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Flaviviruses such as dengue encode a protease that is essential for viral replication. The protease
functions by cleaving well-conserved positions in the viral polyprotein. In addition to the viral
polyprotein, the dengue protease cleaves at least one host protein involved in immune response.
This raises the question, what other host proteins are targeted and cleaved? Here we present a new
computational method for identifying putative host protein targets of the dengue virus protease. Our
method relies on biochemical and secondary structure features at the known cleavage sites in the viral
polyprotein in a two-stage classification process to identify putative cleavage targets. The accuracy of
our predictions scaled inversely with evolutionary distance when we applied it to the known cleavage
sites of several other flaviviruses—a good indication of the validity of our predictions. Ultimately,
our classifier identified 257 human protein sites possessing both a similar target motif and accessible
local structure. These proteins are promising candidates for further investigation. As the number of
viral sequences expands, our method could be adopted to predict host targets of other flaviviruses.
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1. Introduction

Flaviviruses are a genus of positive-strand RNA viruses under the family Flaviviridae, most of
them insect-borne. The clade includes many viruses that are important for human health, such as
dengue, Zika, West Nile, yellow fever, and tick-borne encephalitis virus. Dengue virus alone infects
approximately 390 million people every year, and is endemic in at least 100 countries.1 The genome of
dengue virus encodes a protease (composed of the non-structural proteins NS2B and NS3) the action
of which is essential for viral replication. It recognizes an eight amino acid motif, cleaving between the
fourth and fifth position.2,3 As well as cleaving the viral polyprotein (Fig. 1), the dengue virus protease
cleaves at least one host protein during replication.4,5 Stimulator of Interferon Genes (STING) is an
ER-resident protein that is activated by ER stress or cytoplasmic nucleotides, and in turn activates
the interferon response. The dengue virus protease can cleave STING between amino acid positions
78 and 79, thereby down-regulating the interferon response and increasing virus replication. STING
is also cleaved by Zika, Japanese encephalitis, and West Nile viruses, indicating that overlap exists
in the set of motifs these divergent protease target.6 Furthermore, the identification of STING as
a target of the flavivirus proteases suggests there may be other human protein targets that have yet
to be discovered. In this work, we present a method for identifying protease targets computationally.

The motifs recognized by any given protease can be identified based on high-throughput screening
assays or computational predictions.3,7 High-throughput screens based on randomized peptide gener-
ation or mass spectrometry vary in their specificity and accuracy and can be costly or time consuming.
Alternatively, there exist a number of computational methods (referred to as “motif scanning”) for
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identifying putative target motifs in primary sequence. Most of these rely on probabilistic models using
position-weight matrices (PWMs), i.e. frequency at which an amino acid appears in known “reference”
motifs at a given position.8–15 PWM methods are broadly successful, but can be ill-suited for certain
applications. Firstly, because they assess similarity based only on the frequency of each monomer
or dimer, these methods can be insensitive to less frequent—but still successfully targeted—reference
motifs. Published sequences of dengue viruses, for example, reveal motifs within the viral population
that are highly dissimilar yet still effectively cleaved by the viral protease. Secondly, since they are
constrained to the lengths of the reference motifs (i.e. the list of motifs from which the position-weight
matrix is created), they are blind to the properties of the surrounding sequence that may influence
accessibility to a positively identified site (conversely, extending the effective size of this motif would
require a prohibitively large training data set). For example, secondary or tertiary structure might
make a site inaccessible. A motif scanning method that is based on the motif’s biochemistry instead
of amino acid frequency, but also incorporates the structural context surrounding the motif, would
circumvent these shortcomings and produce more biologically meaningful results.

