distance from the starting node, continue to other unvisited 
nodes and update the neighbor’s distance 6. For a network of |V| nodes and |E| edges, the time to 
compute a given shortest path length can take up to O(|E| + |V|log|V|)  7. For the application of 
prioritizing and validating functionally related genes, shortest path length will have to be computed 
for every pair of a validated gene and a gold standard gene of known functions, increasing 
computational time. Because the shortest path length approaches need extensive resources, they 
hinder full exploration of network information and knowledge discovery. 

Graph-based information diffusion method offers a solution. Graph-based information diffusion 
method 8,9 simulates the flow of liquid or information, starting from nodes with certain information 
or known functional annotations, and spreading the information throughout the network to other 
nodes. Nodes that are closer to the starting nodes, meaning that they are few edges away and the 
edges have higher confidence weights, will receive more information signals and thus, more likely 
to share similar functions. The graph-based information diffusion method performs fast on large 

Pacific Symposium on Biocomputing 25:439-450(2020)

440



 
 

 

networks, allowing quick exploration of network information and knowledge discovery. Previously, 
graph-based information diffusion has been applied to biological networks and accurately predict 
functional annotations of uncharacterized protein structures9 and novel antigen for antimalarial 
drug10. This suggests that the diffusion method may robustly prioritize genes associated with similar 
biological processes and even human phenotypes.  

Because the graph-based information diffusion method employs both the presence and 
confidence weights of network edges, and the method has robustly predicted protein function, we 
hypothesized that the diffusion method could prioritize functionally related genes more accurately 
than the shortest path length approaches. Our data validated that the diffusion method robustly 
prioritized genes participating in same biological pathways and gene ontologies from random. We 
further demonstrated that the predictions for pathway genes of the diffusion method outperformed 
the shortest path length approaches. Finally, we showed that the diffusion method can predict genes 
associated with human-like clinical phenotypes in mice with statistically better performance than 
the shortest path length measures. Overall, our study advocated the use of graph-based information 
diffusion for efficient prioritization of functionally related genes, supporting robust validation of 
omics data and hypothesis generation of novel disease and drug mechanisms.  
 
2.  Materials and Methods 

2.1.  Data sources 

2.1.1.  Biological network information 

The biological network that we used was the protein-protein interaction (PPI) STRING network11 
(version 10.0), which can be downloaded from http://version10.string-db.org/. For our analyses, we 
used only Homo sapiens protein interaction network data, which consists of 19,236 proteins and 
4,272,402 edges. In order to construct a weighted graph, we used combined confidence scores of 
edges. Therefore, the constructed graph considered combined probabilities of predicted associations 
from different evidence channels, i.e. conserved neighborhood, gene fusion, phylogenetic co-
occurrence, co-expression, large-scale experiments, literature co-occurrence, and databases of 
biological pathways and physical protein interactions. Predictions from pathway database imports 
account for 5% predicted associations (7,938 genes and 212,370 edges) in the combined network, 
indicating that the network is not restricted to only pathway information. Edges with greater weights 
have higher confidence levels. Methods that can leverage edges with higher confidence weights can 
prioritize more functionally relevant genes that have higher associative probabilities predicted by 
multiple evidence channels. 

2.1.2.  References for pathway and ontology data 

In order to validate functional gene prioritization abilities of different approaches, we selected a 
number of popular manually curated pathway and ontology data that have been pre-processed by 
Enrichr database12 (https://amp.pharm.mssm.edu/Enrichr). Pathway references used were 
Reactome13 (version 2016), KEGG14 (version 2016), and WikiPathways15 (version 2016). Gene 
Ontology Annotation (GOA) for aspects of Biological Process (version 2017), Cellular Component 
(version 2017), and Molecular Function (version 2017)16,17 were also examined. The numbers of 
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gene sets and total gene coverages of the validated pathways and ontologies are summarized in 
Table 1. There are only 3 gene sets that are present in all of the three selected pathway databases, 
suggesting that these pathway databases are overall distinct from each other.  

