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Identification and subsequent intervention of patients at risk of becoming High Cost Users
(HCUs) presents the opportunity to improve outcomes while also providing significant savings
for the healthcare system. In this paper, the 2016 HCU status of patients was predicted using
free-form text data from the 2015 cumulative patient profiles within the electronic medical
records of family care practices in Ontario. These unstructured notes make substantial use of
domain-specific spellings and abbreviations; we show that word embeddings derived from the
same context provide more informative features than pre-trained ones based on Wikipedia,
MIMIC, and Pubmed. We further demonstrate that a model using features derived from
aggregated word embeddings (EmbEncode) provides a significant performance improvement
over the bag-of-words representation (82.48±0.35% versus 81.85±0.36% held-out AUROC,
p = 3.2× 10−4), using far fewer input features (5,492 versus 214,750) and fewer non-zero
coefficients (1,177 versus 4,284). The future HCUs of greatest interest are the transitional
ones who are not already HCUs, because they provide the greatest scope for interventions.
Predicting these new HCU is challenging because most HCUs recur. We show that removing
recurrent HCUs from the training set improves the ability of EmbEncode to predict new
HCUs, while only slightly decreasing its ability to predict recurrent ones.

Keywords : Electronic Medical Records, High Cost Users, Natural Language Processing, Deep
Learning

1. Introduction

Many healthcare systems face significant challenges in caring for their aging populations, the
solutions to which may lie in identifying patients at risk of undergoing serious adverse health
events. One strategy to reducing healthcare costs lies in targeting the so-called high cost users
(HCUs): the small group (e.g., 5% of the population) which consumes the majority of the
healthcare resources.8,19,36,47 For example, in Ontario it has been reported that the top 5% of
patients consume anywhere from 61%36 to 66%17 to 84%29 of hospital and homecare costs.
Indeed, there are ongoing programs across several Canadian provinces focused on addressing

iDepartment of Computer Science, University of Toronto
iiVector Institute for Artificial Intelligence, Toronto, Ontario, Canada
iiiCorresponding authors: haoran@cs.toronto.edu, quaid.morris@utoronto.ca
ivICES, Toronto, Ontario, Canada
vInstitute of Health Policy, Management, and Evaluation, University of Toronto
viInstitute for Better Health, Trillium Health Partners, Mississauga, Ontario, Canada
viiTerrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto
viiiDepartment of Molecular Genetics, University of Toronto

© 2019 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.

Pacific Symposium on Biocomputing 25:127-138(2020)

127



avoidable costs by targeting HCUs.6 Patients often become recurrent HCUs due some serious
adverse health event (such as a fall or a catastrophic worsening of an existing chronic condition),
resulting in a transition to a more frail health state19 that is difficult to reverse.45 The existence
of a persistent HCU cohort is well-known.33 One Canadian study showed that about 45%
of HCUs in Ontario recur year-to-year, and another study in the US showed that HCUs
were nearly as likely to remain HCUs five years later as one year later.16 In many cases, the
initial transition to HCU might have been avoidable with better tailored, preventative care.1,2

However, to provide this care, these at-risk patients must first be identified.
There have been several previous studies that use predictive modelling to directly identify

potential HCUs;1,4,12,13,28,30,41 however, most of this work is not relevant to finding new HCU
patients before their transition. Specifically, because they use data collected in a hospital
setting, many of their patients have already experienced the transitional event. Here, we focus
on identifying at-risk patients outside of hospitals, based on data collected by their primary
care (i.e. family) physician.39 By identifying patients in this setting, we are more likely to
catch patients at risk of becoming HCUs before their transitional event(s). The most readily
available source of primary care data is their patient notes. Unlike much of the data collected
in a hospital setting, and used in most of these other studies, these notes are rarely structured.

