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The activity of mutational processes differs across the genome, and is influenced by chro-
matin state and spatial genome organization. At the scale of one megabase-pair (Mb),
regional mutation density correlate strongly with chromatin features and mutation density
at this scale can be used to accurately identify cancer type. Here, we explore the rela-
tionship between genomic region and mutation rate by developing an information theory
driven, dynamic programming algorithm for dividing the genome into regions with differing
relative mutation rates between cancer types. Our algorithm improves mutual information
when compared to the naive approach, effectively reducing the average number of mutations
required to identify cancer type. Our approach provides an efficient method for associating
regional mutation density with mutation labels, and has future applications in exploring
the role of somatic mutations in a number of diseases.
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1. Introduction

Somatic cells are exposed to multiple mutational events throughout their lifetime. The phe-
notypic effect of these mutations varies, and the aggregate effect of all somatic mutations has
been implicated in the development of a number of neurodegenerative diseases and cancer [1],
[2]. Somatic mutations are generated by multiple mutational processes ranging from exogenous
mutagens to endogenous DNA repair mechanisms. Mutational processes are mechanisms for
generating different types of mutations, and their signal in the genome is manifested through
different mutational signatures. Single base substitution signatures (SBS) summarize muta-
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tional processes that generate single nucleotide variants (SNVs) by grouping mutations based
on short-range sequence characteristics such as trinucleotide context [3]. Mutational signa-
tures differ with their relative timing, with cell-extrinsic signatures often occurring earlier in
tumorigenesis, and cell-intrinsic signatures occurring in the later stages [4]. Mutational signa-
tures also show varied activity across different cancer types, with certain signatures having a
very strong association with specific cancer types (SBS4 in lung cancer) [3].

Mutational processes have differential activity across the genome, and consequently, mu-
tation rates for different signatures varies across the genome[5]. Process-specific, regional mu-
tation rates are influenced by phenomenon at multiple scales [6]. At the megabase-pair level,
mutation rate is strongly influenced by chromatin accessibility and replication timing, largely
due to the differential activity of mismatch repair mechanisms in these regions [7]. At the
level of individual genes, the level of transcription has a strong relationship with mutation
density, likely due to the activity of transcription coupled repair mechanisms. On a local-scale,
nucleosome occupancy is associated with an enrichment for a number of mutational processes
including UV damage (SBS7), and oxidative damage (SBS17)[8], [9], while regions depleted of
nucleosomes are enriched for mutations likely caused by tobacco (SBS4) [10]. This association
between mutation rate, chromatin accessibility, and mutational processes give rise to a rela-
tionship between cancer-type and regional mutation density. Recently, we used the association
of regional mutation density and cancer-type to develop a deep-learning classifier that uses
regional mutation density to differentiate between 24 cancer types with an accuracy of 91%
[11]. This work suggests that the relationship between mutation density and chromatin state
is stronger than previously suggested, and provides motivation for further investigating the
relationship between mutational processes and genome organization.

While the association between mutation rate and genome organization at the megabase
scale is well characterized, genome organization can be studied at a much higher resolution.
Genome organization is strongly influenced by a large variety of chromatin marks that in-
clude histone modifications, histone variants, and chromatin accessibility. Combinations of
chromatin marks in specific spatial contexts can be grouped into functional elements. These
elements include promoters, enhancers, transcribed, repressed and repetitive regions, and vary
across different cell-types. As there is a strong relationship between mutation density and cell-
type, examining regional mutation density may provide information about the distribution of
functional elements across the genome.

In this work, we investigate the relationship between regional mutation density and genome
organization by segmenting the genome based solely on the differential activity of mutational
processes. To do so, we present a novel, information theoretic algorithm for associating muta-
tion density with cell-type. Using this algorithm, we show that an optimal segmentation of the
genome significantly increases information content between mutation density and cell-type,
and we explore the relationship between optimal segmentation and functional elements.
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2. Methods

2.1. Overview

The goal of Genome Gerrymandering is to split the genome into sections that differ in their
mutation rates among different cancer types. We do this by labelling somatic mutations by
cancer type in a large cohort of cancer samples. We then map these mutations to a single set
of reference genome coordinates and partition this meta-cancer genome into sections so that
the count of mutations per cancer type differs by as much as possible. Formally, we use a
modification of Bellman’s K-segmentation algorithm [12] to maximize the mutual information
between the segment assignment of a mutation and its cancer type label.