2.1.3.  References for genes associated with human drug-induced clinical symptoms 

The genes associated with mouse phenotypes are compiled from Mouse Genome Informatics 
database18 (MGI:  http://www.informatics.jax.org). The genes selected were those that when being 
knocked out, yield substantial mouse phenotypes. We were interested in gene sets for relevant 
human clinical phenotypes, yet the information was not readily available. Therefore, we selected 
gene sets for mouse phenotypes that resemble drug-induced side effect symptoms in human (e.g. 
“parotid gland inflammation” and “joint swelling”), assuming that the genetics behind these 
phenotypes are similar in human and mice. The human drug-induced side effect symptoms are 
annotated in SIDER19 (version 4.1) (http://sideeffects.embl.de). Combining the two databases gave 
us 266 human-like clinical phenotypes in mice and their gene sets cover in total 2,856 genes. 

2.2.  Network analysis methods 

2.2.1.  Graph-based information diffusion method 

Graph-based information diffusion method was previously applied on biological networks 8,9 using 
the following formula: 
 

 
 where L = the Laplacian matrix of the combined STRING protein network 
 I  = the identity matrix 
 y = a vector of labels prior to diffusion 
 f = the vector labeled after diffusion 
  𝛼 = 1/∥ 𝐿 ∥& (ensuring convexity of the cost function 8) 

 
Every node or genes in the network was considered with a label. Diffusion was performed 
throughout the whole constructed STRING network. For the vector y, we initialized the diffusion 
process by setting the source nodes or genes with known functional annotations to 1 and all other 
network nodes or recipient nodes to 0. After diffusion, the diffused signals or diffusion values that 
the recipient nodes received, as represented in the vector f, were ranked, with higher values 
suggesting that they had higher probability to share similar functions with the source nodes. The 
known functional annotations of the source nodes or genes can be whether these genes participate 

! = 	 (% + 	'()*+, 

Table 1.  Statistics of pathway and ontology data for validation. 

Pathway/Ontology # gene sets Total gene coverage 
Reactome 1,530 8,973 

KEGG 293 7,010 
WikiPathways 437 5,966 

GO Biological Process 3,166 13,822 
GO Cellular Component 636 10,427 
GO Molecular Function 972 10,601 

 

(1) 
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in known biological pathways and ontologies and/or are associated with specific phenotypes. The 
method was run on a processor of 2.9 GHz Intel Core i5 and memory of 16 GB 1867 MHz DDR3.  

2.2.2.  Shortest path length (SPL) approaches 

Dijkstra's algorithm6 was utilized. The running time could take7: 
 

 
 where |𝑉| = the number of nodes 
 |𝐸| = the number of edges 

 
We applied networkx python package20 to process the network data and compute shortest path 
length, both non-weighted and weighted. The codes were run on the same computational system 
used for the diffusion method. Non-weighted shortest path length method prioritizes the path with 
fewest steps or edges while weighted shortest path method prioritizes the paths with the lowest sum 
of edge weights. The STRING network that we used associates a higher edge weight with a higher 
confidence level. Therefore, in order to prioritize the path with highest confidence using the shortest 
path length method, we constructed another graph with the inversed values for edge weights. The 
transformed graph still has the same edge connections with the originally constructed STRING 
network but with inversed edge weight values. Both non-weighted and weighted shortest path length 
calculations were applied on the transformed network.  

2.3.  Diffusion method to validate genes in same pathways and ontologies 

We tested whether the diffusion method could detect genes that are functionally related more than 
random. We used references of biological pathways and gene ontologies, as described in Section 
2.1, for this analysis. Each gene set was randomly split into half. Diffusion signals would start from 
either of the halves (source nodes) and propagate throughout the entire network. We would compare 
the signals received by the other genes in the gene set and by random genes. Genes that are more 
connected to the diffusion source nodes would receive more diffusion signals. The random genes 
were selected either uniformly in the network or by matching degrees with the recipient genes in the 
gene set. This whole process was repeated with the other half of the gene set as the source nodes for 
diffusion. Therefore, there were two experiments for each gene set in the references. Kolmogorov–
Smirnov test was performed to compare the distributions of diffusion signals received by pathway 
genes and random genes.  