Here we describe a predictive tool that identifies patients at risk of becoming HCUs using
only data readily available to family physicians – unstructured patient profiles stored in their
Electronic Medical Record (EMR). Family physicians are the first and most frequent point of
contact for the patient,31,38 and thus have the most up-to-date information about the patient’s
health. Very few studies have used primarily free-form text within the EMR for the purpose
of predicting high cost users. One exception is Frost et al,13 which used logistic regression
on a bag-of-words (BoW) representation of the patient profiles. However, unlike well-edited
documents usually seen in text mining, the patient profiles in our EMRs contain numerous
acronyms, short forms, misspellings, and potentially important technical terms that appear
infrequently.13,15,42 These complexities limited the effectiveness of previous models.13 In this
paper, we overcome this challenge using word embeddings, a dense continuous-value vector
that depends on the other words that they frequently appear with.20,27,32 These embedding
are trained using deep learning methods, and have been shown to be useful for representing
clinical text.3,7,9,21–24

Here we examine the value of embeddings for this challenging classification setting. The
patient profiles that constitute our inputs are brief and use non-standard language. The labels
for our patients are, by definion, highly imbalanced: HCUs are only 5% of patients and the new
HCUs, which are of greatest interest, are only a small fraction of this group. We demonstrate
that in this setting, word embeddings can be used to derive a relatively small number of highly
informative features, thereby permitting accurate classification of patients most at risk of
becoming HCUs.

In section 2, we describe the procedure used to create a study cohort and training sets from
the EMR and cost data. In section 3, we describe the embedding methods and models used to
predict HCUs. In sections 4 and 5, we show the results obtained and discuss their significance.
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2. Data

2.1. EMRPC

The Electronic Medical Record Primary Care (EMRPC) database, housed at ICES in Toronto,
Ontario,43 contains unstructured text data for approximately 600,000 patients from family
practices that have opted in. For this paper, the cumulative patient profile (CPP) section
of EMRPC was used for modelling. The CPP consists of six free-form text fields: allergies,
problem list, risk factors, personal traits, family history, and past medical history. These fields
are updated by the family physician and provide a summary of their cumulative observations
regarding the patient. Table 1 shows sample, anonymized values for each field of the CPP.
Similar to this example, these text fields contain many abbreviations, typos, and specialized
vocabulary.

Table 1. Sample CPP fields (modified to preserve patient confidentiality)

Field Name Content
Allergies Demerol 50 mg Tablet ->vomiting, delerious
Problem list non smoker; alcohol consumption – none; PAF; rt shoulder

pain; 2008-dysmenorrhea-
Risk factors never smoked; f/u with special views & U/S lt breast; Pap:

Feb 12 N; FHN
Personal traits Teaches grade 6-7; Arts/theatre; diet: low fruit and veg, fish;

exercise – walking 3hrs/ wkly
Family history mother a&w; Farther – d 86 – Brain Ca; f-dm2; hypertrophic

cardiomyopathy – pat aunt
Past medical history PAF; T&A; CVS; GI; Spinal Curvature – since childhood;

g4P4, 1st 2 Csxn for FTP, 2nd 2 repeat sections

2.2. Total Healthcare Costs

Ontario has a universal, publicly funded, healthcare system. To calculate the total health
system cost for an individual over a certain period, the GETCOST macro, developed by ICES,
was used. GETCOST∗ is based on a previously described methodology for computing total
healthcare costs from administrative data.46

To create the cohort from EMRPC, all individuals whose EMR data were collected and
entered into EMRPC between 1 April 2015 and 31 March 2016 were selected. The date of data
collection is known as the “load date”. Individuals younger than 18 or older than 105 years of
age and those who had been on the EMR system for less than one year as of the load date
were excluded. Using the GETCOST macro, the total healthcare costs, along with their cost
percentile rankings among all Ontarians, were calculated for each individual for 365 days after
their profile load date (i.e. the next year), and for 365 days prior to the load date (i.e. the
current year). Individuals with missing costs in either year (e.g. due to death) were excluded.

∗GETCOST computes person-level costs based on billing codes and other service utilizations paid for
by the Ontario government.
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The final cohort size was 277,173 patients. Text from each of the six CPP fields were converted
to lower case and the vocabulary of tokens for each field was determined independently. Stop
words and tokens starting with a digit were removed. We define HCUs as individuals in the top
5% of total healthcare costs. Figure 1 compares a patient’s cost percentile for the next year
(i.e., 365 days after the load date) versus the current year (i.e. 365 days prior to the load date).
Consistent with previous reports,45 these two costs are highly correlated (R2 = 0.688, ρ = 0.686).
Also, as per previous reports,11,37,45 we found a high correlation between the cost percentile and
age (R2 = 0.465, ρ = 0.458). As such, we included both age and sex as features when modelling.

