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Machine learning is powerful to model massive genomic data while genome privacy is a
growing concern. Studies have shown that not only the raw data but also the trained model
can potentially infringe genome privacy. An example is the membership inference attack
(MIA), by which the adversary can determine whether a specific record was included in
the training dataset of the target model. Differential privacy (DP) has been used to defend
against MIA with rigorous privacy guarantee by perturbing model weights. In this paper, we
investigate the vulnerability of machine learning against MIA on genomic data, and evaluate
the effectiveness of using DP as a defense mechanism. We consider two widely-used machine
learning models, namely Lasso and convolutional neural network (CNN), as the target
models. We study the trade-off between the defense power against MIA and the prediction
accuracy of the target model under various privacy settings of DP. Our results show that
the relationship between the privacy budget and target model accuracy can be modeled
as a log-like curve, thus a smaller privacy budget provides stronger privacy guarantee with
the cost of losing more model accuracy. We also investigate the effect of model sparsity
on model vulnerability against MIA. Our results demonstrate that in addition to prevent
overfitting, model sparsity can work together with DP to significantly mitigate the risk of
MIA.
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1. Introduction

Genomics has emerged into a frontier of data analytics empowered by machine learning and
deep learning, thanks to the rapid growth of genomic data that contains individual-level
sequences or genotypes at large scale. To build powerful and robust machine learning models
for genomics analysis, it is critical to collect, aggregate, and deposit sufficiently large assembly
of genomic data. However, genetic privacy is a growing and legitimate concern that prevents
wide sharing and aggregation of genomic data. Since genomic data is naturally sensitive and
private, the sharing of such data can potentially disclose an individual’s sensitive information
such as identity, disease susceptibility or family history.1,2 The current strategies of protecting
genomic privacy is centered around relevant regulations and guidelines (i.e. HIPAA3), together
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with the controlled access of individual-level genomic data (e.g. dbGaP4). However, we are
in great need of new techniques for protecting genetic privacy toward an overarching goal of
achieving trustworthy biomedical data sharing and analysis. Specifically, it is imperative to
develop computational strategies to mitigate leakage of genetic privacy including the following
two types of privacy leakage:

• Privacy leakage via sharing data: an individual’s genomic data record may be leaked by
sharing raw genomic data or summary statistics data; and

• Privacy leakage via sharing models: the information that an individual’s genomic data is
included in the training dataset of a particular machine learning model, may be leaked by
sharing the model.5

While most of the prior works focus on the former type of privacy leakage resulted from
sharing data,6–8 in this study, we mainly focus on the latter type of privacy leakage from
sharing machine learning models. Several studies have recently showed that trained models
might memorize training data and thus disclose privacy of data records.9,10 Although there
exists a wide spectrum of attacks on machine learning models, the membership inference attack
(MIA)11 has recently attracted research efforts that induces privacy leakage when sharing
machine learning models. More specifically, MIA refers to an attack to infer if the target
record was included in the target model’s training dataset. MIA has been demonstrated as
an effective attack on images and relational data.5,11,12 However, it remains unclear if MIA is
effective on genomic data that significantly differ from conventional data.

Although less explored in genomics study, membership privacy leakage does pose an emerg-
ing risk given the increasing application and sharing of machine learning models in genomic
data analysis. One particular scenario is that a publicly accessible model trained on valuable
patient data may leak the privacy of patient.13 For example, suppose a cancer treatment cen-
ter builds a machine model to predict therapeutic responses based on patients’ genomic and
other biomedical data. The cancer center then releases the trained model to the public (e.g. for
publications or depositing the model into a public model repository) or deploys the model as
a machine-learning-as-a-service platform (e.g. Amazon Web service, Microsoft Azure, Google
Cloud). An adversary may use the model’s output to infer if a person, whose genomic data
the adversary has access to, is a cancer patient or cancer survivor, and such information may
provide the adversary some additional information that can be exploited. Hence, in this study,
we will investigate the efficiency of MIA on machine learning models for phenotype prediction
based on genomic data, a widely assessed prediction task carried out in agriculture, animal
breeding, and biomedical science.