C

Fig. 1. The dengue virus polyprotein is translated by the host machinery in the ER. It is a multi-pass trans-
membrane sequence that is then cleaved by its native protease NS2B–NS3, which is located on the cytoplasmic
side of the membrane. The six cleaved sites are indicated by the red arrows. (adapted from Umareddy et al.16)

Here we propose a new computational method to predict targets of flavivirus proteases. This method
consists of a two-stage supervised-learning classifier, trained on motifs from the dengue virus polyprotein
known to be cleaved by the dengue virus protease. The first stage identifies putative target motifs,
informed by biochemical features of the amino acids comprising the cleavage motifs. The second stage
identifies which of the target sites predicted by the first stage have a structural context that makes the
site accessible to the protease, thus acting as a filter. Unlike other motif scanning methods, this two-stage
method uses biochemical properties of each amino acid within the motif, not its frequency, and evaluates
the motif’s surrounding secondary structure. We show that the motif stage predicts a more diverse range
of targets in host proteins than a PWM method, and the structure stage of the classifier greatly reduces
the number of sites predicted to be cleaved, suggesting most are not accessible. Additionally, we show
that our dengue-trained classifier, when applied to other flavivirus motifs, recapitulates the evolutionary
divergence of the cleavage motifs of this virus clade, providing further validation of our method.

2. Methods

An overview of our classifier method can be seen in Fig. 2. Supplementary materials available at
http://dowell.colorado.edu/pubs/dengue/
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2.1. Curation of dengue polyprotein sequence and training data

To capture as much diversity for our training data as possible, we downloaded all available polyprotein
sequences (length 3400 residues) for the known dengue serotypes (DENV1-4) from the Virus Pathogen
Resource database.17 These sequences were then grouped by serotype and collectively aligned using
the MUSCLE alignment method.18 Alignments were manually curated to remove those that aligned
poorly or were significantly incomplete. A total of 7955 instances of the polyprotein remained (see
supplemental info for list of NCBI accession numbers). The well-conserved sequence positions of the six
known cleavage sites (C/prM, NS2A/NS2B, NS2B/NS3, NS3/NS4A, NS4A/NS4B, and NS4B/NS5;2,19

Fig. 1, red arrows) were identified for each of the serotype alignments and the 50 residues to either
side of each site were extracted from all of the polyprotein sequences. Duplicate 100 residue sequences
were removed, resulting in 2297 unique sequences. From this final set we sourced the positive training
data for both classifiers. To train the first-stage classifier, the eight-residue peptides that are centered
on the cleavage sites represented the positively cleaved target motifs.2,3 To train the second-stage
classifier, positive (i.e. “accessible”) structural context was derived from the full 100 residue sequence.
Negative training data for the first stage was also derived from the full-length polyprotein sequences
by randomly sampling eight-residue peptides that were both from the cytoplasmic portions of the
polyprotein and farther than four residues from any cleavage site.20 We excluded transmembrane
and ER lumenal regions because they are physically inaccessible to the protease—thus sequences
in these regions do not constitute motifs that are definitively uncleavable.

Our curation resulted in N+=195 unique positive cleavage motifs and N−=35,702 unique negative
cleavage motifs, with no overlap between the two sets. The positive cleavage motifs, with the cleavage
site being between positions four and five (see “Stage 1: Training Data” in Fig. 2), show a common serine
protease signal: strong preference for basic amino acid residues (arginine or lysine) at positions three and
four and polar amino acids at position five of the substrate.2,3 The negative cleavage motifs show an essen-
tially uniform distribution of amino acid residues across all positions of the motif substrate (see Fig. 3).

Fig. 2. Schematic of our two-stage method, showing the feature selection and training for both stages. The out-
put predictions of the first stage (“Motif Classifier”) are the inputs to the second stage (“Structural Classifier”).
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Fig. 3. Sequence logos21 for curated positive (left) and negative (middle) motif training data. Also, sequence
logo for the 3991 putative cleavage sites predicted by the first stage of classification (right). The color
scheme corresponds to chemical properties: polar (green); hydrophobic (black); basic (blue); and acidic (red).
Background assumes all amino acids are equally likely.

