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Non-alcoholic fatty liver disease (NAFLD) is a complex heterogeneous disease which affects
more than 20% of the population worldwide. Some subtypes of NAFLD have been clinically
identified using hypothesis-driven methods. In this study, we used data mining techniques
to search for subtypes in an unbiased fashion. Using electronic signatures of the disease, we
identified a cohort of 13,290 patients with NAFLD from a hospital database. We gathered
clinical data from multiple sources and applied unsupervised clustering to identify five
subtypes among this cohort. Descriptive statistics and survival analysis showed that the
subtypes were clinically distinct and were associated with different rates of death, cirrhosis,
hepatocellular carcinoma, chronic kidney disease, cardiovascular disease, and myocardial
infarction. Novel disease subtypes identified in this manner could be used to risk-stratify
patients and guide management.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is estimated to affect 25% of the global population.1

NAFLD is a chronic liver disease associated with the metabolic syndrome that can progress
to cirrhosis and hepatocellular carcinoma (HCC). In the United States, NAFLD-related liver
failure has become the second most common indication for liver transplants, after chronic
hepatitis C.2,3 This trend is expected to continue, with NAFLD prevalence rising to 33.5% of
the adult US population by 2030, and driving increases in both cirrhosis and HCC.4

NAFLD is a heterogeneous disease which has been associated with a variety of adverse
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outcomes. Besides cirrhosis and HCC, NAFLD has also been associated with cardiovascular
disease (CVD)5,6 and chronic kidney disease (CKD).7 In some cohorts, CVD is the leading
cause of death among NAFLD patients, followed by malignancy and liver-related mortality.8–10

Some NAFLD subtypes and prognostic factors have been identified. Patients with both
steatosis and inflammation (i.e. nonalcoholic steatohepatitis, NASH) have worse outcomes
than those with bland steatosis.11,12 Similarly, patients with NAFLD-associated cirrhosis have
worse outcomes than those who do not.8 Interestingly, although cirrhosis strongly predicts
HCC, some NAFLD patients develop HCC in the absence of cirrhosis.13 Hispanic populations
tend to have higher rates of NAFLD;14 a variant in PNPLA3 associated with hepatic steatosis
and NASH has been identified and is more common among Hispanic individuals.15

Given the clinical variability among NAFLD patients, we hypothesized that there may be
clinically relevant patient subtypes which could be identified using unbiased machine learning
algorithms. The identification of such subtypes could enable more precise prognostication and
management for NAFLD patients.

2. Methods

2.1. NAFLD definition

In order to define NAFLD, we developed an algorithm based on two published electronic
medical record (EMR)-based algorithms.16,17 First, we identified patients with liver disease
based on persistent ALT elevation or ICD codes for chronic non-specific or non-alcoholic liver
disease (ICD-9: 571.5, 571.8, 571.9; ICD-10: K75.81, K76.0, K76.9). Persistent ALT elevation
was defined as two or more instances of ALT ≥ 40 IU/mL for men, or ≥ 31 IU/mL for women
in the ambulatory setting, more than 6 months apart. Then, we excluded patients with viral
hepatitis, alcoholic liver disease, or other chronic liver disease. These conditions were identified
via ICD codes, as enumerated in the eMerge algorithm. Viral hepatitis cases were also identified
using lab values (HBV surface antigen, HCV RNA). Next, we excluded patients on steatogenic
medications (defined in eMerge). Finally, patients must have had evidence of hepatic steatosis
on imaging, biopsy, or documented in a clinical note. These instances were identified using
natural language processing (NLP) to identify mentions of hepatic steatosis and related terms.

2.2. Natural language processing

The eMerge algorithm requires mention of hepatic steatosis in a free-form text document
(imagery or biopsy result, or clinical note). We developed a tool to get this information from
the database, using the following steps:

• build a list of synonyms for the term of interest, e.g. steatohepatitis, fatty liver
• query the SQL database for documents containing any of these terms
• parse the documents to remove negative results (e.g. absence of steatohepatitis), occurrences

in family and other false positive patterns

This process was adapted to look for mentions of deceased patients (see Section 2.4), to find
patients with cirrhosis (see Section 2.6), and to gather MELD scores (see Table 1).
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2.3. Data collection

The cohort for this study was created using the criteria defined in Section 2.1. These EMR
data were obtained from the database of a large metropolitan hospital in New York City. We
choose to only consider patients who met the criteria for NAFLD after December 31, 2012, up
to January 31, 2019. We called NAFLD diagnosis date the earliest such date for each patient.