To defend against various attacks including MIA, a few techniques have been developed to
mitigate privacy leakage such as homomorphic encryption,14 federated learning,15 and differ-
ential privacy (DP).16 While homomorphic encryption and federated learning are mainly used
to provide privacy protection for data sharing,17,18 DP provides a popular solution for publicly
sharing information not only about the data19 but also the models.20 The idea behind DP is
that the query results cannot be used to infer information about any single individual, if the
effect of perturbing in the database is small enough.16 Recently, multiple defense mechanisms
against MIA21–23 have been explored, with DP16 standing out as an efficient strategy that
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provides a rigorous privacy guarantee against MIA.11 Previous studies on imaging data24,25

have shown that DP is an effective solution for granting wider access to machine learning
models and results, while keeping them private. Therefore, we will mainly consider DP as a
defense mechanism against MIA, given its theoretical privacy guarantee and its applicability
for data and models. In this study, we investigate the effectiveness of using DP as a defense
mechanism against MIA for phenotype prediction on genomic data to prevent the risk of shar-
ing two widely-used machine learning methods including Lasso26) and convolutional neural
network (CNN27). The main contributions of our study lie in two folds:

First, we investigate the vulnerability of machine learning against MIA on genomic data,
and evaluate the effectiveness of using DP as a defense mechanism. Particularly, we evaluate
the trade-off between the defense power against MIA and the prediction accuracy of the target
model under various privacy settings of DP. Our results show that the relationship between
the privacy budget and target model accuracy can be modeled as a log-like curve, and hence
there exists a trade-off between privacy and accuracy near the turning point.

Second, we evaluate the effect of model sparsity on privacy vulnerability to effectively
defend against MIA. Genomic data is primarily high dimensional, where the feature size is
significantly larger than sample size. Hence, adding sparsity (e.g. the regularization terms in
Lasso models) to machine learning models is a critical and effective strategy to alleviate the
curse of dimensionality and avoid overfitting high-dimensional genomic data. Our results show
that model sparsity together with DP can significantly mitigate the risk of MIA, in addition
to providing robust and effective models for genomic data analysis.

2. Related Work

Membership inference attack (MIA). MIA is a privacy-leakage attack that predicts
whether a given record was used in training a target model based on the output of the target
model for the given record.11 Shokri et al.11 is the first work that defines MIA and inspires a
few follow-up studies. For example, Truex et al.28 characterize the attack vulnerability with
respect to the types of learning models, data distribution, and transferability. Salem et al.5

design new variants of MIA by relaxing the assumptions of model types and data. Long et al.12

generalize MIA by identifying vulnerable records and indirect inference. While most existing
works focus on MIA against discriminative models, relatively fewer works have considered
MIA against generative models.29,30 Liu et al.,31 Song et al.32 and Hayes et al.33 propose new
MIA variants against deep learning models including variational autoencoders (VAEs) and
generative adversarial networks (GANs). These MIA attacks require only black-box access
to a trained model. In practice, many studies usually release their models with white-box
access.17 Such white-box access provides many additional properties of the training models,
which make an MIA attack even easier.
Differential privacy (DP). DP16 has become the most widely-used approach that measures
the disclosure of privacy pertaining to individuals. The guarantee of a DP algorithm lies in that
anything the algorithm might output on a database containing some individual’s information,
is almost as likely to have come from a database without that individual’s information. DP
strategies have been applied to preserve genome privacy in genome-wide association studies
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(GWAS).8 For example, Johnson et. al34 developed privacy-preserving algorithms for comput-
ing the number and location of single nucleotide polymorphisms (SNPs) that are significantly
associated with certain diseases. Uhlerop et. al7 proposed a method that allows for the release
of aggregate GWAS data without compromising an individual’s privacy. Various DP mech-
anisms also have been developed35 to preserve model privacy, including a logistic regression
with DP36 and a random forest algorithm with DP.37 Going beyond classic machine learning
models, Shokri et al.38 adapted DP to deep neural networks. Abadi et al.25 developed a differ-
entially private stochastic gradient descent (SGD) algorithm for the TensorFlow framework.