2.4.  Comparisons of predictive performance for prioritizing functionally related genes 

We evaluated whether diffusion method could prioritize genes of same functions from random genes 
more robustly than the shortest path length methods. Because the shortest path length methods are 
computationally intensive, we had to arbitrarily limit our analyses to only Reactome pathways with 
6 to 20 genes, which gave us 591 pathways covering in total 3,242 genes. These empirically selected 
sizes of Reactome pathway let us to finish the shortest path length calculations in a week. We 
randomly split each of these pathways into halves. Diffusion signals started from one half and the 
received signals were used to predict the other half of the same pathway. Average shortest path 

!(|$| + |&| log|&|) (2) 
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length to one half of the pathways was calculated for the other half of the pathway and random 
genes. Genes that are closer to the known pathway genes, either through diffusion or shortest path 
length methods, were more likely to be in the same pathways. We measured area under receiver 
operating characteristic (AUROC) to evaluate predictive performance of different methods. For the 
diffusion method, the ranking was based on signals of the recipient nodes after diffusion. For the 
shortest path length approaches, genes that were ranked higher were those that have shorter average 
shortest path lengths. The truth table was whether those genes were in the same pathways with the 
initial source genes. We could not perform shortest path length predictions over every node of the 
network due to limited time and resources, thus we randomly selected (3 x n) random genes in the 
network, in which n is the number of pathway recipient genes, to evaluate AUROC for these 
methods. Finally, the distributions of predictive AUROC values for the diffusion and shortest path 
length methods were compared by Kolmogorov–Smirnov test.  

2.5.  Diffusion method to prioritize genes associated with drug-induced clinical symptoms 

Going beyond genetic and molecular processes, we explored whether the diffusion method could 
explore genes associated with human phenotypes. Specifically, we tested whether the diffusion 
method could detect genes that were linked to human drug-induced clinical symptoms. Similar to 
the approaches described in sections 2.3 and 2.4, we first explored whether the diffusion method 
could differentiate genes associated with specific clinical symptoms from random and compared the 
predictive performance of the method against the weighted and non-weighted shortest path length 
approaches. For comparing the diffusion values between pathway genes and random genes, we 
performed the experiments on the whole 266 gene sets associated with human-like clinical 
phenotypes in mice from MGI and SIDER. For the performance comparisons with shortest path 
length approaches, we limited the analysis to only 128 symptom-related gene sets with 6 to 60 genes, 
covering 1,496 genes in total. The empirically selected size range of the gene sets allowed us to 
finish shortest path length calculations in a week.  
 
3.  Results and Discussions 

3.1.  The diffusion method robustly prioritized functionally related genes 

3.1.1.  The diffusion method robustly prioritized pathway-specific genes 

We explored whether the diffusion method detected genes participating in same biological 
pathways, i.e. whether genes in the same pathways diffused to each other more than to random 
genes. Fig. 1 shows that genes in the same pathways statistically diffused to each other more than 
random (KS test: p << 0.0001 for both degree-matched and uniformly selected random). Pathway 
genes often have higher degrees because they are studied more, thus more likely to connect to other 
in the PPI network than lower degreed genes. This is demonstrated as the distributions of the degree-
matched random genes were skewed to higher diffusion values than the distributions of uniformly 
selected random genes (Fig. 1). However, even when controlling for node degrees, the diffusion 
method still substantially differentiated pathway genes from degree-matched genes.  
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It is worth noting that the observed pattern was consistent across multiple pathway references 
(i.e. Reactome, KEGG, and WikiPathways), which have different numbers of gene sets and gene 
coverages (Table 1), suggesting that the observation is global. In addition, interestingly, the 
distributions of recipient diffusion signals for biological pathways seemed to close to unimodal, 
centering at larger diffusion values, while distributions for random genes were bimodal, spreading 
over larger ranges of values. Because selected random genes are involved in multiple biological 
processes, this data suggests the diffusion method specifically prioritized genes participating in 
same biological pathways. 

