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Modern genomic studies are rapidly growing in scale, and the analytical approaches used to analyze 
genomic data are increasing in complexity. Genomic data management poses logistic and 
computational challenges, and analyses are increasingly reliant on genomic annotation resources that 
create their own data management and versioning issues. As a result, genomic datasets are 
increasingly handled in ways that limit the rigor and reproducibility of many analyses. In this work, 
we examine the use of the Spark infrastructure for the management, access, and analysis of genomic 
data in comparison to traditional genomic workflows on typical cluster environments. We validate 
the framework by reproducing previously published results from the Alzheimer’s Disease 
Sequencing Project. Using the framework and analyses designed using Jupyter notebooks, Spark 
provides improved workflows, reduces user-driven data partitioning, and enhances the portability 
and reproducibility of distributed analyses required for large-scale genomic studies.  

Keywords: Big Data; Spark; Whole-genome Sequence; Rare-variants. 

Pacific Symposium on Biocomputing 25:523-534(2020)

523



 

 

 

1.  Introduction 

1.1.  The Rapid Scale-up of Genomic Data 

The scale of modern genomic studies has shifted from the early days of genome-wide association 
studies with 500,000 to 1 million genetic variants on a few thousand people (IMSGC, 2007) to 
imputed studies capturing tens of millions of variants (Lambert et al., 2013), to whole-genome 
sequencing studies that routinely capture in excess of 100 million genetic variants on several 
thousand people (C Yuen et al., 2017). While many Genome-Wide Association Study (GWAS) style 
analyses of this data are conceptually straightforward (Bush & Moore, 2012), the practical 
implementation of quality control procedures and basic regression analyses often increase in 
complexity with this scale of data due to computing requirements. For example, custom scripts are 
often needed to partition data across multiple nodes of a computing cluster, and the 
creation/destruction of many temporary files is often necessary which increases the analysis 
workload and the number of points of manipulation of the data. These practical details of data 
handling and processing are often omitted from methods sections of genomics publications, but this 
general problem is often addressed in descriptions of data workflows. Verma et al. nicely outline 
multi-step, parallelized imputation and quality control (QC) workflows used within the eMERGE 
network (Verma et al., 2014), and Reed et al. specifically outline the need for parallel processing 
and distributed algorithms for basic GWAS processing within an R framework (Reed et al., 2015). 
The practical issues of data partitioning and manipulation often slow the pace of analyses, 
complicate the code needed to complete analyses, and increase the likelihood of data handling 
errors, thus reducing the rigor and reproducibility of many modern genomic analyses. 

1.2.  Increasing Dependencies on External Information 

GWAS-style analyses are typically performed on the variant level, examining the independent effect 
of each non-reference allele in the dataset. Genomic sequencing studies, however, are designed to 
test the ‘rare variant hypothesis’ – that a series of low frequency, dominantly and independently 
acting variants across the genome each confer a moderate but readily detectable increase in disease 
risk (Bodmer & Bonilla, 2008; Schork, Murray, Frazer, & Topol, 2009). Because they have low 
frequency, there is limited power to see frequency differences between cases and controls in a 
population-based study. In fact, studies to date suggest that one-third of variants identified will be 
singletons (occurring in only one person) and doubletons (occurring in two people) (Bush et al., 
2016; Butkiewicz, Blue, et al., 2017).  

To address the issue of statistical power, rare-variants are often grouped into ‘functional’ units 
to generate a test statistic. These tests often rely on external data sources to define units of analysis 
(Lee, Abecasis, Boehnke, & Lin, 2014); for example, burden and collapsing tests group low-
frequency variants together typically to perform a gene-based test. Gene databases -- even the 
concept of a gene -- have changed substantially over the last 20 years (Gerstein et al., 2007), and 
the choice of gene and transcript definitions have an impact on gene-based tests (McCarthy et al., 
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2014). Similarly, criteria for defining “loss of function” variants (Butkiewicz, Haines, & Bush, 
2017; MacArthur et al., 2012), and methods for assessing and quantifying variant impact can vary 
(Kircher et al., 2014). These new biology-driven analyses create dependencies on external 
information (e.g. transcript reference, annotation database versions, scoring approaches, etc). The 
ability to manage, store, and provide version control for these external resource dependencies has 
now become critical to reproduce published genomic analyses.  

