
© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed under 
the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License. 

AeQTL: eQTL analysis using region-based aggregation of rare genomic variants 

Guanlan Dong1, Michael C. Wendl2, Bin Zhang3, Li Ding2 and Kuan-lin Huang3,*

1Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA 
2Department of Medicine, McDonnel Genome Institute, Washington University in St. Louis, St. Louis, MO 

63108, USA 
3Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Icahn 

School of Medicine at Mount Sinai, New York, NY 10029, USA 
*Corresponding Email: kuan-lin.huang@mssm.edu

Concurrently available genomic and transcriptomic data from large cohorts provide opportunities to 
discover expression quantitative trait loci (eQTLs)—genetic variants associated with gene expression 
changes. However, the statistical power of detecting rare variant eQTLs is often limited and most 
existing eQTL tools are not compatible with sequence variant file formats. We have developed 
AeQTL (Aggregated eQTL), a software tool that performs eQTL analysis on variants aggregated 
according to user-specified regions and is designed to accommodate standard genomic files. AeQTL 
consistently yielded similar or higher powers for identifying rare variant eQTLs than single-variant 
tests. Using AeQTL, we discovered that aggregated rare germline truncations in cis exomic regions 
are significantly associated with the expression of BRCA1 and SLC25A39 in breast tumors. In a 
somatic mutation pan-cancer analysis, aggregated mutations of those predicted to be missense versus 
truncations were differentially associated with gene expressions of cancer drivers, and somatic 
truncation eQTLs were further identified as a new multi-omic classifier of oncogenes versus tumor-
suppressor genes. AeQTL is easy to use and customize, allowing a broad application for discovering 
rare variants, including coding and noncoding variants, associated with gene expression. AeQTL is 
implemented in Python and the source code is freely available at https://github.com/Huang-
lab/AeQTL under the MIT license. 
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1. Introduction

Advances in sequencing technologies have enabled the generation of large-scale disease cohorts 
with concurrently available genomic and transcriptomic data1,2. Samples with concurrent DNA- and 
RNA-sequencing (DNA-seq and RNA-seq) provide opportunities to discover expression 
quantitative trait loci (eQTLs), i.e. genetic variants associated with variations in gene expression3. 
Most existing eQTL tools focus on applying various statistical models to test for association between 
individual pairs of a variant and the associated gene expression4–6. However, for rare variants, the 
underlying power of the statistical testing is often limited and identifying eQTLs from rare variants 
remains a challenge7. 

Multiple methodologies and tools using aggregation strategies to group and identify rare variants 
associated with disease status have been developed8–11, yet similar strategies have rarely been 
implemented for identifying eQTLs. In addition, these tools are not readily compatible with standard 
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variant call files resulted from sequencing data, including VCFs/MAFs and RNA-seq data from 
large cohorts.  

Here, we present AeQTL, a software tool that performs eQTL analysis on aggregated variants 
in specified genomic regions and is designed to accommodate standard file formats generated from 
sequencing data. Previous studies have found that rare germline variants are significantly enriched 
at both high and low extremes of gene expression in promoter regions12. Here, we show AeQTL’s 
aggregation algorithm can increase the statistical power in order to discover rare variant eQTLs with 
a larger size of grouped carriers. Further, we demonstrate AeQTL’s capacity in identifying both 
germline variants and somatic mutations associated with gene expression changes, which can help 
prioritize disease susceptibility genes or cancer driver genes. In sum, AeQTL offers a much-needed 
versatile multi-omics tool to integrate DNA-seq and RNA-seq data. 

2.  Methods 

AeQTL implements standard eQTL analysis with user-defined variant-aggregation and its workflow 
is shown in Fig. 1. AeQTL requires three input files: an expression file, a genotype file, and a region 
file. The user can provide an additional covariate file for advanced analyses.  

2.1.  Set up eQTL association tests 

The input region file (i.e. a BED file) is provided by the user to set up desired association tests 
between gene expressions and variants. Each line of the file contains a genomic region followed by 
one or more genes to be tested against. An association test will be set up between the expression 
level of each specified gene and aggregated variants in the genomic region. If no genes are specified, 
AeQTL by default will test each region against every gene’s expression in the expression file in a 
trans-eQTL discovery mode. This user-constructed BED file allows flexibility in the design of 
eQTL analysis for testing both cis- and trans- eQTLs. We also provide a coding exomic region BED 
file on our Github page, which can be used for testing and exploratory purposes.  

While all variants with matching samples in the expression file will be included in the tests, 
users can further restrict the aggregation by setting two optional thresholds: the number of mutated 
samples per region and the number of variants per region, in which case regions with samples or 
variants below the thresholds will be filtered out. Both thresholds are set to 1 by default.  