2.2. Data

All patients who donated to the Pan-cancer Analysis of Whole genomes (PCAWG), data
set consented to international data sharing and secondary analysis of their genomes [13].
Permission to reanalyze these data was granted by the University of Toronto’s Research Ethics
Board.

Variant calls were downloaded from Synapse (https://www.synapse.org/#!Synapse:
syn2351328/wiki/62351); the syn numbers that follow refer to Synapse data set IDs. Con-
sensus Somatic SNV (syn7118450) file covers 2778 whitelisted samples from 2583 donors.
Tumour histological classifications were reviewed and assigned by the PCAWG Pathology and
Clinical Correlates Working Group (annotation version 6, August 2016; syn7253568). Kataegis
events and SNV files containing the all SNVs caused by kataegis events were provided by the
PCAWG Evolution and Heterogeneity Working Group (annotation version 10, August 2018)
and were downloaded from (https://www.synapse.org/#!Synapse:syn12978907).

We additionally made use of variants from 1178 tumour whole-genomes described in [3].
These data comprise 11 tumour types that overlap with PCAWG types collected from a variety
of published studies, non-PCAWG donors in the ICGC data portal (http://dcc.icrg.org), and
donors present in the COSMIC database (http://cancer.sanger.ac.uk/cosmic).

2.3. Algorithm Overview

The Genome Gerrymandering algorithm is a dynamic programming algorithm that finds a
segmentation that maximizes the conditional mutual information I(T ;B | C), where tumour
type (T ), segment location (B), and chromosome (C) are all categorical random variables. Let
K be the desired number of segments (provided by the user), N be the number of distinct
mutation positions in the genome. For a given choice of K, our algorithm seeks to maximize
I(T ;B | C) by changing the segmentation boundaries θ between mutations. The segmentation
boundaries define a categorical distribution B | C ∼ pθ(b | c) that represents the probability
that a mutation is inside a segment b given that it is on chromosome c. While our overall goal
is to optimize I(T ;B), we choose to condition on C to reduce run time. We assume that the
segments must be contiguous and cannot span multiple chromosomes.
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2.4. Objective Function

It is known from the definition of conditional mutual information that

I(T ;B | C) = H(T | C) +H(B | C)−H(T,B | C) (1)

I(T ;B | C) =
∑
c

p(c)I(T ;B | C = c) (2)

Since T ⊥⊥ B | C (T is conditionally independent of B given C), the value of H(T | C) does
not change with respect to θ. It is therefore clear that

arg max
θ

I(T ;B | C) = arg max
θ

[H(B | C)−H(T,B | C)]

= arg max
θ

−H(T | B,C)

= arg max
θ

−
∑
c

p(c)H(T | B,C = c)

(3)

Intuitively, maximizing this objective works by minimizing uncertainty about tumour type in a
segment, H(T,B | C), while encouraging equal segment size by maximizing uncertainty about
segment location within a chromosome, H(B | C). Using equation 2, the problem of maximizing
I(T ;B | C) naturally decomposes into independent optimization problems I(T ;B | C = c) for
each chromosome, since θ has no effect on p(c). To allow this decomposition, we assume
that p(c) = Nc/N (where Nc is the number of mutations on chromosome c) and assign each
chromosome Kc = p(c)K segments (rounded).

Since our random variables are all categorical, it is possible to compute these entropies
directly during optimization, using mutation counts to estimate probabilities (see equation 7).

−H(T | B,C = c) = −
∑
b

p(b | c)H(T | B = b, C = c)

=
∑
b

p(b | c)
∑
t

p(t | b, c) log p(t | b, c)
(4)

Since H(T | C = c) remains unchanged throughout optimization, it can be computed after-
wards to find I(T ;B | C). To compute I(T ;B) for the final segmentation, the following equation
can be used [14]:

I(T ;B) = I(T ;B | C)−H(C | T )−H(C | B) +H(C | T,B) +H(C) (5)

I(T ;B | C) is given by equation 2, and it is trivial to compute the entropies explicitly from
the mutation counts once the segmentation is provided.