Figure 1. Box plots show distribution of next year (2016) cost percentile for cohort males (orange)
and females (blue) in the current year (2015) cost percentile range shown on the x-axis. The stacked
bars show the sex distribution within each current year cost percentile range.

After data processing, the cohort was randomly split into training and test sets, stratifying
by their next year HCU status. The training set consisted of 80% of the total cohort (221,738
records), and the test set consisted of 20% of the total cohort (55,435 records). All model
parameters and hyperparameters were set using the training set, all model performance
estimates reported here are based solely on the test set.

2.3. Encoding of Ordinal Variables

To encode the ordinal variables age and current year percentile as features, first, for each
variable, we choose a set of thresholds t = {t1, t2, ..., tN} where ti < tj if i < j, and N is the
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number of encoded binary features. Then, if z is the value to be encoded, we set xi = 1 if z ≥ ti,
otherwise xi = 0. After a logistic regression model is fit, this allows us to visualize the weights
{w1, w2, ..., wN} by plotting the cumulative weight

∑i
j=1(wj) versus ti.

To encode age, we used t = {19, 20, ..., 103}, and to encode the current year percentile, we
used t = {6, 7, ..., 95, 95.1, ..., 99.9}.

2.4. Word Embeddings

In language prediction tasks, like ours, with a small set of positively labelled examples,
externally defined word embeddings are often used.14,26 However, as the notes in our study
used numerous abbreviations unique to this context, we reasoned this strategy would be
less effective than word embeddings specific to our corpus. To assess the impact of source of
word embeddings, we tested four different sets of word embeddings, two were pre-defined by
others,5,35 and two were created for this study. All four embedding sets were originated using
the word2vec skip-gram model.27 Table 2 shows a summary of the embeddings used. As seen
in Table 3, embeddings defined using clinical notes (i.e. EMRPC and MIMIC) were able to
capture common misspellings and abbreviations of terms, while more generalized embedding
sets derived from well-edited text identified similar or related concepts. Note that the EMPRC
embedding used not only the CPP used by our classifier, but also the less structured “progress
notes” not considered by our classifier.

Table 2. Summary of the embedding sets used: the number of tokens used for training,
the number of dimensions, the number of unique tokens, and whether or not the vocab-
ulary is cased. The PubMed and PubMed+PMC+Wiki embeddings were taken from
external sources, while the MIMIC and EMRPC embeddings were trained for this study.

Training Data
Training Tokens
(billions)

Dimension Vocab Size Cased

PubMed5 2.7 200 2,231,686 Yes
PubMed+PMC+Wiki35 >5.5 300 5,443,656 Yes
MIMIC18 0.6 300 420,786 No
EMRPC 2.3 300 723,458 No

3. Methods

For all models, logistic regression with L1 regularization was used as the classifier. The
regularization parameter was tuned with a Bayesian optimization for 25 iterations using
Scikit-optimize,25 with stratified 5-fold cross validation on the training cohort and AUROC
as the metric. The three main models we compared correspond to three different feature sets
which are defined below. The sets are: Bag of Words (BoW), EmbEncode, and EmbEncode
appended to BoW (BoW+EmbEncode).

3.1. Bag of Words

After preprocessing and Porter stemming,34 unigrams and bigrams appearing in at least five
training set documents were included in the vocabulary of the bag of words model. Separate
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Table 3. Top 5 closest words based on cosine distance to some common clinical terms for each of
the embeddings