3.1.2.  The diffusion method robustly prioritized gene ontology-specific genes 

Similar to pathway-specific genes, the diffusion method robustly detected genes linked to same gene 
ontologies. For diffusion initialized from a portion of gene ontologies, genes in the same gene 
ontologies received significantly higher diffusion signals than random genes, whether they were 
degree-matched or not (Fig. 2; KS test: p << 0.0001). Interestingly, the distributions of recipient 
diffusion values for ontology-related genes seemed to closer to bimodal with more smaller signal 
values, instead of unimodal distributions centered at larger diffusion values like pathway-specific 
genes. This is potentially because ontology-specific genes participate in multiple biological 

 
Fig. 1.  The diffusion method robustly prioritized pathway-specific genes. Pathway genes (red) are more 
connected to each other than to degree-matched random genes (blue) (KS test: p << 0.0001) or uniformly 
selected random genes (green) (KS test: p << 0.0001) in the STRING PPI network.  
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processes, thus making the predictive performance of the diffusion method less robust. Overall, 
these data demonstrate the usability of diffusion method in detecting functionally similar genes in 
biological networks.  

3.2.  The diffusion method outperformed the shortest path length approaches in prioritizing 
functionally related genes 

Because the diffusion method employs both the number of edges and edge confidence weights for 
measuring distance, we hypothesized that the diffusion method can detect functionally related genes 
better than both non-weighted and weighted shortest path length approaches. Because shortest path 
length detection requires intensive computational time, we limited our analyses to small pathways, 
specifically Reactome pathways with 6 to 20 gene members. Overall, we observed that all three 
methods performed fairly well, in which for the majority cases, AUROC can be achieved up to 1.0, 
confirming that genes that are functionally similar diffused better to each other and were closer in 
distance as measured by both weighted and non-weighted shortest path length (Fig. 3). However, 
the diffusion method stood out to be the best performing method overall (Fig 3). The AUROC 
distribution for the diffusion method was statistically skewed more to higher AUROC values than 
those of the non-weighted and weighted shortest path length approaches (KS test: p diffusion vs non-

 
 

Fig. 2.  The diffusion method robustly prioritized ontology-specific genes. Pathway genes (red) are more 
connected to each other than to degree-matched random genes (blue) (KS test: p << 0.0001) or uniformly selected 
random genes (green) (KS test: p << 0.0001) in the PPI network. 
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weighted SPL = 2.7e-28, p diffusion vs weighted SPL = 2.8e-11). Non-weighted shortest path length performed 
slightly better than weighted shortest path length (p non-weighted vs weighted SPL = 2.7e-10), suggesting that 
the number of edges between genes was probably more important than the edge confidence weight, 
at least in the context of small pathways. However, by employing both of these elements, diffusion 
could predict functionally related genes the best.  

3.3.  The diffusion method robustly predicted human phenotype-related genes 

3.3.1.  The diffusion method robustly prioritized genes linked to specific human drug-induced 
clinical symptoms 

Because the diffusion method robustly predicted functionally similar genes, we explored the 
possibility of using the diffusion method to detect phenotype-related genes in biological networks. 
We compiled genes that, when being knocked out, give rise to human-like drug-induced clinical 
symptoms in mice from Mouse Genomics Informatics (MGI) database. We observed that genes 

 
 

Fig. 3.  The diffusion method (red) detected functionally related genes statistically better than the non-
weighted (blue) and weighted (green) shortest path length approaches, as shown in a histogram plot (A) 
and a kernel density estimation plot (B) (KS test: p diffusion vs non-weighted SPL = 2.7e-28, p diffusion vs weighted SPL 
= 2.8e-11, p non-weighted vs weighted SPL = 2.7e-10). 

