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Computed tomographic (CT) is a fundamental imaging modality to generate cross-sectional
views of internal anatomy in a living subject or interrogate material composition of an
object, and it has been routinely used in clinical applications and nondestructive testing.
In a standard CT image, pixels having the same Hounsfield Units (HU) can correspond to
different materials, and it is therefore challenging to differentiate and quantify materials.
Dual-energy CT (DECT) is desirable to differentiate multiple materials, but the costly
DECT scanners are not widely available as single-energy CT (SECT) scanners. Recent
advancement in deep learning provides an enabling tool to map images between different
modalities with incorporated prior knowledge. Here we develop a deep learning approach to
perform DECT imaging by using the standard SECT data. The end point of the approach
is a model capable of providing the high-energy CT image for a given input low-energy CT
image. The feasibility of the deep learning-based DECT imaging method using a SECT data
is demonstrated using contrast-enhanced DECT images and evaluated using clinical relevant
indexes. This work opens new opportunities for numerous DECT clinical applications with
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a standard SECT data and may enable significantly simplified hardware design, scanning
dose and image cost reduction for future DECT systems.

Keywords: Dual-energy computed tomography; Single-energy computed tomography; Deep
learning; Convolutional neural network; Material decomposition; Virtual non-contrast; Io-
dine quantification.

1. Introduction

Pixel number in a standard single-energy computed tomography (SECT) image represents
effective linear attenuation coefficient and it is an averaged contribution of all materials or
chemical elements in the pixel. It therefore does not give a unique description for any given
material, and pixels having the same CT numbers can represent materials with different
elemental compositions, making the differentiation and quantification of materials extremely
challenging. Dual-energy CT (DECT) scans the object using two different energy spectra
and is able to take advantage of the energy dependence of the linear attenuation coefficients
to yield material-specific images.1–20 This enables DECT to be applied in several emerging
clinical applications, including virtual monoenergetic imaging, automated bone removal in
CT angiography, perfused blood volume, virtual noncontrast-enhanced images, urinary stone
characterization and so on.21

In practice, leading industrial CT vendors have used different techniques to acquire dual-
energy data. For examples, GE Healthcare scanners use rapid switching of x-ray tube potential
to acquire alternate projection measurements at low and high-energy spectra.11,22 This tech-
nique requires the transition time from low to high tube potential between consecutive views
to be less than a millisecond while separating the spectra as much as possible, which is very
technically challenging. Siemens Healthineers scanners use dual x-ray sources and two data
acquisition systems, both of which are mounted on the same gantry.7 Thus, the dual-source
scanner cost is much higher than the standard SECT scanner. Philips Healthcare scanner
acquires DECT projection data using a layered detector, with which the low-energy data and
the high-energy data are collected by the front detector layer and the back-detector layer,
respectively.6,23 All the DECT data acquisition techniques have posed a significant burden
on CT system hardware. Hence, DECT scanners are not widely available as SECT scanners,
especially for less-developed regions. In addition to the increased complexity of the imaging
system and cost, DECT may also increase the radiation dose to patients due to the additional
CT scan. In this work, we demonstrate a standard DECT imaging using images acquired by a
SECT scanner is feasible by leveraging from the state-of-the-art deep learning technique and
seamless integration of prior DECT knowledge in the deep learning model training process. It
is intriguing to note that the proposed method enables DECT clinical applications (such as
iodine quantification, virtual noncontrast-enhanced imaging) to be performed using a SECT
data, which has potential to provide a fundamental paradigm for DECT imaging applica-
tions for less developed regions where only SECT scanners are available and high-end DECT
scanners are not affordable.

Deep neural network has recently attracted much attention for its unprecedented ability
to learn complex relationships and incorporate existing knowledge into the inference model
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through feature extraction and representation learning.24 The method has found widespread
applications in biomedicine.25–32 Here we introduce a hierarchical neural network for DECT
imaging with a SECE data and demonstrate the superior performance of the deep learning-
based DECT method using a popular DECT clinical application. The essences of our approach
are the extraction of the intrinsic features between the differences of the high- and low-energy
CT images by exclusion of the image noise, and the construction of a robust encoder/decoder
network architecture to map the differences. By using the network architecture, we incorporate
the intrinsic differences learned from paired DECT images acquired from commercial scanners
into a deep learning model for the high-energy CT image prediction in the subsequent new
low-energy CT image input.