PubMed PubMed+PMC+Wiki MIMIC EMRPC

throat

sore 0.79 throats 0.74 nose 0.79 thoat 0.85
throats 0.77 runny 0.70 ears 0.63 thraot 0.82
pharyngitis 0.75 pus/surface 0.69 thin 0.57 thorat 0.79
Throat 0.74 nose 0.69 oropharynx 0.56 troat 0.78
pharyngotonsillar 0.73 sore 0.68 normocephalic 0.56 throat- 0.73

diabetes

mellitus 0.95 T2DM 0.85 iddm 0.76 dm 0.76
T2DM 0.83 T1DM 0.82 mellitus 0.76 dm2 0.69
Diabetes 0.82 prediabetes 0.80 dm 0.73 diabetic 0.67
diabetic 0.82 mellitus 0.80 diabetic 0.73 t2dm 0.63
non-insulin-dependent 0.80 pre-diabetes 0.78 asthma 0.66 diabtes 0.61

cancer

cancers 0.88 cancers 0.86 metastatic 0.83 ca 0.77
breast 0.80 caner 0.82 carcinoma 0.78 colon 0.75
carcinoma 0.79 CRC 0.8 mets 0.78 cancer- 0.69
colorectal 0.78 PCa 0.79 melanoma 0.74 colorectal 0.64
adenocarcinoma 0.77 cancer.4 0.75 chemo 0.71 cancern 0.62

metastasis

metastases 0.88 metastases 0.89 metastases 0.89 metastases 0.87
metastatic 0.82 micrometastasis 0.82 metastatic 0.75 metastatic 0.79
metastasized 0.78 metastatis 0.80 carcinoma 0.72 mets 0.78
tumor 0.78 metastastic 0.80 mets 0.71 tumor 0.70
metastastic 0.77 metastatic 0.79 neoplasm 0.69 tumour 0.69

arthritis

rheumatoid 0.92 arthritis(RA) 0.79 gout 0.80 oa 0.78
polyarthritis 0.83 polyarthritis 0.78 osteoarthritis 0.76 osteoarthritis 0.77
arthritides 0.82 arthritides 0.77 rheumatoid 0.73 arthrits 0.76
ankylosing 0.80 PsA 0.76 oa 0.72 arthrtis 0.76
spondylitis 0.80 arthritis-like 0.75 neuropathy 0.66 arthirits 0.74

aspirin

Aspirin 0.87 clopidogrel 0.85 plavix 0.72 asprin 0.80
acetylsalicylic 0.85 ticlopidine 0.84 asa 0.69 asa 0.76
clopidogrel 0.79 Aspirin 0.80 statin 0.62 aspririn 0.69
antiplatelet 0.75 clopidegrol 0.79 lisinopril 0.60 81mg 0.68
ER-DP 0.75 warfarin 0.78 atorvastatin 0.59 plavix 0.67

dialysis

hemodialysis 0.87 haemodialysis 0.80 hd 0.82 hemodialysis 0.72
CAPD 0.84 hemodialysis 0.79 hemodialysis 0.73 dyalisis 0.66
Dialysis 0.82 CAPD 0.77 quinton 0.70 dialysis- 0.64
haemodialysis 0.82 CRRT 0.73 tunneled 0.66 diaylsis 0.64
dialytic 0.80 dialytic 0.73 permacath 0.63 dialyisis 0.63

vocabularies were defined for each of the six fields in the CPP; and separate word counts were
collected for each of these fields. We applied TF-IDF weighting to these appended word counts,
to define the final input vector. Age and sex were also added as features, with age encoded
as described in section 2.3. Features were each scaled to unit variance. The dimension of the
input feature vector for this model was 214,750.

3.2. EmbEncode

In the EmbEncode model, each field of the CPP is encoded by a vector of length equal
to three times the embedding dimension. The first third of the vector corresponds to the
elementwise max of the embedding vectors of the tokens within the document, the second
corresponds to the elementwise minimum, and the last third corresponds to the elementwise
mean. Four instances of the EmbEncode model were created using the four pre-trained word2vec
embeddings defined in Section 2.4. Aggregated word embedding features have proved useful in
other clinical prediction tasks.3,10 Age and sex were added, as per the last section, and the
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features were scaled to unit variance. Features derived from word embeddings better capture
word semantics, as words with similar semantic meaning have similar embeddings. Aggregating
word embeddings using the EmbEncode features permit us to represent documents of different
sizes with a fixed length feature vector.

3.3. Historical Baseline

As seen in Figure 1, the cost percentile of a person in the current year is highly correlated
with their cost percentile in the next year. The historical baseline is a classifier which simply
has the current year cost percentile as its only feature. It assigns a discriminant value to each
patient equal to their cost percentile in the current year. For example, if a person was in the
84th cost percentile in the current year, their discriminant value for being in the top 5% HCU
in the next year would be 0.84. Patients are ordered by this discriminant value to compute
ROC areas. For some of the models, we also encode current year cost percentile as a feature.