 

A B 

 
Fig. 4.  The diffusion method robustly prioritized human clinical symptom-related genes (red) from degree-
matched (blue) and uniformly selected (green) random genes (KS test: p << 0.0001). 
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associated with similar symptoms diffused to each other statistically more than to random genes, 
whether they were degree-matched or uniformly selected (Fig. 4, KS test: p << 0.0001). 
Interestingly, the distribution of diffusion values for symptom-related genes is bimodal, similar to 
what we observed in Gene Ontologies. This is consistent with the fact that clinical symptoms are 
often involved with multiple biological processes. These data show that the diffusion method 
robustly utilized biological network information to detect genes that are involved in not only 
fundamental biological processes but also human phenotypes. 

3.3.2.  The diffusion method outperformed the shortest path length approaches in prioritizing 
clinical symptom-specific genes 

Because the diffusion method predicted genes participating in same biological processes more 
robustly than the shortest path length approaches, we hypothesized that the diffusion method could 
also outperform in predicting genes associated with specific human drug-induced clinical 
symptoms. Overall, the predictive performances for symptom-associated genes of all methods were 
not as good as their predictions for pathway-related genes (Fig. 3 and 5). However, the diffusion 
method still statistically outperformed the shortest path length methods (Fig. 5, KS test: p diffusion vs 

non-weighted SPL = 0.032, p diffusion vs weighted SPL = 5.1e-07), with 48.8% of predictions had AUROC above 
0.70. On the other hand, the mean AUROC of predictions by the non-weighted shortest path length 
method is 0.62 while the mean AUROC of the weighted shortest path length method is slightly 
higher at 0.66 (Fig. 5, KS test: p non-weighted vs weighted SPL = 3.1e-03). These data show that the diffusion 
method, by combining both the number of steps like the non-weighted shortest path length approach 
and the edge weight like the weighted shortest path length, robustly prioritized relevant genes for 
specific human phenotypes.  

 

 

 
 

Fig. 5.  The diffusion method (red) detected functionally related genes significantly better than the non-weighted (blue) 
and weighted (green) shortest path length approaches as shown in a histogram plot (A) and a kernel density estimation 
plot (B) (KS test: p diffusion vs non-weighted SPL = 0.032, p diffusion vs weighted SPL = 5.1e-07, p non-weighted vs weighted SPL = 3.1e-03).  

A B 
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4.  Conclusions 

Validating functionally related genes is one of major tasks of biological network analysis. In this 
study, we proposed using the graph-based information diffusion method, instead of the routine 
shortest path length approaches, in order to prioritize functionally similar genes faster and more 
accurately. While shortest path length methods employ either a single shortest path (non-weighted) 
or purely confidence weights of network edges (weighted), the diffusion method considers both 
edge confidence weights and multiple paths that genes are connected to each other in the networks. 
We demonstrated that the diffusion method prioritized pathway-, ontology-, and clinical symptom-
specific genes more robustly than the shortest path length methods. These data suggest that the 
diffusion method may detect funtionally related genes that the shortest path length methods miss. In 
addition, because the diffusion method can quickly explore the whole network, it allows full 
utilization of network characteristics, such as global topology and local structure, in making 
predictions. The method also supports investigation of more candidate genes simultaneously in the 
networks, up to the maximum of all network nodes, thus generating a greater number of hypotheses 
for novel gene functionality, such as discovery of disease genes and drug targets. A limitation of the 
diffusion method is that it is not as easy to interpret how genes of interest interact directly with each 
other as for using the non-weighted shortest path length method. Detailed investigations of the 
multiple connected paths of genes of interest are necessary to fully understand their functional 
relations. 
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