2.2.  Aggregate variants and conduct regression analysis 

AeQTL aggregates variants by finding overlaps between variants and regions using the interval tree 
data structure, which is part of the bx-python package (https://github.com/bxlab/bx-python). We 
used a standalone wrapper of the interval tree (https://github.com/ccwang002/bx_interval_tree) for 
easier compilation. The interval tree is designed for fast intersect queries on one-dimensional 
intervals. Compared to other simple positional intersection methods, the interval tree has two major 
strengths: (1) it allows each interval to be annotated and the annotations will be preserved in queries; 
(2) the interval tree is implemented in Cython which is faster and more computationally efficient. 
AeQTL creates an interval tree for each chromosome. For each genomic region provided in the BED 
file, an interval is specified by the start and end positions, annotated by the region name, and added 
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to the interval tree of its corresponding chromosome. Then, AeQTL finds the intervals that overlap 
with the given variant to extract its region name and aggregates variants of the same region. AeQTL 
accommodates different types of variants including single-nucleotide variants (SNVs), insertions, 
and deletions. After aggregation, AeQTL maps each region to samples and defines a regional 
mutation status by assigning a genotype “1” if a sample has any variants in this region and a 
genotype “0” otherwise.  

For each tested gene in each region, AeQTL performs a linear regression analysis of RNA-seq 
gene expression e against regional genotype g: 

𝑒 = 𝛼 + 𝛽𝑔 + 𝜖, 𝜖	~	𝑖. 𝑖. 𝑑.		𝑁(0, 𝜎!).	 

The linear model is built using the ordinary least squares method with a residual term ϵ that 
follows a normal distribution with a mean of zero and a constant variance. AeQTL supports 
covariates c to be incorporated into the regression model:  

𝑒 = 𝛼 + 𝛽"𝑔 + 𝛽!𝑐 + 𝜖, 

which enables the model to account for clinical factors and population structures.  

2.3.  Output intermediate mapped files and a result file with summary statistics 

AeQTL outputs mapped files with variant genotypes, expression, and covariates for each region, 
which can be readily routed into other aggregational statistical tests such as SKAT8 to allow 
comparison. Notably, most of the other aggregational software do not allow common sequence file 
formats (i.e. VCF or MAF) and thus the intermediate files enable flexibility for users. 
All the regression results are compiled in a summary file where AeQTL reports both p-values and 
coefficients of the intercept and all dependent variables, including regional genotype and covariates. 
To correct for multiple testing, AeQTL also reports adjusted p-values with false discovery rate 
(FDR) based on the Benjamini-Hochberg (BH) procedure. 

 
Fig. 1. AeQTL workflow. AeQTL links regions to gene expressions to set up the cis/trans-eQTL testing, 
partitions sample expression profiles based on aggregated variants in each region, conducts a linear 
regression test for each region-gene expression pair with optional covariates, and outputs a summary file.  
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3.  Results 

3.1.  AeQTL algorithm development and power simulation 

To demonstrate the aggregating effect on the statistical power of identifying rare variant eQTLs, we 
performed a simulation analysis using AeQTL. Based on VCF files and expression matrices of 10 
rare variants (frequency = 0.1%, five were effective) with a series of sample sizes, we ran AeQTL 
on both single variants and grouped variants specified by BED files (Fig. 2a). Gene expression 
profiles were generated from a normal distribution with a mean of 20 and a standard deviation of 
10, while effective variants had an effect size t (t = −10 or t = −20) from a normal distribution with 
a mean of t and a standard deviation of | t ⁄ 2 |. For each sample size, power was calculated as the 
averaged value of 10,000 independent simulations.  

Overall, statistical analysis of aggregated variants consistently demonstrated comparable or 
higher powers than individual variants. When the sample size was small, the powers of grouped and 
single variants were similarly low for both effect sizes. As the sample size increased, the powers 
under all testing conditions increased as expected. However, the powers of grouped variants 
increased noticeably faster than those of single variants. When effect size = −20, the increased power 
fold change provided by the AeQTL aggregation method was the most substantial within the sample 
size interval of 600 to 2,000. The power of grouped variants reached 97% with sample size = 2,000, 
while single variants required three times the sample size to reach a similar power. When effect size 
= −10, the power of grouped variants reached 95% with sample size = 6,000 and single variants did 
not reach the same power until sample size = 15,000. At a sample size of 5,000, the powers of all 
testing conditions except for single variants with effect size = −10 were higher than 90% and were 
saturated (> 99%) when the sample size reached 8,000.  