3.4. Varying the Training Set

We explore the exclusion of certain individuals from the training set based on their current year
cost percentile. By removing patients with high cost percentile in the current year, we hope
that the model will better predict transitional users, rather than focusing on recurrent HCUs.
However, it is not clear that removing recurrent HCUs would improve classifier performance
because excluding current HCUs greatly reduces the number of positive examples available
to train the model. As such, we explore the following three training sets: 1) All patients
(n = 221, 738, with 16, 019 becoming or remaining HCUs in the next year), 2) Patients with
current year cost percentile less than 95% (n = 206, 935, with 7, 675 becoming HCUs in the
next year), 3) Patients with current year cost percentile less than or equal to 50% (n = 92, 833,
with 684 becoming HCUs in the next year). Note that removing recurrent HCUs reduces the
number of positive examples available to train our classifier by more than 50%.

3.5. Varying the Evaluation Set

In order to effectively evaluate model performance only on potentially transitional HCUs, we
also explore adjusting patient inclusion in the test set. In particular, model performance will
be evaluated on different subsets of the test set, created based on the patients’ current year
percentiles. We use subsets of patients with current year cost percentile less than or equal to k,
where k = 20, 22, 24..., 100.

4. Results

First, using the entire training set, we ran the Bayesian optimization for the three models
on each of the four embeddings, selecting the set of hyperparameters with the best 5-fold
ROC performance for each (embedding, model) combination. One additional variant of each
model was trained, adding on the current year cost percentile as a feature, while maintaining
the optimal hyperparameters from the Bayesian search. Each model was evaluated on the
held-out test set, and the ROCs of the models are shown in Table 4. 95% Confidence intervals

Pacific Symposium on Biocomputing 25:127-138(2020)

133



(shown in parentheses) were calculated using the DeLong test.40 Without using the current
year cost percentile, the best performing model is the EmbEncode with EMRPC embeddings.
Despite having 50-fold fewer features (219,034 versus 4,284), EmbEncode performs better than
BoW+EmbEncode on the EMRPC embeddings. This suggests that despite the regularization
and hyperparameter tuning, there is still some overfitting. Note that after L1 regularization,
the EmbEncode model contains 1,177 features with non-zero weights, while adding in the
BoW features increases it to 4,284. Note that for embeddings other than EMRPC, adding the
BoW features increased performance slightly, potentially because the embeddings were not
well matched to the classification problem.

Table 4. Test set % ROC of each embedding set for the best hyperparameter combination obtained from the
Bayesian search. Also includes the test set ROC for the best hyperparameters plus adding the current year
cost percentile. All models were trained on the entire training set.

% ROC (± 95% CI): CPP only % ROC (± 95% CI): CPP + current cost percentile
Embedding BoW EmbEncode BoW+EmbEncode BoW EmbEncode BoW+EmbEncode
PubMed

81.85 (0.36)

81.96 (0.36) 82.23 (0.35)

89.74 (0.27)

90.13 (0.27) 89.74 (0.28)
PubMed + PMC
+ Wiki

82.05 (0.35) 82.23 (0.35) 90.20 (0.27) 89.77 (0.28)

MIMIC 81.90 (0.36) 82.27 (0.35) 90.08 (0.27) 89.76 (0.27)
EMRPC 82.48 (0.35) 82.45 (0.35) 90.19 (0.27) 89.81 (0.28)

From Table 4, it is clear that the current year percentile is a highly predictive variable.
In fact, the historical baseline has a performance of 89.12±0.29% ROC, far exceeding the
performance of any of the models without current year cost percentile as a feature. However,
as suggested in Figure 1, current year percentile may not be a useful feature for patients with
lower percentiles.