3. Methods

In this section, we introduce the methods used in our study, including differential privacy and
membership inference attack. The supplementary materials and source code are available at
https://github.com/shilab/DP-MIA.git.

3.1. Membership inference attack (MIA).

As illustrated in Fig. 1, MIA assumes that a target machine learning model is trained on
a set of labeled samples from a certain population. The adversary utilizes the output of the
target model of a given sample to infer the membership of the sample (i.e., the given sample
was included in the training dataset of the target model). Formally, let ftarget() be the target
model trained on a private dataset Dtrain

target which contains labeled samples (x,y). The output of
the target model is a probability vector y = ftarget(x) whose size is the number of classes. Let
fshadow() be the shadow model trained on a dataset Dtrain

shadow, that is generated by the attacker
to mimic the target model ftarget() (i.e. take similar input and output of the target model).
We use the same assumption as in the pioneering work,11 that the shadow dataset is disjoint
from the private target dataset used to train the target model (i.e., Dtrain

shadow ∩Dtrain
target = ∅). Let

fattack() be the attack model. Its input xattack is composed of a predicted probability vector and
a true label, where the distribution of predicted probability vectors heavily depends on the
true label. Since the goal of the attack is membership inference, the attack model is a binary
classifier, in which the output 1 indicates that the target record is in the training dataset, and
0 otherwise.

To construct the MIA model, a shadow training technique is often applied to generate the
ground truth of membership inference. One or multiple shadow models are built to imitate
the target model. In this study, we consider the white-box setting, where the adversary has
the full knowledge of the target model including its hyperparameters and network structure.
This white-box threat setting reflects the observations that researchers often share their full
models and accidentally white-box representations of models may fall into the hands of an
adversary via means such as a security breach.

3.2. Differential privacy (DP)

DP describes the statistics of groups while withholding individuals’ information within the
dataset.16 Informally, DP ensures that the outcome of any data analysis on two databases
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Fig. 1. An illustration of the membership inference attack. A record in the target dataset
is fed into the target model and outputs a predicted probability vector. The shadow dataset and
unused dataset are either simulated or selected from publicly available datasets that have the same
distribution as the target dataset. A shadow model is built on the shadow and unused datasets to
mimic the target model. The attack dataset is composed of the probability vectors and true labels.
The attack model performs a binary classification (in/out) to determine whether a data record is
included in the training dataset (in) or not (out).

differing in a single record does not vary much. Formally, a randomized algorithmM : D → R
with domain D and range R is (ε, δ)-differentially private if for all subsets of S ⊆ R and for all
database inputs d, d′ ∈ D such that ‖d− d′‖1 ≤ 1 satisfied with Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈
S] + δ. Here, ‖d− d′‖1 requires that the number of records that differ between d and d′ is at
most 1. The parameter ε is called the privacy budget and a lower ε indicates stronger privacy
protection. The parameter δ controls the probability that ε-differential privacy is violated.
A lower δ value signifies greater confidence of differential privacy. If δ = 0, we say M is ε-
differentially private, and simplify (ε, 0)-differential privacy as ε-differential privacy. A rule of
thumb for setting δ is that it is smaller than the inverse of the training data size (i.e. 1/‖d‖).25

4. Experimental Setup

4.1. Dataset

We evaluate the effectiveness of DP against MIA on a widely-used yeast genomic dataset.39

We choose this yeast dataset because it provides an ideal scenario for evaluating the power
and privacy of phenotype prediction with well-controlled genetic background and phenotype
quantifications, without worries about complex genetic background and the hard-to-defined
phenotypes in humans. We extract and filter missing values of the original genotypes39 and
organize them into a matrix that contains genotypes of 28,820 genetic variants or features (with
values of 1 and 2 representing the allele comes from a laboratory strain or a vineyard strain
respectively) from 4,390 individuals. Similar to any typical human genomic data, the yeast
data is high dimensional where the feature size (28,820) is much larger than the sample size
(4,390). We also obtain phenotypes or labels of these 4,390 individuals for 20 traits,39 where
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we pick the trait of copper sulfate as our target phenotype in this study. This trait represents
the growth of yeast by measuring the normalized colony radius at a 48-hour endpoint in
agar plates with different concentrations of copper sulfate.39 Since MIA is mainly launched
on classification models, we binarize the quantitative phenotype values as 1 if they are larger
than the mean value and 0 otherwise.