2.2. Curation of human proteome

Since the dengue protease is ER-resident and the polyprotein it targets is a multi-pass transmembrane
sequence, we narrowed the human proteome search space to only membrane-associated proteins, using
the longest isoform in each case (the list of NCBI accession numbers we used can be found in the
supplemental information). We identified transmembrane domains using the transmembrane topology
prediction program Phobius 1.0122 on each of the proteins in our list (using a membrane domain
fractional probability threshold of >0.5). These domains were then excluded from consideration by
the classifier, as they would not be accessible to the protease. From the remaining protein sequence,
we evaluated the stage one classifier on every eight amino acid peptide therein, using a sliding window
approach (see “Stage 1: Input Data” in Fig. 2).

2.3. Stage 1 features: amino acid properties

For our method, we employed a support vector machine (SVM) algorithm, which performs best with
features that are bounded, ordinal, and continuous. We wanted a feature representation that captured
key biological features, was interpretable, and was easy to compute. We sought to capture the catalytic
mechanism of the protease by representing each motif residue with multiple biochemical properties
that affect protease activity (see “Stage 1: Features” in Fig. 2). Namely, to represent each individual
amino acid, we used polar requirement,23,24 hydropathy,25 molecular volume,26 isoelectric point,27

and four principal components generated from PCA on 134 physio-chemical properties of amino acids
that correlate with biological activity (called Sneath’s Index).28 At least one other method exists
that leverages biological similarity between sequences,29 however, it can be expensive to compute
and difficult to extract meaning from the features. Our chosen features are biologically relevant and
require no additional computation. Furthermore, since these features are ordinal and approximately
continuous, they are well-suited for an SVM. These eight features were used to represent each of the
eight residues in the motif sequence, resulting in a 64-length feature vector for the first-stage classifier.

To visualize our curated motif training data (described in Sec. 2.1) with this feature representation,
we performed PCA on the positive and negative training data and plotted the first two principal
components (combined, they explain approximately 25% of the variance). As shown on the left of
Fig. 4, the positive and negative training data sets show clear separability, a good indication that
they constitute distinct categories with this feature representation.

2.4. Stage 1 classifier: training on length eight amino acid motifs

For this supervised binary-classification task, we employed the support vector machine (SVM) algorithm
with a radial basis function (RBF) kernel (see “Stage 1: Algorithm” in Fig. 2).30 Our classification
method was implemented using scikit-learn (version 0.20.3).31,32 The eight-residue motif training
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Fig. 4. Left: Principal components (PC1 and PC2) for our training data extracted from the dengue
polyprotein sequence, expressed with our biochemical feature representation. The two sets of training data
clearly separate along PC1. Higher order components do not demonstrate separability. Right: The same
principal components, including the predicted human motifs. Positive cleavage motifs—blue triangles; negative
cleavage motifs—orange points; and predicted motifs—green squares.

data curated from the dengue polyproteins (described in Sec. 2.1) were converted using the feature
representation in Sec. 2.3 and then each feature was scaled to the range [−1,+1] within the data sets.

There was a significant difference in the size of the two training data sets (N+=195 and N−=35,702),
which can have a detrimental effect on classifier performance.33 To address this imbalance we combine
subsamples of the larger class plus the entirety of the smaller class.33 In this way, a collection of
equivalent classifiers are generated, each trained on a distinct subset of the negative class. Each
equivalent classifier (we created 100 non-overlapping subsamples) is then applied to the target data
and results are combined to form a final classification. For each individual classifier we left out a
randomly sampled 15% for testing (equal parts positive and negative class), then performed 5-fold
cross-validation with the remaining 85% in order to optimize the hyperparameters C and γ. Opti-
mization of hyperparameters used an initial logarithmic grid search, further refined by a local, linear
grid search, resulting in final values C=1.1 and γ=0.12. The average test performance across the
100 trained classifiers was f1−score=0.98±0.02. The resulting 100 binary-SVM motif classifiers, were
subsequently applied to the curated human protein data, described in Sec. 2.2 (see “Motif Classifier”
in Fig. 2). In order to identify a target site as cleaved, we required that all 100 classify the site as such.