2.5. Mutation Preprocessing

PCAWG mutations that were identified as part of a kataegic cluster (see section 2.2) were
merged into a single mutation that took the median position of all of the mutations in the
cluster.

After kataegic cluster removal, adjacent mutations were placed into groups of at most 100
distinct mutation positions and summed together, to reduce the size of the mutation array and
speed up run time. A maximum group size of 3 Kb was chosen to ensure that physically far
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away mutations were not placed in the same group, resulting in group sizes of approximately
50 distinct mutation positions on average.

2.6. Optimization with Dynamic Programming

We will show that it is possible to efficiently optimize the objective function with dynamic
programming techniques. For each chromosome c, let us define the arrays Sc and S′c as fol-
lows, with θk defining segments b1, ..., bk that are contiguous and exist entirely over mutation
positions n = 1, ..., j ≤ Nc:

Sc[j, k] = max
θk

bk∑
b=b1

p(b | c)
∑
t∈T

p(t | b, c) log p(t | b, c)

S′c[j, k] = arg max
θk

bk∑
b=b1

p(b | c)
∑
t∈T

p(t | b, c) log p(t | b, c)

(6)

Note that optimizing our objective −H(T | B,C) with respect to θK is equivalent to
finding Sc(Nc,Kc) and S′c(Nc,Kc) for each chromosome c. Let Ac be the mutation count array
for chromosome c. Let Ac[n, t] be the count of mutations at position n of tumour type t, and
let Ac[n1 : n2, t1 : t2] denote count summing from position n1 to n2 and t1 to t2 inclusive along
each axis, n1 ≤ n2 and t1 ≤ t2.

Sc[j, 1] = p(b | c)
∑
t

p(t | b, c) log p(t | b, c) =
Ac[1 : j, :]

Ac[:, :]

∑
t

Ac[1 : j, t]

Ac[1 : j, :]
log

Ac[1 : j, t]

Ac[1 : j, :]
(7)

When k > 1, the following recursive relationship holds:

Sc[j, k] = max
i=k−1,...,j−1

Sc[i, k − 1] + Sc[j, 1]− Sc[i, 1] (8)

Note that if j < k, Sc[j, k] is undefined since it is impossible to divide j mutations into k non-
empty segments. In plain terms, Sc[j, k] is equal to the best scoring segmentation that uses
k−1 segments plus the score that results from grouping the remaining mutations into a single
segment. This relationship allows the problem to be optimized with dynamic programming
using algorithm 1. Our algorithm also allows the user to specify a minimum segment size P ,
which can reduce overfitting by preventing the creation of very small segments. The algorithm
has O(N2

cKc) time and space complexity for each chromosome c, and can be run in parallel.
Once S′c is known for each chromosome, I(T ;B | C = c) can be computed for each chromosome
using equation 1, which allows subsequent computation of I(T ;B | C) and I(T ;B). Note that
this algorithm is very similar to the Bellman K-segmentation algorithm [12], with the main
difference being the information objective function.
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Algorithm 1: Genome Gerrymandering Algorithm

Input : Ac, an Nc by |T | array of mutations in chromosome c
Input : Kc, number of desired segments for chromosome c
Input : P , minimum segment size
Output: Sc, segmentation scores (optimal score found at Sc[Nc,Kc])
Output: S′c, optimal segmentation traceback array

1 Sc ← InitNegInf(Nc,Kc)

2 S′c ← InitNegInf(Nc,Kc)

3 for i = P to Nc do
4 Sc[i, 1]← ComputeFromCounts(Ac, i)

5 for k = 2 to Kc do
6 for j = k to Nc do
7 for i = k − 1 to j − 1 do
8 if Sc[j, k] < Sc[i, k − 1] + Sc[j, 1]− Sc[i, 1] then
9 if j − i− 1 ≥ P & i− 1 ≥ P then

10 Sc[j, k]← Sc[i, k − 1] + Sc[j, 1]− Sc[i, 1]

11 S′c[j, k]← i

12 return Sc, S
′
c

Fig. 1. Visualization of Algorithm and Analysis on a Toy Dataset
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2.7. Data Split