4.2. Implementation of target models

For the target models of MIA, we implement a Lasso model26,40 as an example of sparse
learning models, and a CNN model27,41,42 as an example of deep learning model, that are
widely-used in analyzing high-dimensional genomics data.

Lasso is a regression analysis method that performs variable selection with a regularization
term using `1 norm.26 Lasso minimizes the residual sum of squares subject to the sum of the
absolute value of the coefficients being less than a constant. The general objective of Lasso

is min
β

1

2
‖y −Xβ‖22 + λ‖β‖1, where X is the feature matrix, β is the coefficient vector, and y is

the label vector. λ is the coefficient of `1 norm which controls the model sparsity. Lasso uses
an `1 norm regularization to shrink the parameters of the majority of features to zero which
are trivial, and those variants corresponding to non-zero terms are selected as the identified
important features. We set λ to be 0 (without model sparsity) and 0.001352 (with model
sparsity selected using the glmnet package in R43).

CNN has shown its capability to capture local patterns in genomic data.27 For demonstra-
tion, the CNN model in this study includes one CNN layer, followed by a dense layer as an
output layer. To improve model robustness, the `1 norm is applied to all layers to shrink small
weights to zero. We utilize a grid search with 5-fold cross validation to find the optimized
hyperparameters. In particular, we use two different learning rates (0.01 and 0.001) and two
micro batch sizes (50% and 100% of batch size). Regarding `2 norm clipping which deter-
mines the maximum amounts of `2 norm clipped to cumulative gradient across all network
parameters from each microbatch, we use four unique `2 norm clipping values (0.6, 1.0, 1.4,
and 1.8 respectively). For CNN models, we use two different kernel sizes (5 and 9), and two
different numbers of kernels (8 and 16). Furthermore, we set the values of λ as 0 (without
model sparsity) and 0.001352 (with model sparsity chosen using glmnet43).

4.3. Implementation of DP

We implement DP on both Lasso and CNN models with and without `1 norm respectively,
using a Python library called TensorFlow-privacy.44 DP is implemented in these models by
adding a standard Gaussian noise on each gradient of the SGD optimizer. The major process
for training a model with parameters θ by minimizing the empirical loss function L(θ) with
differentially private SGD, is summarized as the following: at each step of computing the
SGD: 1) compute the gradient ∇θL(θ, xi) for a random subset of examples; 2) clip the `2 norm
of each gradient; 3) compute the average of gradients; 4) add some noise in order to protect
privacy; 5) take a step in the opposite direction of this average noisy gradient; 6) in addition
to outputting the model, compute the privacy loss of the mechanism based on the information
maintained by the privacy accountant.
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In the DP implementation, the privacy budget is determined by a function that takes
multiple hyperparameters as the input. These hyperparameters include the number of epochs,
batch size and noise multiplier. The noise multiplier controls the amount of noises added in
each training batch. In general, adding more noise leads to better privacy and lower utility.
The hyperparameters used in this study are: two epoch sizes (50 and 100), two batch sizes (8
and 16) and five noise multipliers (0.4, 0.6, 0.8, 1.0, 1.2). We set the value of the parameter δ
as the inverse of training dataset size (i.e. δ = 0.00066489).25