1.3.  Limitations of Replication Analyses make Rigor and Reproducibility Critical 

The reproducibility of associations from GWAS has relied on strict control of type I error rates and 
replication of initial findings in an independent dataset. Rare variant studies have adopted similar 
corrections for multiple hypothesis testing (often for the number of genes used in a burden test), but 
replication of rare variant associations using gene-based approaches is not as straightforward (Auer 
& Lettre, 2015; Liu & Leal, 2010). Due to their rarity, alleles present in the discovery samples may 
not exist in the replication samples and vice-versa. While under some disease models, this fact 
improves the ability to replicate a gene-level association (Liu & Leal, 2010), it also points out the 
need for consistency of analyses across multiple genomic datasets. Given that some rare alleles will 
be population-specific, as in the discovery of an LDLR variant unique to Sardinians (Sanna et al., 
2011), and the potential to identify globally unique alleles in association with disease, investigators 
can no longer rely on strict replication criteria to judge the reproducibility of genomic findings.   

Due to the potential increases in data handling and manipulation required for genomic studies 
of scale, increases in data management for information beyond the primary dataset, and the limited 
ability to replicate certain findings, having a computational framework for managing analyses on 
this scale is more critical than ever before. While many new statistical approaches for the analysis 
of rare-variant datasets have been developed, little effort has been made to address issues of data 
scaling and management for sequence-based studies. In this paper, we describe an evaluation of the 
Apache Spark framework for supporting scalable, reproducible analyses of rare variant datasets.  To 
our knowledge, this is the first application of Spark that allows the use of R and Python-based 
functions for genome-wide unit-based testing.  

2.  Datasets and Methods 

2.1.  Study Samples, Variants, and Data Scaling 

Workflows developed in this paper are motivated by analyses of data generated by the Alzheimer’s 
disease Sequencing Project (ADSP). For the Discovery Phase of this project, details of the study 
design (Beecham et al., 2017) and genotype quality control (Naj et al., 2018) have been previously 
described. From whole-genome sequencing of 578 individuals from 111 densely affected late-onset 
Alzheimer’s Disease families, a dataset containing 27,896,774 distinct variants was generated 
(Butkiewicz, Blue, et al., 2017). Expanding this dataset from 578 to 1005 individuals increased the 
variant count to 53,041,134, and a further expansion to 4795 individuals increases the variant count 
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again to 123,739,190 – an increase of approximately 21,000 variants per sample added. With 
additional multi-ethnic samples being sequenced as part of the ADSP Follow-up Study, we 
anticipate dataset sizes approaching 500 million variants from approximately 20,000 whole-genome 
sequences. For our evaluations, we accessed the ADSP Discovery Whole-Exome Sequencing 
dataset consisting of 5,740 late-onset Alzheimer’s disease cases, and 5,096 cognitively normal 
controls with calls for 1,586,703 variants.  

2.2.  Variant Annotation Resources 

Variants identified by the ADSP are annotated using a custom annotation pipeline (Butkiewicz, 
Blue, et al., 2017), which is a modification of the Ensembl Variant Effect Predictor (VEP) 
(Yourshaw, Taylor, Rao, Martín, & Nelson, 2015). Information about variant frequency (Glusman, 
Caballero, Mauldin, Hood, & Roach, 2011) and scores predicting variant functional impact (Kircher 
et al., 2014; Maurano et al., 2015; Xiong et al., 2015) are also annotated. For gene-based tests, 
annotations are critical for assigning variants to genes, and for providing classifications of variant 
impact (i.e. high, moderate, low, or modifier). As variant annotations are relative to specific 
transcripts rather than genes, we collapse multiple transcript-specific variant annotations to a most 
damaging consequence on a gene level. While this practice is the most canonical approach, we have 
previously shown that approximately 25% of gene unit tests would be influenced by using variant 
annotations relative to transcripts expressed in disease-relevant tissues (Butkiewicz, Blue, et al., 
2017). With the expansion from whole-exome to whole-genome sequencing, annotations for non-
genic regions have become more important.  