2.5. Stage 2 features: secondary structure

The purpose of the second stage of classification is to determine if each motif resides within the appropri-
ate structural context, as defined by the known cleavage sites in the dengue polyprotein, and therefore
would be accessible to the protease. We employed an SVM-based algorithm for this second stage as well.

We based our feature representation for this stage on the local protein secondary structure (within 50
residues of the cleavage site). For features, we focused on the three principle types of secondary structure—
the α-helix, β-pleated sheet, and unstructured sequence, referred to as “random coil” (see “Stage 2:
Features” in Fig. 2).34 To predict these secondary structures we used the protein structure prediction
server JPred4 (Jnet v.2.3.1).35 For each residue of the input sequence, the server returns fractional
probabilities that the residue was contained in an α-helix, β-pleated sheet, or random coil.35 Thus, this
feature representation is well suited for many classifier algorithms as it is numerical, ordinal, and scaled
to the range [0,1]. Structural features were determined using the entire 100-residue amino acid sequences.
Only the central 30 residues (15 to either side of the cleavage site) were used as the training
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Fig. 5. Secondary structure for training data (left) and Stage 2 predictions (right) – Median probabilities (solid
line) of the feature as a function of position relative to cleavage site (shaded regions indicated 2nd and 3rd quar-
tiles). The dotted lines indicate the bounds of the motif (i.e., dotted lines in “Stage 2: Training Data” in Fig. 2).

data for the second stage classifier, since secondary structures are typically less than 30 residues in
length34 and shorter feature vectors are easier to compute. Using the full 100-residue sequences for
structure prediction reduced the impact of edge effects on the central 30-residue region of interest.
The 30-residue training sequences were converted to linear feature vectors of dimension 90: 3 features
(α-helix, β-pleated sheet, random coil) times 30 residues. These final linear feature vectors were those
used for the second stage classification.

A clear structural pattern emerges in the distributions of the three features (Fig. 5, left) in the training
data. As expected, in the approximate region of the motif (residue range [−4,+4]) the probability
of random coil is consistently high, while the probability of α-helix or β-pleated sheet is consistently
low. Furthermore, the probability of finding β-pleated sheet anywhere in the vicinity of a cleavage site
appears to be uniformly low. Beyond the immediate region of the motif, the random coil and α-helix
probabilities are roughly complimentary to one another, with the median probability of finding an
α-helix being around 90% or greater. However, the variability of these two differ dramatically between
the N- and C-terminus sides of the motif region, with the N-terminus side showing lower variance.

2.6. Stage 2 classifier: training on secondary structure

The classification for this second stage was equivalent to an outlier detection task. For this we employed
the One-Class SVM algorithm with a RBF kernel (see “Stage 2: Algorithm” in Fig. 2), implemented
in scikit-learn (version 0.20.3).31,32,36

The training data for this classifier was the set of all 30-residue amino acid sequences centered
on the dengue cleavage sites (2297 unique sequences in total), described in Sec. 2.1. These sequences
were then represented with the structure features described in Sec. 2.5. The hyperparameter ν, which
represents the upper bound on the fraction of margin errors,36,37 was set to ν=10−4. For testing, 10%
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Table 1. Loadings (expressed as percentages: 0.XX→XX) for PC1
in Fig. 4. +/- loading indicates +/- correlation with PC1.

Motif pos. 1 2 3 4 5 6 7 8
Polar req. −03 −05 −12 −13 +06 +13 +08 +20

Hydrop. +11 +14 +25 +27 −03 −12 −07 −24
Iso. point −13 −18 −29 −30 +05 +03 +01 +00
Mol. vol. −02 −00 −15 −16 +18 +03 +14 −03
Sneath 1 +00 +09 +03 +04 +02 −00 +10 −20
Sneath 2 +02 −02 +13 +16 −10 −14 −20 −12
Sneath 3 −01 −03 −08 −08 +08 +00 +03 +01
Sneath 4 +00 +03 +11 +11 −29 −08 −06 −02

of the training data was held out, on which the trained classifier scored accuracy = 97.6%. The second
stage classifier was then applied to the sites identified by the first stage classifier (see “Structure
Classifier” in Stage 2 of Fig. 2), effectively functioning as an outlier detection filter on the first stage.