4.4. Implementation of MIA

To train differentially private machine learning models and perform MIA, we split the whole
dataset into two disjoint subsets, one as the private target dataset and the other one as the
public shadow dataset.11 We randomly split the public shadow dataset, with 80% used for
model training and 20% used to generate the ground truth of the attack model. We focus on a
white-box model attack, where the target model’s architecture and weights are accessible, to
evalute how much privacy will be leaked in the worst case. Hence, the shadow model has the
same architecture and hyperparameters as the target model. We use an open-source library of
MIA45 to conduct MIA attacks on the Lasso and CNN models. We build one shadow model
on the shadow dataset to mimic the target model, and generate the ground truth to train
the attack model. The attack dataset is constructed by concatenating the probability vector
output from the shadow model and true labels. If a sample is used to train the shadow model,
the corresponding concatenated input for the attack dataset is labeled ‘in’, and ‘out’ otherwise.
For the attack model, we build a random forest with 10 estimators and a max depth of 2.
Each MIA attack is randomly repeated 5 times.

4.5. Evaluation metrics

Our evaluation metrics include: (1) the mean accuracy of 5-fold cross validation of the target
model on the private target dataset, and (2) the mean of MIA accuracy of 5 MIA attacks. The
accuracy of the target model on the training (testing, resp.) data is measured as the precision
(i.e., the fraction of classification results that are correct) of the prediction results on the
training (testing, resp.) data. We follow the pioneering work11 and use the attack accuracy to
measure MIA performance. All samples in the target dataset are fed into the attack model.

5. Results

5.1. Vulnerability of target model against MIA without DP protection

We investigate the vulnerability of Lasso and CNN models against MIA for predicting the
target phenotype without any DP protection. Table 1 shows the accuracy of the two target
models without DP and attack accuracy of MIA on these models. When the models are not
sparse (λ = 0), Lasso and CNN achieves a similar accuracy on the target dataset (0.7910
vs. 0.7894). The attack accuracy of MIA on Lasso and CNN with no sparsity is 0.5728 and
0.5726 respectively, which is better than random guess (0.5) and on a par with MIA accuracy
reported in other areas.11 The high dimensionality of genomic data makes MIA on genomic
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data much harder than other types of datasets, since shadow models hardly mimic the target
model on a high dimensional dataset. Nonetheless, with such a MIA accuracy, the adversary
still has a chance to infer the membership in a genomic dataset. After introducing model
sparsity by adding an `1 norm (λ = 0.001352) to coefficients (in Lasso) or weights (in CNN),
the target accuracy of both models is slightly improved and their attack accuracy is reduced.

Table 1. Model performance against MIA (without DP).

Methods
Target model Attack model

Accuracy Std. Accuracy Std.

Lasso (λ = 0) 0.7910 0.0123 0.5728 0.0071
Lasso (λ = 0.001352) 0.7963 0.0157 0.5631 0.0042
CNN (λ = 0) 0.7894 0.0199 0.5726 0.0059
CNN (λ = 0.001352) 0.7936 0.0225 0.5628 0.0050

5.2. Impact of privacy budget on the target model accuracy

In order to evaluate the impact of DP on the accuracy of the target model, we conduct a grid
search to find different privacy budgets and quantitatively investigate the impact of privacy
budget. As summarized in Fig. 2(a), we observe that the fitting curve between the privacy
budget and the target accuracy can be represented as a log-like curve. The performance of all
target models rapidly deteriorates as the privacy budget becomes smaller. When the privacy
budget is large, both non-sparse Lasso (λ = 0) and non-sparse CNN (λ = 0) models achieve
similar target accuracy. Compared with non-sparse models, the target accuracy of sparse Lasso
(λ = 0.001352) and sparse CNN (λ = 0.001352) models, is downgraded by DP to a more extent
even when the privacy budget is large. This is because sparse models only keep coefficients or
weights which are higher than λ, and shrink those coefficients or weights that are smaller than
λ to 0. Therefore, adding a noise to those large weights will have a more significant impact on
the accuracy of the target model.

5.3. Effectiveness of DP against MIA

To assess the effectiveness of DP against MIA, we conduct MIA on the target models with
different DP budgets. Our results (Fig. 2(b)) show that, for Lasso models, the fitting curve
between the privacy budget and the target accuracy can be represented as a log-like curve.
For CNN, we notice that the curve of attack accuracy is different from that of Lasso, since the
attack accuracy becomes unstable when the epsilon is smaller than 10. However, CNN with
DP still can provide strong privacy protection. In both Lasso and CNN models, we observe
that DP can defend against MIA effectively by perturbing the prediction vector output from
the target model, so that the adversary cannot easily infer the membership from such noisy
predictions.