2. Methods

In this study, we aim to train a deep learning model to transform low-energy CT image IL to
high-energy CT image IH using routinely available paired DECT images. To this end, we first
use a fully convolutional network derived from ResNet to significantly reduce the image noise.33

This procedure is performed in an ene-to-end fashion to provide low noise DECT images IHD

and ILD. With these images, instead of directly mapping the high-energy CT image from the
low-energy CT image, an independent mapping convolutional neural network (CNN), which
we call DECT-CNN, is trained to learn an difference Idiff image between IHD and ILD for the
given input ILD. Then a predicted high-energy CT image Ipred is calculated as the summation of
the origianl low-energy CT image IL and the predicted difference image Idiff during inference
procedure. The DECT-CNN model is based on an U-Net-type architecture and the mean-
squared-error is used as the loss function. During training, the loss function is minimized using
the adaptive moment estimation (ADAM) algorithm. Weights in the convolutional kernels are
updated using back-propagation method.

The proposed deep learning-based DECT imaging approach was evaluated using a popu-
lar DE application: virtual non-contrast (VNC) imaging and iodine contrast agent quantifi-
cation. The VNC images and the iodine maps were decomposed using a statistically optimal
image-domain material decomposition algorithm.34 To assess the accuracy of the approach,
we retrospectively acquired DECT images from 22 patients who received contrast-enhanced
abdomen CT scan. Quantitative comparisons between the original high-energy CT images
and the predicted high-energy CT images were performed using clinically relevant HU values
for different types of tissues. Material-specific images (VNC images and iodine maps) quan-
tification obtained from the original DECT images and the deep learning-predicted DECT
images were also compared and quantitatively evaluated using HU value and noise level in
region-of-interests (ROIs).

3. Results

We found that the mapping CNN yields inferior high-energy CT images with original noisy
low-energy CT images as input, indicating the CNN wastes its ability of expression on mapping
the image difference between high- and low-energy levels with the presence of noise. Fig. 1
shows an example of the DECT images with and without noise reduction. As can be seen,
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Fig. 1. Low- and high-energy CT images with and without noise reduction. The difference images
in column three are obtained by subtracting the denoised images from the raw images. All images
are displayed in (C=0HU and W=500HU).

Table 1. Quantitative analysis of the DECT images with and without
noise reduction. Region-of-interests (ROIs) assessments on different
tissues (arota, liver, spine, and stomach) show the HU accuracy of the
CT images is well preserved, while the noise is significantly reduced
after noise reduction.

ROIs HUraw HUdenoised ∆HU stdraw stddenoised

Arota
100 kV 314.5 312.7 1.8 35.4 6.8
140 kV 166.7 164.8 1.9 33.0 7.6

Liver
100 kV 71.8 69.5 2.3 31.6 6.8
140 kV 60.5 63.4 -2.9 24.8 5.4

Spine
100 kV 214.6 214.7 -0.1 39.7 20.7
140 kV 149.5 149.0 0.5 32.2 13.6

Stomach
100 kV 2.2 2.6 -0.4 36.7 8.1
140 kV -1 -1 0 38.8 7.7

the denoised images provide significantly improved quality compared to the raw CT images.
There are no anatomical structure information in the difference images, suggesting the spatial
resolution of the denoised CT images is well preserved after noise reduction. Quantitative
assessments of the images with and without noise reduction using ROIs on different types of
tissues are shown in Table. 1. The HU accuracy of the images is well preserved after noise
reduction. The HU differences between the original DECT images and noise reduced DECT
images are smaller than 3 HU, while the standard deviations of the ROIs suggest the noise
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Fig. 2. Original low- (1st column) and high-energy (2nd column) DECT images and predicted
high-energy CT images (3rd column), and difference images (4th column) between the predicted and
original 140 kV images. All images are displayed in (C=0HU and W=500HU).

has significantly reduced.
With noise significantly reduced DECT images, the CNN can appreciate the ingenuous

CT image difference at different energy levels and ultimately yield superior high-energy CT
image. Fig. 2 shows original DECT images, deep learning predicted high-energy CT images as
well as the differences images between the predicted images and their corresponding original
images for three patients. As can be seen, the predicted 140kV high-energy CT images are
highly consistent with original 140 kV images. The difference images show marginal anatomical
structures and suggest the spatial resolution is greatly preserved in the deep learning predicted
140 kV images. Quantitative evaluation using clinical relevant metrics shows the HU values of
the original images and the deep learning predicted images are very close to each other. The
HU difference between the predicted and original high-energy CT images are 1.94 HU, 3.32
HU, 1.83 HU and 1.10 HU for ROIs on spine, aorta, liver and stomach, respectively (Fig. 3).