Before fitting the model to the data, roughly 30% of samples from both the PCAWG and
the alternate dataset were selected to be a held-out test set. Note that only 11 tumour types
were present in both datasets: the other tumour data was excluded for our experiments. The
samples were sorted based on tumour type and then split by sample ID, with the additional
restriction that samples coming from the same patient donor could not be in both sets. This
allowed for a balance of number of samples of each tumour type across datasets. To evaluate
generalization performance, we fit segmentations on the training set and evaluated them on
both sets by computing I(T ;B | C) and I(T ;B) using mutations from only one dataset and
the segmentation boundaries θ that were optimized on the training data. We also computed
a segmentation on all of the data to try to get the best result possible.

3. Results

3.1. Mutual Information Comparisons

We define a naive segmentation as a segmentation that groups mutations into contiguous 1 Mb
bins, resulting in 2897 segments across the autosomal genome. To compare our algorithm with
this baseline, we computed an optimal segmentation with the same number of segments. To
make the comparison fairer for the baseline, we removed segments in our naive segmentation
that completely lacked mutations – such segments are not informative and thus do not con-
tribute to mutual information – and adjusted the number of segments in our optimal algorithm
accordingly. We computed segmentations on different data splits, as outline in section 2.7. The
results for these experiments are summarized in table 1. Each segmentation used a minimum
segment size of 90 mutation positions (after grouping). ∆I compares the mutual information
of Genome Gerrymandering segmentation to its equivalent naive segmentation: a higher value
indicates better performance of our algorithm over the naive baseline. We include I(T ;B|C)

since this is the objective that our algorithm is directly optimizing, even though improving
I(T ;B) is our real goal. Note that estimates of mutual information are biased to higher values
when done on the test set because it contains fewer samples. However, our ∆I(T ;B) estimates
are less biased.

Table 1. Summary of Optimal Segmentations:

Trained on Evaluated on I(T ;B | C) I(T ;B) ∆I(T ;B | C) ∆I(T ;B)

Train Train 0.0454 0.0477 0.0118 0.0118
Train Test 0.0583 0.0619 0.0128 0.0128
Both Both 0.0472 0.0497 0.0121 0.0121
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3.2. Interpretation of Mutual Information Gain

I(T ;B) represents the average reduction in uncertainty of the value of T , the tumour type of
a mutation, when the value of B is observed for that same mutation. If there are M tumour
types, it takes log2(M) bits of information to specify a tumour. If observing B gives us on
average I(T ;B) bits of information about the value of T , then log2(M)/I(T ;B) mutations from
the same sample is a lower bound on the average number of mutation needed to identify its
tumour type.

Theorem 1. If B1, ..., BD ∼ B are identically distributed with Bi ⊥⊥ Bj | T , then
I(T ;B1, ..., BD) ≤ DI(T ;B)

Proof. Induction on Bd, consider I(T ;B1, B2).
I(T ;B1, B2) = I(T ;B1) + I(T ;B2 | B1) by chain rule of information [14]
If B2 → T → B1 forms a Markov chain, then I(T ;B2 | B1) ≤ I(T ;B2) by the data processing
inequality [14]

p(b2, t, b1) = p(b2)p(t | b2)p(b1 | t, b2) by chain rule of probability

= p(b2)p(t | b2)p(b1 | t) since B1 ⊥⊥ B2 | T

Thus B2 → T → B1.
Thus I(T ;B1, B2) ≤ I(T : B1) + I(T ;B2) = 2I(T ;B) since B1, B2 ∼ B

Theorem 1 implies that DI(T ;B) is an upper bound on the average information we can
get about tumour type from D conditionally independent mutations. Thus having a higher
I(T ;Bopt) (where Bopt uses the optimized segmentation boundaries) reduces the upper bound
on the average number of mutations needed by a factor of ∆I(T ;B)/I(T ;Bopt), where we
defined ∆I(T ;B) = I(T ;Bopt)− I(T ;Bnaive).