According to results in Fig. 2, we choose the turning point with a maximum curvature
in the log curve as a trade-off between privacy budget and model accuracy. As the privacy
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budget becomes tight, the target accuracy is rapidly dropped after this turning point, while
the target model with DP can still provide sufficient protection against MIA. Based on this
observation, we choose the privacy budget of 10 that best addresses the trade-off between
privacy and target accuracy in this study.

(a) (b)

Fig. 2. Accuracy values of the (a) target model and (b) attack model respectively under
various privacy budgets (5-fold cross validation). Curves indicate the fitted regression lines;
shadow areas represent the 95% confidence intervals for corresponding regressions. Horizontal dotted
lines represent model performances without DP.

5.4. Effect of model sparsity

We investigate the effect of model sparsity by adding an `1 norm to model coefficients or
weights. Due to the large hyperparameter searching space, we only use the value of λ = 0.001352

for both Lasso and CNN, chosen using the glmnet package.43 Our results (Table 1) show
that adding sparsity to a model can improve the accuracy of the target model and reduce the
attack accuracy of MIA when DP is not deployed. This is because that on the high-dimensional
dataset, a Lasso or CNN model with no sparsity (i.e. λ = 0) can overfit the training data.
However, by introducing model sparsity, the overfitting of the model is reduced, leading to
better accuracy of the target model.

We further explore the impact of model sparsity on the accuracy of the target model when
DP is deployed. We observe that sparse models with DP have slightly worse model accuracy
compared with those non-spare models with DP (Fig. 2(a)). This is because each weight in
a sparse model is important to prediction results; and any perturbation to these weights can
significantly impact model accuracy. We also find that when the privacy budget is smaller
than the trade-off (e.g. ε < 10 in our results), the accuracy of the target model is relatively
insensitive to model sparsity compared with larger privacy budgets (i.e., ε > 10). Next, we
evaluate the impact of model sparsity on the defense power of DP against MIA. As shown
in Fig. 2(b), sparse models provide better privacy protection compared with those models
without sparsity, given the same DP budget ε.
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6. Conclusion

We investigate the vulnerability of trained machine learning models for phenotype prediction
on genomic data against a new type of privacy attack named membership inference attack
(MIA), and evaluate the effectiveness of using differential privacy (DP) as a defense mechanism
against MIA. We find the MIA can successfully infer if a particular individual is included in the
training dataset for both Lasso and CNN models, and DP can defend against MIA on genomic
data effectively with a cost of reducing accuracy of the target model. We also evaluate the
trade-off between privacy protection against MIA and the prediction accuracy of the target
model. Moreover, we observe that introducing sparsity into the target model can further defend
against MIA in addition to implementing the DP strategy.

Using yeast genomic data as a demonstration, our study provides a novel computational
framework that allows for investigating not only the privacy leakage induced from MIA at-
tacks on machine learning models, but also the efficiency of classical defending mechanisms
like DP against these new attacks. Nonetheless, there are several limitations of our current
study. We are limited to white-box setting where hyperparameters and model architectures are
accessible to an adversary in this study. In the future, we will also evaluate black-box access
where the adversary simply uses the target model as a black-box for query without any inside
information of the model. We will comprehensively explore the relationship between privacy
budget and model accuracy, under various combinations of model hyperparameters space and
phenotypes. We will apply the framework to analyze large-scale human genomic data where
privacy is of a realistic concern. We will investigate whether DP gives unequal privacy ben-
efits to genomes from minority groups compared with those from majority groups. We will
investigate other factors (e.g., the number of classes) and conventional genomic analysis (e.g.
associations studies, risk prediction) to assess the attack power of MIA and the effectiveness
of appropriate defense mechanisms.
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