Next, to examine the impact of current year cost, and of adjusting the training set to focus
on non-recurrent HCUs, we evaluated models trained with different subsets of the training data
on different subsets of the testing data. As shown in Figure 2, removing recurrent high cost
users from the training set appears to be an effective method of increasing model performance
for users with initially low healthcare costs. Note, in particular, that the 95% cutoff model
performs better than the 50% cutoff model even on those patients below the 50% cutoff that
the latter was targeted toward. Selecting the best model from this figure (EmbEncode with
95% training cutoff) and comparing it with other models in Figure 3, it can be seen that it
outperforms a model with current year percentile added until up to 70% current year percentile
(in other words, for the majority of the patient population). Furthermore, the historical baseline
performs much worse compared to other models on users with lower initial costs.

Figure 4 shows the cumulative weights (as outlined in Section 2.3) of the age variable for
an EmbEncode model based on EMRPC embeddings. Figure 5 shows the cumulative weights
for the current year percentile variable for an EmbEncode+current year percentile model based
on EMRPC embeddings. As expected, both plots show a generally increasing trend. However,
the contribution of age to the log-probability seems to diminish with increasing age past 80
years old. Conversely, the contribution of the current year cost percentile seems to grow rapidly
for the last 5-10 percentiles. In addition, note that the cumulative coefficient for the current
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Figure 2. ROC Performance of EmbEncode
models with EMRPC embeddings trained on
different subsets of the training cohort eval-
uated on different subsets of the test cohort
based on their current year cost percentile

Figure 3. ROC Performance of various mod-
els evaluated on different subsets of the test
cohort based on their current year cost per-
centile

Figure 4. Cumulative coefficients for the age
variable

Figure 5. Cumulative coefficients for the cur-
rent year (2015) cost percentile variable

year percentile is close to zero until about 50%, further indicating that current year healthcare
costs is not an useful indicator of next year spending for lower-cost patients.

5. Discussion

Choice of Word Embeddings From Table 4, it can be observed that the EMRPC em-
beddings perform much better than the other embeddings. By training the embeddings on
the same dataset as the downstream task, the embeddings were able to encode misspellings
and abbreviations that appear in the input text with similar vectors as the original concept,
leading to better downstream performance.44 The poor transferability of embeddings trained
on journal articles to clinical text is also documented in the literature.10

Performance of Historical Baseline As anticipated, a patient’s healthcare usage in the
current year is a good predictor of their HCU status in the next year, but only if the patient
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is already a HCU. As such, this information, which is difficult for primary care providers to
access, has little value for patients not already in the top half of healthcare users. Indeed, when
the current year percentile is added to the EmbEncode model, the performance of the model
actually deteriorates for patients with lower levels of healthcare usage.

Varying the Training Set Removing patients with high costs in the current year from the
training cohort appears to be an effective way of improving model performance on patients
with lower current year healthcare costs. In particular, training on patients with less than 95%
current year cost percentile results in an improvement over selecting only patients with less
than 50% current year percentile. However, both models noticably out-perform training on
the entire cohort. This indicates that the risk of overfitting on recurrent HCUs outweighs the
extra data available from using all the patients for training. Further, both models out-perform
the EmbEncode model with the current year percentile included (the model with nearly the
highest overall ROC), for the majority of patients.

Performance of EmbEncode Using EMRPC embeddings, the EmbEncode model performs
competitively with the BoW+EmbEncode model using only a quarter of the features. For other
embedding sets, adding aggregated embedding features to the bag-of-words model improved
the model performance for all embedding sets tested. Many of these embedding features have
large coefficient magnitudes, indicating that they are important variables for the models. It is
clear that aggregated word embeddings can efficiently capture useful semantic information.

Limitations and Future Work In this study, we focused on patient data readily available at
the point-of-care to primary care physicians in Ontario and have established a strong baseline
for predictive performance. However, the CPP is simply a summary of the entire patient record
available to the primary care physician; incorporating temporal information through progress
and consult notes may improve performance but would require more complex models. Other
administrative data, generally not available to primary care providers in Ontario, such as
emergency room visits, hospitalizations, and other healthcare utilization statistics may also
improve the model performance. We have also not considered word ordering, except for bigrams
in the BoW model. In some cases, these features can be helpful, but would also require more
complex and less interpretable models. Finally, our findings focus on unstructured cumulative
patient profiles, so the methods presented here would not generalize to other EMR systems
that do not contain them.
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