3.3. Segmentation Size Comparisons

There are two ways to measure segment size: the genomic length (in bp) that the segment
spans, shown in Fig. 2, and the number of mutation positions that lie within the segment’s
boundaries, shown in Fig. 3. In general, the optimal segmentation favours smaller segments
over the naive segmentation and is left-skewed with a long tail. Note that segments that
are small by one measure are not necessarily small by the other (for example, the expansive
mutation sparse regions in the genome).

4. Discussion

The activity of mutational signatures varies across the genome, and is influenced by a number
of factors including chromatin state [6]. Previous work has demonstrated that the mutation
rate at the one Mb-scale is strongly correlated with chromatin features from a tumour’s cell-
of-origin [7]. More recent work has demonstrated that mutation rate in one Mb-segments can
be used to accurately identify cancer-type [11]. These works demonstrate the strength of the
relationship between regional mutation density and genome organization, but the choice of one
Mb segments lacks both biological motivation, and the resolution to capture local variation
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Fig. 2. Distribution of the genomic length (in Mb) of the segments in the optimal segmentation
(trained on both datasets). Histogram bin width is 100 Kb. Note that naive segments are not shown
here since they all have the same genomic length by definition (1 Mb).

Fig. 3. Distribution of number of mutations in each segment of the optimal and naive segmentations
(trained on both datasets). Histogram bin width is 1000 mutations.
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in mutation rate. In this work, we present Genome Gerrymandering, an information theoretic
algorithm for determining a genomic segmentation that maximizes the mutual information
between regional mutation density and cancer type.

Our algorithm increases the mutational information between segmentation and cancer
type by 0.0128 bits on the held-out test set. This roughly corresponds to, at a minimum, a
0.0128/0.0619 ≈ 20% reduction in the average number of mutations required to discriminate
between cancer types. As the relationship between chromatin state and mutation density is
the primary feature driving cancer-type identification based on mutations, our result suggests
that an optimal genome segmentation may provide a greater association between mutation
density and genome organization than previously reported [7]. Interpreting the association
between an optimal segmentation and genome segmentation will benefit from an in-depth
investigation of functional elements contained within the intervals produced by our algorithm,
and investigation into the association between our segmentation and 3-D genome topology.

In this work, we choose K, the number of segments, to be equal to 2897 for direct com-
parison with naive 1 Mb segmentation of the autosomes. One can optimize the choice of K
through a variety of methods. For example, Genome Gerrymandering is, in essence, performing
a regional clustering of mutations; so standard metrics for choosing K in clustering algorithms
could be used. An alternative approach might be to set K such that the mutual information
is maximized on a held-out validation set. Regardless of the method used, because Genome
Gerrymandering provides optimal solutions for all values of K up to the maximum K input to
the algorithm, selecting the number of clusters would require less compute than other cluster-
ing methods because Genome Gerrymandering does not need to be rerun for other potential
numbers of clusters less than K.

In summary, this paper presents a general purpose, information theoretic algorithm for
finding an optimal genomic segmentation. While this work focused on associating genomic
segmentation with cancer type, improving the cancer type identification based on regional
mutation density is just one goal of this work. It could also help to identify genomic regions
of interest based on large differences in mutation density among cancer types. The algorithm
can also be run using only subsets of mutations that are of specific interest. For example, the
algorithm may be run using mutations from mutation signatures involved in hypermutation,
allowing us to identify regions of the genome most affected by these mutational processes.
Ultimately, our algorithm is generic in the sense that it could be applied to regionally cluster
mutations based on any discrete phenotypic label (for example, sex).

Some algorithmic improvements are possible and there are some clear directions for fur-
ther investigation. Currently, the algorithm does not take in explicit information about copy-
number or mutational signature activities, both of which are important features influencing
mutation rate. The utility of the optimal segmentation for identifying cancer type has not
yet been fully explored. Future studies can also investigate the biological significance of the
identified genomic segments; in particular their association with genome topology, functional
elements, chromatin state, and local mutation signature exposure.
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5. Code availability

The source code for our work is available at https://github.com/adamoyoung/MutSeg. The
dynamic programming algorithm was implemented in C, while the pre-processing and analysis
scripts were implemented in Python 3.
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