3.  Workflow 

3.1.  The Apache Spark Ecosystem 

Given the increasing scale of genomic datasets, the increasing reliance on external annotation 
resources, and the need for streamlined and reproducible analyses, we explored an analysis 
workflow within the Apache Spark ecosystem (Zaharia et al., 2016). Spark provides an interface for 
data analysis and programming that utilizes an entire computing cluster with built-in data 
parallelism and fault tolerance. Data is ingested into the Hadoop Distributed File System (HDFS), 
which automatically partitions large files into redundant segments over multiple nodes of a 
computing cluster. The entire dataset, seamlessly partitioned across the cluster’s nodes, can be 
accessed programmatically as a single Spark DataFrame instance. A variety of Spark functions can 
then be applied to the DataFrame for data processing, which is inherently parallelized so that each 
computing node has local access to its own partitions of the complete dataset. These data processing 
operations are compatible with traditional Structured Query Language (SQL), more sophisticated 
machine learning and graph-based operations, or custom functions. For genomic data storage and 
analysis, ingesting a large variant call format (VCF) file through a single command accomplishes 
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the equivalent of scripts that segment the VCF into individual files by chromosome or individual. 
The complete dataset is then programmatically accessible by issuing a single function call.  

The Spark framework is deployed on a dedicated Hadoop Cluster consisting of 16 data/compute 
nodes, with an overall total of 1.28 TB of RAM and 144 CPU-cores for parallel processing. This 
cluster is configured with standard Apache Spark (version 2.1.0) and Hadoop features, including 
Cloudera server manager (version 5.7.0), HDFS with a capacity of 288 TB, and the 
YARN/MapReduce platform for large scale data processing.   

3.2.  Genotype Storage and Retrieval 

To provide a set of genotype storage and quality control operations, we used the open source 
software Hail (version 0.1-74bf1eb) developed by the Neale Lab at the Broad Institute (Hail, 
https://github.com/hail-is/hail/tree/0.1). Hail operates on top of Spark, and provides extensive, 
efficient functions for processing genomic data. Genomic data is imported from VCF and Plink-
compatible files stored on the HDFS, and are converted to the Hail Variant Dataset (VDS) 
representation. Both sample and variant attributes can be easily assigned to VDS objects, allowing 
rapid retrieval of data subsets. For example, storing genomic data from the 1000 Genomes project 
(Consortium, 2012) provides the capability to extract VCF and Plink-compatible files that contain 
both sample and variant subsets within minutes.  

Hail provides functions for analysis, quality control, and data manipulation, including single-
variant statistical analyses, principal component analysis for adjusting for population stratification, 
among others. Most critically, Hail also provides interoperability with Python and Spark libraries, 
allowing the generation of Spark DataFrames from collections of genetic variants. These capabilities 
provide the ability to use R and Python packages for analysis of segmented genomic data, along 
with all functions available to Spark DataFrames.    

3.3.  Annotation Storage and Processing 

Hail provides an extensive collection of annotation resources that can be applied to genomic 
datasets. These resources are instantiated as a Hail KeyTable, and when applied add fields to the 
original VDS files. Depending on the size and scale of the variant annotation, directly annotating 
the VDS can inflate file sizes resulting in less efficient operations. Given the need for the most 
current genomic annotation information, and the desire for state-of-the-art definitions of regulatory 
(and other) genomic elements, we used an annotation processing pipeline (external to Hail) within 
the Spark framework.  

Spark provides built-in support for creating DataFrames from comma-/tab-separated value or 
JavaScript Object Notation (JSON) text files. JSON-formatted files are especially useful in the 
Spark framework as the information structure is preserved and accessible in query operations 
without additional data parsing operations. Based on our published annotation pipeline (Butkiewicz, 

Pacific Symposium on Biocomputing 25:523-534(2020)

527



 

 

 

Blue, et al., 2017), we first generated variant-level annotations using VEP, creating a JSON file 
containing variant consequence predictions relative to all Ensembl transcripts. This ‘everything’ 
annotation was instantiated as a Spark DataFrame, which was then subsequently processed to 
produce derived annotations. For example, a User-Defined Function (UDF) was developed to create 
a ‘most damaging consequence per gene’ for each variant, and also supports producing tissue-
specific variant consequence predictions using tissue-transcript reference sets like those from the 
Genotype-Tissue Expression project (GTEx) (Mele et al., 2015). The DataFrame resulting from the 
UDF is then used to generate a Hail KeyTable by generating a primary key column corresponding 
to the variant ID. This Hail KeyTable can be used to identify variants meeting annotation criteria 
and extract genotypes needed for a given analysis.  