13,290 patients matching these criteria were found in the database. In the rest of this
section, we describe, for different types of information, the data collection and pre-processing
steps that were taken. In order to build a dataset usable by machine learning algorithms, we
transformed the information contained in the database into binary features. When possible,
we reduced the number of resulting features. Feature selection has been shown to improve
the quality of results in machine learning applications.18 This process is usually done using
statistics- or heuristics-based algorithms. However, in the case of practical applications, we
can use domain knowledge instead. We took advantage of established knowledge to reduce the
number of features by mapping to higher-level concepts, or discarding infrequent features.

2.4. Clinical feature standardization and quality control

2.4.1. Demographic data

• Age: ten mutually exclusive binary attributes corresponding to the following age groups:
[18-20],[21-30],[31-40],[41-50],[51-60],[61-70],[71-80],[81-90],[91-100],[101 and more].

• Race: Asian, Black, Indian/Native, Pacific Islander, White, Hispanic, Other, Unknown
• Ethnicity: Hispanic or not
• Deceased: obtained through patient records and parsing clinical notes for mentions of death

2.4.2. Diagnoses, procedures, medications

A large proportion of clinical data overall can be described through standardized coding
systems: diagnoses, procedures, medications. We applied the following preprocessing steps:

• Diagnoses used the International Classification of Diseases, versions 9 and 10 (ICD-9 and
ICD-10) systems. These systems contain a tens of thousands of different codes, often de-
scribing the same disease with minor variations. In order to reduce the number of features,
we used the phecode system from the Phenome Wide Association Studies (PheWAS).19 We
kept only phecodes with at least 0.1% prevalence, which left 148 features for ICD codes.

• Procedures used the Current Procedural Terminology (CPT) coding system. We mapped the
CPT codes to their respective second-level group code. For example, the group containing
all CPT codes from 33010 to 37799 describes surgeries of the cardiovascular system. This
process grouped the codes into 115 categories that translated directly into features.

• Medication prescriptions or administrations. We mapped the medication names to the cor-
responding RxNorm drug concepts, and again kept those that occurred in at least 0.1% of
the cohort. We only considered drugs which had at least two prescriptions separated by 6
months or more, in order to discard drugs only used acutely (e.g. post-surgery) which do not
reflect a patient’s regular medications. Using this process, we obtained 293 clinical drugs.
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2.4.3. Laboratory tests

As opposed to the previous data types, which were well-formatted and standardized, labo-
ratory tests could be either qualitative or quantitative, and were often reported in free-text
form. For qualitative tests, we parsed the result and searched for terms that indicated if it was
abnormal, such as abnormal, low, below average, reactive. For quantitative tests, we searched
the results for numeric values that fell outside the normal range.

We obtained 533 distinct laboratory tests, which translated to as many binary features.
For example, feature platelets means abnormal result for platelets test. A shortcoming of this
approach is that abnormally low and high values are grouped in the same feature, even though
they have different medical significance. However, since one laboratory test can use different
units, and thus different normal ranges (e.g. normal and log scales), automatically assigning
a value to low or high is not always reliably doable.

2.4.4. Vital signs

Similar to laboratory tests, we searched for abnormal values for the standard vital signs
collected in clinical settings, using the following criteria:

• body temperature: > 39◦C (Celsius) or 102◦F (Fahrenheit).
• blood pressure: systolic/diastolic blood pressure (SBP/DBP) > 130/80
• heart rate: > 130 bpm.
• respiratory rate: > 40 bpm.
• pain: values of 9 or 10 on a [1-10] pain scale.

2.5. Patient pairwise distance and clustering

In order to identify different subtypes, we computed the patient distance matrix and applied
an algorithm of unsupervised clustering to the data obtained. Unsupervised clustering is well-
suited for exploratory tasks in applied research.20 First, validation of the results obtained using
expert knowledge is possible. In the present study, the findings were reviewed and interpreted
by medical experts. Second, the “unsupervised” aspect allows discovery of new, potentially
unexpected insight from the analysis of a large number of features.