3. Results

3.1. Stage 1: predicted motifs in human proteins

The first stage classifier positively identified 3991 putative cleavage sites within the 6060 membrane-
associated proteins. The amino acid distribution for each position in the motif substrate can be seen
in the sequence logo (Fig. 3, right).21 As expected, the same prevailing motif signatures are present in
the training and predicted sets (compare left and right logos Fig. 3)—namely, the highest information
content residues are those in positions three, four and five, with the first two being predominantly basic
amino acids (arginine and lysine) and position five being predominantly polar amino acids (serine and
threonine). However, there are some notable differences. For one, the total information content at every
position in the motif substrate is lower for the predicted sites compared to that of the positive training
data in Fig. 3. This indicates that the predicted cleavage motif sequences demonstrate greater diversity
than that found in the training data. Furthermore, at positions three, four, and five of Fig. 3 there is
clear signal of amino acids with differing biochemical properties—namely, acidic (glutamic acid), basic
(histidine), and polar (asparagine, glutamine)—which are not evident in the sequence logo of the training
data. The source of these variants are several low occurrence motifs found at the NS4A/NS4B and
NS4B/NS5 cleavage sites. Though these variant cleavage motifs represent only about 1% of the training
data, the classifier is still capable of leveraging these to identify such motifs within the target proteins.

To further explore how the predicted sites compare to the training data, we applied the same PCA
transformation to the predicted motifs that was used for the training data (Fig. 4). The predicted
motifs roughly cluster along the same dimensions as the positive and negative training data sets, as
indicated by PC1 (not shown: the predicted motifs are not distinguishable from the negative sites
for PC3 and higher). In order to interpret the biochemical features encoded in PC1, we must examine
the component’s loadings, shown in Table 1 organized by substrate position and biochemical feature.
Loadings, which range from -1 to +1, are the weights that the term contributes to the principal
component. They represent how well the given term correlates with the principle component value—a
-1 indicates anti-correlation, 0 indicates uncorrelated, and +1 indicates positive correlation.

Since PC1 captures the distinction between cleaved and uncleaved data points (Fig. 4), the larger
the magnitude of the loading the more informative that component is for discriminating between
uncleaved and cleaved motifs. For example, hydropathy at position 4 has a loading value of +0.27
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indicating that PC1 is directly correlated with hydropathy, i.e. having a hydrophobic amino acid at
this position is correlated with the motif being uncleaved. Looking at Table 1 we see that all positions
in the motif contribute significantly, in at least one biochemical property, to discriminating between
cleaved and uncleaved (e.g. has a loading >10%). Furthermore, every biochemical property contributes
significantly in at least one substrate position.
By adding the magnitudes of all the loadings at a given substrate position, we see that positions

three, four, five, and eight are the most important. This is consistent with the information content
per position seen in the sequence logos (Fig. 3) with the notable exception of position eight. The most
significant biochemical property for the motif classifier is hydropathy, for which the loadings of positions
1–4 are significantly positively correlated—consistent with the abundance of polar and charged amino
acids located upstream of the cleavage sites, seen in the positive motif plot in Fig. 3, far left. Ultimately,
the loadings for PC1 appear to capture and explain the cleavage signature present in the training data.