Figure 1. Illustration of UDFs and UDAFs for producing typical GWAS association results (A) and gene-based 
aggregation test results (B). User Defined Aggregation Functions (UDAFs) partition the genotype data into 
frames that are programmatically accessible to User Defined Functions (UDFs), which can implement R and 
Python-based code. In this example, genotypes are aggregated by gene to produce results from the seqMeta R 
package. 
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3.4.  Flexible Gene-based Analyses using Spark User Defined Aggregation Functions 

While basic burden tests are supported within Hail, most rare-variant tests, such as the sequence 
kernel association test (SKAT) (Wu et al., 2011) and family-based rare-variant tests (Svishcheva, 
Belonogova, & Axenovich, 2014), are implemented in either the R statistical environment or 
Python. These tests are typically factored to accept a single unit’s worth of genomic data as input 
(e.g. all variants within a single gene).  Currently, the Hail framework does not support flexible 
user-defined code for gene- or unit-based analyses, limiting analyses to those explicitly 
implemented in Hail.   

To support the broad array of unit-based statistical approaches implemented in R and Python 
within the Spark framework, we created a User Defined Aggregate Function (UDAF) to generate 
unit-level genotype datasets that can be passed to R and Python functions (Figure 1).  Our UDAF 
can be used to conduct gene-based analyses using the SeqMeta package employed by the ADSP 
analyses of the WES data.  We have also tested analyses using elastic net regression, and in general 
our UDAF can be easily adapted to support any R or Python function that accepts a genotype matrix 
as input.  Genotype data stored within Hail was first processed to group data for variants associated 
by an aggregating factor, in our case a gene identifier. Once stored in this way, the entire genome's 
collection of genes can be processed in parallel, applying custom code across each group of 
associated variants' genotypes. While the initial data aggregation step can be time intensive, running 
subsequent analytics steps on the grouped data proceeds rapidly. This works well for the 
development and tuning of analytical methods, and enables truly interactive dataset exploration to 
proceed genome-wide. 

Figure 2. Comparison of the Spark-based versus Traditional workflows for conducting rare-variant analyses. 
Approximate timings are noted in red (timings for individual steps of the traditional framework were unavailable).  
Green labels denote advantages of the Spark-based over the traditional framework.   
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3.5.  Increasing Reproducibility of Analyses 

The quality control (QC) workflows outlined in figure 5 of Verma et al. enumerate seven steps from 
raw data to analysis, each of which likely required writing and reading new Plink-compatible files, 
and a change to any one of the QC criteria would require regeneration of each file, requiring file 
naming strategies, scripts for file cleanup, and careful versioning. Similarly, the analysis steps 
outlined in figure 1 of Reed et al. nicely document the R code needed for four analysis steps which 
rely on the doParallel package to distribute association tests over multiple cores. This step was 
specifically modified by the authors to allow for parallel processing, and other steps of the workflow 
would require similar efforts for larger scales of data. Each these steps involves file read and write 
operations, file labeling/tracking, and could involve several thousand of temporary sub-files 
(totaling more than the original gigabyte/terabyte scale data), all to be managed by the user and their 
developed scripts.  Each of these file operations represents a potential point of failure.  In contrast, 
the Spark-based workflow provides seamless dataset partitioning, and computation occurs in 
parallel across the cluster. This creates a fast and more straightforward single step process for users, 
which allows easier development, testing, and verification.  

Code for these Spark-based workflows is developed and deployed within Jupyter Notebooks, 
which provides features for documentation and ease of readability. Jupyter Notebooks are an open-
source web application that allows users to create and share documents that contain live code, 
equations, and figures alongside formatted narrative text. As a hybrid of a script and a document, 
Jupyter Notebooks allow entire sections of code to be re-executed on the Spark cluster, typically in 
real-time. Analysis results can be written to files, or passed as DataFrames to R and Python libraries 
for immediate visualization. The use of Jupyter Notebooks is generally accepted as a way to share 
and duplicate analysis workflows, and can interoperate with R and Python packages for custom code 
execution. These highly portable approaches to utilizing code are well-suited to scientific 
collaboration and reproducibility.  

4.  Results 

4.1.  Validation of the Implementation 

To validate the Spark framework, we accessed the final QC+ version of the ADSP Discovery 
Whole-Exome Sequencing dataset, as described in (Bis et al., 2018). Following steps outlined in 
figure 2, we ingested VCF files containing SNV and short INDEL calls, along with their variant 
annotations; we then partitioned this collection of genetic variants using our custom UDF, and 
performed gene-wise seqMeta analyses. All analyses were conducted with software packages and 
settings congruent to Bis et al, and a Manhattan plot of the published results alongside results from 
the Spark implementation are shown in figure 3.   
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Figure 3. Manhattan plots of Skat-O Meta-analysis results from the Spark-based implementation versus the results 
published in Bis et al.     