Many clustering algorithms have been developed. Finding the “best one” remains an open
problem,21 since unsupervised learning tasks lack objective measures to assess their perfor-
mance. Several measures have been proposed to evaluate the quality of a set of clusters,22 but
the general guideline is that the best algorithm and parameters are different for each data set.

We chose a hierarchical clustering algorithm using the Manhattan distance for pairwise
similarity of patients, and minimizing the increase in variance during cluster merging as link-
age criterion (also known as Ward’s criterion). Hierarchical clustering is a standard algorithm,
and it has been used previously in a study looking for comorbidity clusters in autism disor-
ders.23 We used the R hclust implementation of this algorithm, with ward.D2 as parameter
for agglomeration criterion.24 We chose to have 5 subtypes (clusters) as a balance between
granularity and size. These parameters were chosen empirically, after qualitative validation of
the results obtained with various combinations.
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2.6. Statistical analysis

2.6.1. Descriptive statistics

Categorical features were summarized as proportions and compared using the chi-squared
test. Continuous features were summarized as means ± standard deviation and compared
using ANOVA, or as medians and interquartile ranges compared using the Wilcoxon rank-
sum test. Comparisons for each subtype were made against patients in all remaining subtypes.
Significance was defined as a false discovery rate <0.001.

2.6.2. Survival analysis

The primary outcome was overall survival. Secondary outcomes were HCC, cirrhosis, CKD,
CVD, and acute myocardial infarction (MI). In all cases survival was defined as the time from
NAFLD diagnosis to the earliest evidence of the outcome. HCC cases were first identified
using ICD codes (ICD-9 155.0,155.2; ICD-10 C22.0,C22.7-C22.9), then confirmed through
chart review. Cirrhosis was defined using natural language processing looking for mentions
of cirrhosis in clinical notes, imaging reports or biopsy reports. Chronic kidney disease was
defined using corresponding ICD codes (ICD-9 585-586; ICD-10 N18-N19) and CPT codes for
dialysis (90935 to 90999). Cardiovascular disease was defined using ICD codes for any ischemic
heart disease (ICD-9 410-414; ICD-10 I20-I25). Acute MI was a subset of the CVD outcome
(ICD-9 410; ICD-10 I21-I22).

The primary predictor in survival analyses was subtype. Secondary predictors included
age, gender, race and FIB-4 category. Race and ethnicity were combined for the purposes of
this analysis, with Hispanic ethnicity given precedence and mapped to the Hispanic race cat-
egory. The primary outcome was overall survival. Secondary outcomes were onset of cirrhosis,
HCC, CVD, MI, and CKD. All survival analyses were done in R 3.6.0. For the outcome of
overall survival, Kaplan-Meier curves were created using the ggplot2 25 and survminer 26 pack-
ages; univariate and multivariate Cox proportional hazards models were constructed using the
survival package.27 For non-death outcomes, only incident cases were included in the analysis.
Cases diagnosed prior to or within 6 months of NAFLD diagnosis were treated as prevalent.
Death was treated as competing hazard. The cumulative incidence function was calculated for
each outcome using the cmprsk package28 and plotted using ggplot2. The cmprsk package was
also used to fit univariate and multivariate Fine-Gray proportional subdistribution hazards
regression models for the non-death outcomes.

This study was reviewed and approved by the Mount Sinai Hospital institutional review
board (GCO 10-0032 and 16-1437).

3. Results

3.1. Descriptive statistics for the cohort

Merging the data from the different sources described above, we obtained a data set containing
13,290 patients with NAFLD, described by 1,145 binary features (Table 1). The mean age at
NAFLD diagnosis is 53 ± 14.7 (median = 53.9), with 50.6% female patients. The cohort
was racially and ethnically diverse: 41.4% Caucasian, 17% Hispanic ethnicity, 9.6% African
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American, 5.9% Asian, and 27.3% unknown/other. Metabolic comorbidities such as obesity
(53.8%), diabetes (32.9%), and hypertension (53.5%) were common. Median length of follow
up was 1.6 years (IQR 0.6-2.9).