3.2. Stage 2: predicted sites after filtering for secondary structure

The second stage classifier identified 257 sites (of the 3991 passing the first stage) as having secondary
structure similar to the known cleavage sites in the dengue polyprotein. The right plot of Fig. 5 shows
the distribution of the three structure features as a function of position for both the 257 that passed
the second stage (“Passed”) and the 3734 that failed (“Failed”).
Unsurprisingly, the secondary structure was consistent between the “Passed” and “Failed” sites

in the region of the motif. Hence the second stage is not discriminating between the two groups based
on the structure of the motif sequence itself. Beyond the region of the motif, however, differences
in secondary structure between the two are evident. Additionally, for both groups the presence of
β-sheets was uniformly low (with the “Passed” sites being marginally lower than the “Failed” sites).
The “Failed” sites have uniformly low probability of α-helix (median probability ∼10%) and uniformly
high probability of random coil (median probability ∼75%) in the vicinity of the motif. This suggests
these sites may not be as proximal to transmembrane domains as were those of the dengue polyprotein.
Ultimately, as can be seen by comparing the two plots of Fig. 5, the group of sites that passed the second
stage clearly demonstrate local secondary structure similar to the dengue polyprotein training data.

3.3. Classification of the STING cleavage site

As only one human target is known, we examined our classifier on the human STING protein.5 The
known site, SRYRGSYW, is only weakly cleaved,5 and hence is considered a particularly difficult
case. In fact, the standard PWM approach to classifying motifs fails to identify this site as cleaved
(see Sup. Fig. 1 and 4). Unfortunately, our classifier’s first stage also indicated this site would not be
cleaved. Importantly, there exists two non-human primate variants at this site in STING (marmoset:
SRYQGSYW and chimp: SRYWGSYW), known to not be cleaved by the dengue protease.5 Our first
stage classifier correctly identifies these as negatives. For insight into these results, we plot the principal
components for these three sites and compare them to the training data (see Sup. Fig. 1). We observe
that the known cleaved site is indeed not supported by any positive training data points in its vicinity.
Additionally, the two negative motif variants are found to be closer to the center of the negative
training data (larger PC1) than the human STING motif (see Sup. Fig. 1), as indicated by the black
arrow. So while our training data fails to lead to a model that captures STING, the result suggests our
interpretation of PC1 as discriminating between cleaved and not cleaved is correct. Furthermore, it also
suggests our model represents a conservative estimate of the diversity in the proteases cleavage specificity.
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Fig. 6. Phylogeny of other flaviviruses with comparable protease—generated from the NS3 protein sequence.
Here we show the performance of the dengue-trained classifier when classifying known cleavage sites in other
flavivirus polyproteins. Stage 1 values represent the percentage of correctly classified motifs in each of the
other viruses. Stage 2 values represent the percentage of those sites that pass Stage 1 that also pass the
second stage—red 0−30%, orange 30−60%, green >60%.

3.4. Classification of other flaviviruses

An alternative way of validating our method is to see how it performs on other flaviviruses at various evo-
lutionary distance from dengue. The conservation of cleavage motifs would be expected to increase with
decreasing evolutionary distance. Thus, motifs from flaviviruses that are more closely related to dengue
would be predicted to be cleaved more often by the first stage than those of more distantly related viruses.

In this manner, we applied our classifier to other flaviviruses with a polyprotein encoding a protease
comparable to that of dengue. We found complete polyprotein sequences for six other flaviviruses.
Using the NS3 protein sequence from each, we generated a phylogenetic tree of all seven viruses (Fig.
6), which matches the relationship of the flavivirus family predicted using whole genome alignments.
Indeed, the percentage of cleavage motifs that are correctly classified by the dengue-trained first stage
is inversely correlated with evolutionary distance from dengue, consistent with our expectation.

Furthermore, since the secondary structure of the viral polyprotein is important for viral replication,
there should be less variability in this secondary structure between flaviviruses than would be present
in the primary sequence of the cleavage motifs. In other words, the secondary structure in the vicinity
of each cleavage motif should be mostly unchanged between flaviviruses, regardless of evolutionary
distance. Therefore, we would expect the second stage classifier to positively classify all sites that
pass the first stage, since the secondary structure of the other viruses would be comparable to that of
dengue. As Fig. 6 shows, the percentage of sites that pass the second stage of classification is roughly
equal to that of the first stage, for all six flaviviruses, consistent with our expectation.