 

 

 

4.2.  Approximate Runtimes and Scalability 

We compared the Spark implementation to the actual analysis workflow used by Bis et al. Using a 
traditional approach of splitting jobs over a scheduled cluster environment, the entire job from start 
to finish has an estimated max wall time of approximately 19 hours, assuming hardware equivalent 
to our cluster environment (number of nodes, etc). The Spark approach as currently configured 
requires a maximum of approximately 40 hours to execute from start to finish on the Bis et al dataset. 
The creation of a Spark dataframes from annotation files requires 18 minutes, and creation of Hail 
VDS files from VCFs requires 10 minutes. The lengthy step in the process is the generation of 
aggregated data tables from the genotypes, which with the current configuration requires 39 hours 
to process.  Once performed, this step returns a single Spark object containing all genotypes and 
aggregation information written to HDFS, and can be used to support any downstream gene-based 
analysis, or multiple variations of a single analysis, with a vastly shorter runtime.  Once aggregated, 
the entire seqMeta analysis of all genes requires approximately 42 minutes or less, which allows for 
multiple genome-wide runs using different annotation or filtering criteria.  While we do not have 
precise timings for each step of the traditional analysis workflow, the bulk of the allocated analysis 
time is used for file I/O, extracting genotypes for each gene and writing these to files for subsequent 
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analysis within R. For the traditional approach implemented in Bis et al., any repeat of the analysis 
requires a complete rerun of all computing steps. In contrast, the Spark-based framework is more 
modular, allowing selective execution of individual steps while maintaining a verified state of the 
analysis.      

4.3.  Advantages Over Traditional Implementations 

While there currently is no timing advantage to the Spark approach, there are a few clear advantages 
in terms of the flexibility of the workflow. Unlike using Hail alone, our workflow allows users to 
incorporate the extensive library of existing R and Python packages that support various gene- and 
unit-based analyses.  Because we have employed the Spark framework, the functions for performing 
gene-wise analyses have redundancy and operational integrity. Unlike a scheduled cluster 
environment where jobs are queued, must be tracked, and results must be aggregated when jobs are 
fully completed, the Spark environment provides process redundancy where any failed processes 
are tracked and dynamically re-executed in case of failure. Results are aggregated and returned as a 
single distributed dataframe object. The Spark workflow effectively replaces process and file 
tracking tasks usually performed explicitly by an end user (within scripts) with features inherent to 
the Spark environment.    

A second advantage of the Spark approach is that aggregated variant tables can be modified by 
adding additional annotations or covariates. In the traditional workflow, this would require scripts 
to process each of the written files to add these columns post-hoc, or more likely, a revision of the 
analysis workflow and a complete re-execution. In fact, any change to analysis parameters, variant 
QC criteria, or variant annotations would require a complete re-execution of a traditional workflow, 
whereas with the Spark workflow only a small fraction must be rerun.  

Finally, replicating the analysis implemented in the traditional workflow would require 
extensive customization (or a complete re-implementation) before it could be run on a local cluster 
environment. Adaptations are needed to account for different cluster schedulers, software package 
availability and version control, and file locations/disk usage. In contrast, the Spark workflow can 
be executed on an equivalent Hadoop environment and Spark implementation using only code 
contained with Juypter Notebooks and base Hail and PySpark functionality. While this does not 
completely eliminate the need to customize a computing environment (as Spark setup and 
configuration is required), it is a step closer toward easy transferability and reproducibility of 
analysis tasks whose size necessitate execution within a distributed processing framework. 
Furthermore, as large-scale studies are beginning to provide access to data exclusively through cloud 
computing environments, frameworks like this will be necessary for distributed analysis tasks.   

5.  Conclusions 

We have explored the use of Spark for implementing a typical analysis of genomic sequence data, 
and found the implementation to be a flexible approach for analyses of large-scale genomic data 
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that provides built-in parallelization, minimizes data handling, and improves reproducibility. By 
storing variant annotation information alongside study participant genotypes, the Spark framework 
provides a route by which custom variant annotation information can be rapidly integrated to support 
new variant filters, or variant groupings to test within unit-based association analyses. For many 
existing datasets, the distributed Spark infrastructure described here is not necessary; however as 
sequencing studies continue to add samples and expand the scope of variant capture, and the breadth 
of genotype imputation panels grow, future genomic studies will require a reproducible parallel 
processing framework for statistical analysis.  

6.  Availability 

Code and examples are available at http://www.icompbio.net/resources/software-and-downloads/ 
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