Table 1. Baseline characteristics, selected features of interest, and outcomes by subtype

Subtype 1 Subtype 2 Subtype 3 Subtype 4 Subtype 5 Total

N 8665 548 2857 851 369 13290

At baseline

Female (%) 53.1? 58.2 50.1 41.1† 58 52.1
Age 52.3 ± 14.3 54.0 ± 16.5 51.4 ± 14.4† 61.5 ± 12.7? 59.2 ± 15.6? 53.1 ± 14.6
Hispanic ethnicity (%) 21.1? 38.5? 0.8† 12.5† 26? 17
Caucasian (%) 39.2† 28.1† 46.5? 54.6? 43.1 41.4
African American (%) 10.4? 14.8? 6.4† 6† 15.4? 9.6
Asian (%) 5.6 4.7 7.2 7.2 3.3 5.9
Other/Unknown (%) 25.1 14.6 39.6 20.4 13.8 27.3
MELD 9.3 ± 3.5† 18.7 ± 6.5 8.4 ± 3.7† 12.9 ± 6.5 22.4 ± 8.7 15.2 ± 8.6
FIB-4<1.3 (%) 65.9? 53.7 69.5? 11.6† 25.6† 58.6
FIB-4 ∈ [1.3,3.25] (%) 30.6 33.5 26.3? 32.6 33 30.6
FIB-4>3.25 (%) 3.4† 12.7 4.2† 55.8? 41.5? 10.8

At any time

Obesity (%) 56.2? 54.4 50.1† 46.2† 43.4† 53.8
Diabetes (%) 31.8† 48.2? 27.2† 45.7? 48? 32.9
Hypertension (%) 55.9? 70.4? 39† 62.9? 63.7? 53.5
Elevated ALT (%) 45.7? 57.7? 13.7† 37.4 52.8? 39
Low platelets (%) 9.8† 30.1? 3.6† 78.1? 79.1? 15.6
Elevated bilirubin (%) 11.6† 49.3? 6.6† 57.5? 85.6? 17
Elevated INR (%) 5.7† 26.6? 1.1† 46.7? 86.2? 10.5
Low albumin (%) 5.6† 32.8? 1.1† 41.6? 92.1? 10.4
No. of admissions 3.7 ± 6.2† 7.2 ± 9.2? 2.1 ± 3.1† 4.7 ± 7.1 9.2 ± 11.1? 4.3 ± 7.0
No. of prescriptions 48.3 ± 220.3 101.2 ± 128.0? 16.3 ± 22.8† 47.0 ± 130.4 282.1 ± 427.0? 55.1 ± 214.6
Years follow-up (IQR) 1.7 (0.7-3.0)? 1.9 (0.8-3.2)? 0.9 (0.3-2.3)† 1.5 (0.6-3.0) 1.4 (0.4-2.8) 1.6 (0.6-2.9)

Outcomes∗∗

Cirrhosis (%) 0.3† 2 0.3† 17.2? 9.8? 1.7
HCC (%) 0.2† 1.3 0.2† 16.3? 6.8? 1.4
CVD (%) 13.5 29.6? 5.8† 27? 33.9? 14
MI (%) 1.7† 7.1? 0.6† 6.5? 9.8? 2.2
CKD (%) 5.9 16.8? 2.9† 6.1 23.3? 6.2
Deceased (%) 0.3† 1.8 0.1† 5.1? 35.8? 1.6

? (in red): significantly higher compared to the rest of the cohort (p < 0.001)
† (in blue): significantly lower compared to the rest of the cohort (p < 0.001)
∗∗: outcomes include both prevalent and incident cases
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3.2. Identification of NAFLD subtypes

The two largest subtypes (1 and 3) encompassed 87% of patients, while the remaining patients
are divided among 3 smaller subtypes (Table 2). All findings reported below were for the
comparison of subtype members versus all other patients, and were significant after correction
for multiple hypothesis testing at a level of p<0.001. Values reported in Table 2 are not
repeated, and values associated with medications are omitted for concision.