4. Discussion

Flaviviruses manipulate the host cellular environment in several ways during infection.38 By creating
protective structures in the ER membrane, they evade recognition by immune sensing proteins in
the cytoplasm.39,40 By actively inhibiting host proteins, including by action of the viral protease,
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they hinder the immune system response.4,5 We have developed a method to predict new host-virus
interactions computationally; specifically, to predict targets of the dengue virus protease using a
two-step classifier trained on the motifs in the dengue polyprotein that are internally cleaved.

One of our explicit design goals was to leverage the known protease cleavage sites towards a better un-
derstanding of the underlying biochemical properties and local structure that results in protease cleavage.
Hence we utilized a biochemical encoding of the amino acids rather than a typical sequence-based ap-
proach and a second stage that captured site’s local structure. The first stage of our approach identified
hydropathy as the biochemical property that most influenced classifier performance, though all prop-
erties were influential in accurate classification. In the second stage, we found a preference for random
coiled regions at the site of cleavage. Additionally, the C terminus side of the motif appears more loosely
constrained than the N terminus side, possibly illuminating some structural preference of the protease.

Furthermore, we sought a method that was sensitive to the variation contained within a small training
dataset, as most viruses have only a limited set of known targets. For example, the one known human
target of the dengue protease, STING, is unlike any of the known dengue cleaved sites. We believe this
speaks to how the flexibility of the protease has evolved— it can still be active even when mutations arise
in the viral genome that change the motif sequence in a biochemically consistent way. If we include the
identified STING site into our training data, our classifier method recovers this site and others that are
sufficiently similar (data not shown). Importantly, in that scenario STING represents only 0.5% of the
training data set, and probabilistic methods do not alter the underlying probabilities in a manner that
meaningfully alters the predictions. In contrast, our SVM classifier is highly responsive to individual new
instances within the training data. Here we relied on the known dengue cleavage sites in order to generate
a conservative estimate of what the protease could target in order to identify high confidence candidates
(257 total) for subsequent experimental testing. Moving forward, as additional sites are validated as
being cleaved, they can be included in the training data and our prediction list can be easily refined.

Our method has a number of limitations. First, secondary structure, though informative, provides an
incomplete picture of accessibility—full protein structure is needed to fully determine site accessibility.
Second, our method does not account for the likelihood of co-localization of any target protein and
the protease in the cell. Third, the scope of our predictions is limited by the small training data set.
Finally, our predictions are not informative about cleavage efficiency.
As a means of computational validation, we tested whether cleaved motifs from other flaviviruses

(known positives, cleaved by each virus’s own protease) were correctly classified using the dengue training
data. We found that the accuracy of the motif classifier decreases with evolutionary distance, e.g. motifs
from flaviviruses that are more closely related to dengue are predicted to be cleaved more often than
those that are more distantly related. This result is consistent with the specificity of the protease evolving
as the viruses diverge. However, it is possible the dengue protease is able to cleave the critical positions
of the other viruses, despite not being represented in the dengue virus training data. Experimentally
testing whether yellow fever virus motifs (or motifs from any other flaviviruses diverged from dengue) are
cleaved by the dengue virus protease would tease apart these two scenarios and refine our training data.

At present, the number of sequences available for other flavivirus polyproteins is too small to build
models for each virus. However, as the catalogue of flavivirus genome sequences continues to expand,
our method could be applied more broadly. This method may one day be able to predict the targets of
other flaviviruses such as Zika, in a similar manner. Predicting host-virus interactions in flaviviruses may
have major implications for future drug discovery or treatment options. Ultimately, though we have only
considered this computational method in the context of viral protease targets, in principle, this method
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can be applied to any protein-protein targeting application in which the biochemistry of the targeted site
and the surrounding secondary structure play a role in the success of the protein-protein interaction.
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