Fig. 4 shows the three-dimensional VNC images and iodine maps obtained from the original
100 kV/140 kV DECT images and the deep learning-based DECT images. As can be seen,
the deep learning-based DECT approach provides high quality VNC and iodine maps. Since
material decomposition uses matrix inversion and yields amplified image noise, the noise levels
in VNC images and iodine maps obtained from the original DECT images are much higher
than the 100 kV images. Due to the noise correlation between the predicted high-energy CT
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Fig. 3. Quantitative measurement of the 140 kV images using ROIs on spine (a), aorta (b), liver (c)
and stomach (d) for different patients. The deep learning (DL) predicted images are highly consistent
with the original CT images.

images and the original low-energy CT images, deep learning-based DECT imaging provides
noise significantly reduced VNC images and iodine maps. The HU differences between VNC
images obtained from original DECT and deep learning DECT are 4.10 HU, 3.75 HU, 2.33
HU and 2.92 HU for ROIs on spine, aorta, liver and stomach, respectively. The aorta iodine
quantification differences between iodine maps obtained from original DECT and deep learning
DECT images are 0.2%, 0.5%, and 1.7% for the three patients, respectively, suggesting high
consistency between the predicted and the original high-energy CT images. More importantly,
the noise of the iodine maps obtained from the deep leaning predicted DECT images are about
6-fold smaller than that obtained from the original DECT images.

4. Discussion and Conclusion

Since we have used an image domain material decomposition method, artifacts in the C-
T images, such as beam hardening artifacts, scatter artifacts, may reduce the accuracy of
the material-specific images. This can impact material decomposition using both the original
DECT images and the deep learning DECT images. Hence, in the cases where artifacts sig-
nificantly reduce the HU accuracy of the CT images, beam hardening correction20 and scatter
correction35–37 methods can be employed to reduce the CT artifacts and further to enhance
the material decomposition accuracy.

Classical U-Net uses cross entropy loss and soft-max for classification and segmentation
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Fig. 4. Illustration of the contrast-enhanced 100 kV CT images (C=0HU and W=500HU) and VNC
images (C=0HU and W=500HU) and iodine maps (C=0.6 and W=1.2) obtained using original DECT
images and deep learning (DL)-based DECT images in transversal, coronal and sagittal views.

problem (i.e., 0-1 labelling). Here we are using mean-squared-error because the dual-energy
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Fig. 5. Iodine quantification obtained using both the original DECT images and the DL-based
DECT images. (a) Iodine quantifications, (b) standard deviations of the measured ROIs.

residual mapping is not a classification or segmentation problem. Instead, the encoder-decoder
architecture is employed to incorporate the dual-energy residual into multi-resolution multi-
scale feature representation. The output of the network is a 1 × 1 convolutional layer which
yields a final feature that has the spatial shape as the DECT residual image. The decoded final
feature was then compared to the training label (ground truth) using the mean-squared-error.
The parameters of the network are updated using backpropagation during training procedure.

The difference of dual-energy attenuation properties of different types of tissues can be
characterized by the residual images of the DECT images. By using the residual images and
the corresponding low-energy CT images (with consistent anatomical information) to train
the deep learning model, the model can learn where the organs are in a normal body and
what is the dual-energy attenuation properties. The trained model can then adjust the pixel
value of the low-energy CT (100kV) according its location to reflect the attenuation property
at the high-energy (140 kV). In this study, all patients were performed contrast-enhanced CT
scans, so one of the distinct features of the model learned is the attenuation property of the
iodine contrast agent at the dual-energy scenarios, which can be used to map the dual-energy
residual during the inference process.

This study demonstrates that highly accurate DECT imaging with single low-energy data
is achievable by using a deep learning approach. The proposed algorithm shows superior and
reliable performance on the clinical datasets, and provides clinically valuable high quality VNC
and iodine maps. Compared to the current standard DECT techniques, the proposed method
can significantly simplify the DECT system design, reduce the scanning dose by using only
a single kV data acquisition, and reduce the noise level of material decomposition by taking
advantage of the noise correlation of the deep learning derived DECT images. The strategy
reduces the DECT imaging cost and may find widespread clinical applications, including
cardiac imaging, angiography, perfusion imaging and urinary stone characterization and so
on.
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