Patients in subtype 1 were more likely to be female and either Hispanic or African Amer-
ican. Obesity, hypertension, and hyperlipidemia (30.05 vs 24.8%) were more common among
subtype 1 patients, while diabetes was less common. Subtype 1 patients had low MELD and
FIB-4 scores at NAFLD diagnosis. Other diagnoses more common in subtype 1 patients in-
cluded: vitamin D deficiency (14.2% vs 9.2%), asthma (11.4 vs 7.5%), gastroesophageal reflux
(18.7% vs 12.7%). Medications that were more common in this subtype included: omeprazole,
metformin, atorvastatin, and fluticasone. Overall, subtype 1 patients had metabolic comor-
bidities, with some evidence of liver inflammation, but minimal liver fibrosis.

Patients in subtype 2 were more likely to be Hispanic or African American. They did
not have significantly higher MELD or FIB-4 scores at baseline, but they were more likely
than other patients to have labs suggestive of liver inflammation and dysfunction, such as
elevated ALT, low platelets, elevated bilirubin, elevated INR and low albumin. Notable co-
morbidities included: diabetes, hypertension, hyperlipidemia (37.2% vs 27.8%), obstructive
sleep apnea (11.9% vs 6.0%), gastroesophageal reflux (27.2% vs 16.1%), tobacco use (19.5%
vs 4.8%), asthma (22.1 vs 9.5%), anxiety (13.0% vs 5.6%), depression (17.0% vs 6.8%), urinary
tract infection (11.5% vs 3.9%), and respiratory infection (10.6% vs 3.6%). Medications more
commonly prescribed in this subtype included cardiac medications such as aspirin, lisinopril,
amlodipine, metoprolol, and atorvastatin; diabetes medications such as metformin and insulin;
pain medications such as acetaminophen, gabapentin, oxycodone, and morphine; respiratory
medications such as albuterol and fluticasone; antacid medications such as omeprazole and
famotidine, and also vitamin D. Subtype 2 patients were also more likely to have had digestive
surgery (40.1% vs. 16.8%). Overall, subtype 2 patients had metabolic syndrome with signs of
developing liver dysfunction and were high healthcare utilizers.

Patients in subtype 3 tended to be younger, Caucasian and had the fewest inpatient
admissions and the fewest prescriptions on average. Subtype 3 patients had fewer comorbidities
than other patients, and were unlikely to have abnormal lab values associated with liver
dysfunction. Subtype 3 patients were relatively healthy compared to the rest of the cohort.

Patients in subtype 4 were more likely to be older, male and Caucasian. They had high
FIB-4 scores at baseline and were likely to have abnormal labs suggesting liver synthetic
dysfunction. These patients were less likely to be obese or to have hyperlipidemia (20.8% vs
28.7%), though diabetes and hypertension were common. Overall, subtype 4 patients likely
had liver fibrosis at baseline and had labs suggesting progression to cirrhosis.

Patients in subtype 5 were more likely to be older, and Hispanic or African American. They
had high FIB-4 and MELD scores at baseline, and had high rates of abnormal lab values con-
sistent with liver inflammation and dysfunction. Obesity was less common in this group, but
diabetes and hypertension were prevalent. Other comorbidities included: malignancy (15.2%
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vs 2.0%), atrial fibrillation (11.4% vs 1.6%), tobacco use (28.7% vs 4.7%), depression (17.1%
vs 6.9%), urinary tract infection (16.8% vs 3.8%), pneumonia (10.3% vs 1.9%), and sepsis
(25.2% vs 0.3%). Commonly prescribed medications included: cardiac medications such as
aspirin, metoprolol, and furosemide; pain medications such as acetaminophen, oxycodone,
hydromorphone, fentanyl, and morphine; antacid medications such as pantoprazole and famo-
tidine; and insulin. Subtype 5 patients were also more likely to have had cardiovascular (31.4%
vs 7.4%), respiratory (16.5% vs 4.6%) or digestive surgery (50.0% vs 16.9%). Overall, sub-
type 5 patients had significant liver disease at baseline, had significant cardiac, infectious and
neoplastic comorbidities, and were high healthcare utilizers.

3.3. Identification of distinct outcomes by NAFLD subtype

Univariate analyses showed that risk of outcomes varied by subtype membership (Figures 1
and 2). Subtype 1 was chosen as the reference group since it was the largest. Compared to
subtype 1, subtype 5 was significantly and strongly associated with an increased risk of all
outcomes; risk of death was particularly high (HR 139; 95% CI 86-226, p<0.001). Subtype 4
was strongly associated with both cirrhosis (HR 42; 95% CI 12-154, p<0.001) and HCC (HR
91; 95% CI 27-302, p<0.001). Subtype 2 was associated with MI (HR 6.6; 95% CI 3.3-13.3,
p<0.001) and CKD (HR 3.4; 95% CI 2.3-5.1, p<0.001). Subtype 3 was associated with a lower
risk of CVD (HR 0.19; 95% CI 0.10-0.37, p<0.001), and CKD (HR 0.51; 95% CI 0.31-0.86,
p=0.01). There were no incident cirrhosis or HCC events in group 3.

In multivariate analyses accounting for age, gender, race and baseline FIB-4, subtype
membership remained an independent predictor of outcomes (Figure 3). With subtype 1 as
the reference, Subtype 5 was independently associated with the highest risks for death (HR
46.7; 95% CI 33.3-65.3, p<0.001), CKD (HR 4.3; 95% CI 2.7-6.7, p<0.001), CVD (HR 2.2;
95% CI 1.1-4.1, p=0.02 ), MI (HR 5.9; 95% CI 2.3-15.0, p<0.001) and cirrhosis (HR 36.2; 95%
CI 5.8-224.4, p<0.001) among all subtypes, while subtype 4 was independently associated
with a high risk for cirrhosis (HR 14.0; 95% CI 1.9-105.6, p=0.01) and the highest risk for
HCC (HR 28.0; 95% CI 4.8-164.8, p<0.001). Subtype 2 was also independently associated with
an elevated risk of death (HR3.7; 95% CI 2.4-5.6, p<0.001), MI (HR 4.7; 95% CI 1.8-12.1,
p<0.001) and CKD (HR 2.5; 95% CI 1.6-3.7, p<0.001). Subtype 2 was the only other subtype
aside from subtype 5 to be independently associated with MI and CKD.

3.4. Internal cross-validation of the subtypes discovered

Formal validation of the results is inherently complicated for unsupervised clustering, where
no “true label” exist for any patient. In order to assess the robustness of our results, we have
performed internal cross-validation on our dataset, as we have no access to EMR in other
medical centers. We have randomly selected 90% of samples, run the clustering process on
this new training set, and repeated the process 10 times. We have identified similar enriched
clinical features and disease comorbidities in the subtypes that we have discovered previously.
We reported the full results in the supplementary table 1 hosted at https://github.com/

mv50/psb20_mat.
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Fig. 1. Survival and hazard curves for outcomes of interest, 5 by subtypes. (A) Overall survival,
(B) Chronic kidney disease, (C) Cirrhosis, (D) Hepatocellular carcinoma, (E) Cardiovascular disease,
(F) Myocardial infarction.

4. Conclusion

In this study, we combined two existing signatures of NAFLD and used them to gather a
cohort of 13,290 patients with confirmed NAFLD. We used unsupervised clustering to identify
five subtypes of patients. These subtypes had different clinical characteristics and different
outcomes: the two larger groups had fewer comorbidities and more positive outcomes, while
a minority of the cohort (in the three smaller subtypes) had more serious comorbidities and
worse outcomes. To our knowledge, this study is the first to use an artificial intelligence
approach to delineate clinically relevant subtypes of NAFLD.
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Fig. 2. Univariate hazard ratios for outcomes of interest, by 5 subtypes

Fig. 3. Multivariate analyses for outcomes of interest. Darker shades of red correlate with increased
risk of the outcome, while darker shades of green indicate reduced risk of the outcome. Only hazard
ratios with p<0.05 are color coded. Non-significant findings are in grey.

Our findings are consistent with prior studies reporting higher rates of NAFLD among
Hispanic patients.14 In addition, the subtypes reveal that Hispanic patients with NAFLD
are on a continuum of risk, with some exhibiting the metabolic syndrome but having good
outcomes (subtype 1), others experiencing predominantly non-liver adverse outcomes (subtype
2) and some with severe liver disease and at risk for multiple adverse outcomes (subtype 5).

Our study of heterogeneity among NAFLD patients was strengthened by the diverse pa-
tient population within Mount Sinai’s catchment area and the comprehensive use of EMR
records. We gathered data from various sources to build the features: vital signs, diagnoses,
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procedures, prescriptions, laboratory results, radiology and pathology reports. Our approach
is generalizable and could be applied by local or regional healthcare systems to define disease
subtypes within their own patient populations. Such efforts could help guide resource alloca-
tion at the local level, in contrast to national or international guidelines which may not be
relevant to all localities and patient populations.

The limitations of our study are common to EMR-based projects. ICD codes are prone to
miscoding and may not accurately represent a patient’s medical condition. We used phecodes
to map ICD codes to higher-level disease concepts in order to improve power and simplify
instances where there are multiple related ICD codes. The pre-processing and cleaning of the
data remains open to improvements. Additionally, more systematic incorporation of data from
unstructured clinical notes could bring valuable new information.

In conclusion, we defined an EMR-based algorithm for identifying NAFLD patients and
showed that unsupervised clustering can be used to identify clinically relevant disease subtypes
with distinct patterns of adverse outcomes. If prospectively validated, these disease subtypes
could help guide patient management and screening initiatives.

5. References

References

1. Z. M. Younossi, A. B. Koenig, D. Abdelatif, Y. Fazel, L. Henry and M. Wymer, Global epidemi-
ology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and
outcomes, Hepatology 64, 73 (2016).

2. D. Goldberg, I. C. Ditah, K. Saeian, M. Lalehzari, A. Aronsohn, E. C. Gorospe and M. Charl-
ton, Changes in the prevalence of hepatitis c virus infection, nonalcoholic steatohepatitis, and
alcoholic liver disease among patients with cirrhosis or liver failure on the waitlist for liver trans-
plantation, Gastroenterology 152, 1090 (2017).

3. R. J. Wong, M. Aguilar, R. Cheung, R. B. Perumpail, S. A. Harrison, Z. M. Younossi and
A. Ahmed, Nonalcoholic steatohepatitis is the second leading etiology of liver disease among
adults awaiting liver transplantation in the united states, Gastroenterology 148, 547 (2015).

4. C. Estes, H. Razavi, R. Loomba, Z. Younossi and A. J. Sanyal, Modeling the epidemic of nonal-
coholic fatty liver disease demonstrates an exponential increase in burden of disease, Hepatology
67, 123 (2018).

5. N. Motamed, B. Rabiee, H. Poustchi, B. Dehestani, G. R. Hemasi, M. R. Khonsari, M. Maadi,
F. S. Saeedian and F. Zamani, Non-alcoholic fatty liver disease (nafld) and 10-year risk of car-
diovascular diseases, Clinics and research in hepatology and gastroenterology 41, 31 (2017).

6. S. Wu, F. Wu, Y. Ding, J. Hou, J. Bi and Z. Zhang, Association of non-alcoholic fatty liver dis-
ease with major adverse cardiovascular events: a systematic review and meta-analysis, Scientific
reports 6, p. 33386 (2016).

7. G. Musso, R. Gambino, J. H. Tabibian, M. Ekstedt, S. Kechagias, M. Hamaguchi, R. Hultcrantz,
H. Hagström, S. K. Yoon, P. Charatcharoenwitthaya et al., Association of non-alcoholic fatty
liver disease with chronic kidney disease: a systematic review and meta-analysis, PLoS medicine
11, p. e1001680 (2014).

8. L. A. Adams, J. F. Lymp, J. S. Sauver, S. O. Sanderson, K. D. Lindor, A. Feldstein and P. An-
gulo, The natural history of nonalcoholic fatty liver disease: a population-based cohort study,
Gastroenterology 129, 113 (2005).

9. S. Dam-Larsen, U. Becker, M.-B. Franzmann, K. Larsen, P. Christoffersen and F. Bendtsen,

Pacific Symposium on Biocomputing 25:91-102(2020)

101



Final results of a long-term, clinical follow-up in fatty liver patients, Scandinavian journal of
gastroenterology 44, 1236 (2009).
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