3.2.  Germline eQTL detection 

We further tested AeQTL on rare germline truncations (minor allele frequency ≤ 0.05%) on 
chromosome 17 of the TCGA PanCanAtlas cohort13. We tested the hypothesis that rare truncations 
in cancer susceptibility genes are associated with their cis-expression in tumor samples. For the 
input BED file, we specified each of the genes on chromosome 17 as a region of interest and tested 
truncations in each gene region against the expression of its located gene. We used the level 3 TCGA 
RNA-seq gene expression data in RSEM14 from breast invasive carcinoma (BRCA) patients and 
incorporated six covariates: age, gender, ethnicity, tumor stage, as well as the top two components 
from the principal component (PC) analysis on population structure (accounting for > 80% of the 
top 20 PCs). Because low gene expression levels would likely present technical noises, we filtered 
out genes with median expressions lower than log(2) (Fig. S1a). This germline analysis, which 
contained 1,071 samples, 3,150 variants, and 261 unique gene regions, took ~35 min on a Mac with 
a 2.3 GHz processor and 8 GB memory.  
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We visualized the distribution of adjusted genotype p-values on a QQ-plot (Fig. 2b). The 
expression of BRCA1 was significantly associated with aggregated rare truncations in the BRCA1 
exomic region (P = 0.033) in the BRCA cohort, demonstrating that AeQTL could efficiently identify 
grouped genotype-expression association. In addition, SLC25A39 (P = 0.030) was among the top-
ranked genes whose expressions were negatively associated with the aggregated rare truncations in 
their regions. We also carried out a sensitivity analysis of adjusted genotype p-values against region 
sizes, which suggested no significant correlation between the two, indicating the lack of false-
discovery from large genes (rs = 0.16, P = 0.18, Fig. S1b). 

3.3.  Somatic eQTL detection 

Aside from germline variants, we also tested AeQTL on somatic truncations and missense mutations 
across 32 cancer types of the TCGA PanCancer cohort15. Similar to the germline eQTL detection, 
the input BED file contained coding sequence positions of all genes where each gene region was 
tested against the expression of itself in a cis-expression pattern. We used the TCGA PanCancer 
RNA-seq data and incorporated seven covariates: age, gender, ethnicity, the same top two PCs on 
population structure as in the germline analysis, cancer subtype, and whether the patient showed an 
onset age ≤ 50 years old. A separate AeQTL run was performed for each variant type in each cancer 
type, and all the output summary files for each variant type were compiled together for multiple 
testing correction using FDR to generate the final pan-cancer output. 

We interrogated a subset of 299 genes that were reported as likely driver genes by Bailey et al.16 
and extracted 23,849 truncations and 11,966 missense mutations located in these genes from 8,639 

Fig. 2. (a) Power simulation on eQTL analyses using rare variants. The statistical powers of AeQTL 
(grouped variants; in green) and single-variant testing (in blue) are compared under different sample sizes. 
(b) QQ-plot of -log10 adjusted genotype p-values from rare germline truncations on chromosome 17 in 
breast cancer patients. The red diagonal line is the expected value. BRCA1 and SLC25A39 are marked in red 
triangles. Other genes showing significant associations (P < 0.05) are also labeled and marked in blue. 
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samples. AeQTL identified 243 gene-cancer pairs with truncations and 77 gene-cancer pairs with 
missense mutations that were significantly associated with their respective gene expressions (FDR 
< 0.05, Fig. 3). The total and unique variant sites used in the analysis are summarized in Table S1. 
The top-ranked gene-cancer pairs with truncations include the MET proto-oncogene from brain 
lower grade glioma (LGG), the calcium channel gene CACNA1A from lung adenocarcinoma 
(LUAD), and TP53 from BRCA; the top-ranked gene-cancer pairs with missense mutations include 
JAK2 from stomach adenocarcinoma (STAD), TP53 from lung squamous cell carcinoma (LUSC), 
and FGFR3 from bladder urothelial carcinoma (BLCA).  

To demonstrate the computational capacity of AeQTL, we expanded the analysis to the entire 
dataset, including 335,866 truncations and ~2 million missense mutations from 10,208 samples. 
AeQTL identified 1,179 gene-cancer pairs with truncations and 3,241 gene-cancer pairs with 
missense mutations significantly associated with their respective gene expressions (FDR < 0.05).  

For significant gene-cancer pairs with truncations, 156 overlapped with the likely driver genes. 
For significant gene-cancer pairs with missense mutations, 115 overlapped with the likely driver 
genes. Interestingly, we also identified many top-ranked genes that were not previously identified 
drivers by TCGA PanCanAtlas driver project16. The top-ranked somatic eQTL genes with 
truncations include OR8D1 in LUSC, SOX10 in head and neck squamous cell carcinoma (HNSC), 
and PSG7 in kidney renal clear cell carcinoma (KIRC). The top-ranked somatic eQTL genes with 
missense mutations include USP29 in cholangiocarcinoma (CHOL) and AMELX, CNTN5, and 
OR1L3 in lymphoid neoplasm diffuse large B-cell lymphoma (DLBC). Multiple recent reports 
highlight the functionality of the “long-tail driver genes” found with lesser mutations in multiple 
cancer types17–21. These somatic eQTL genes and their expression-associated mutations represent 
new candidates that warrant further investigations.  

Fig. 3. QQ-plots of -log10 adjusted genotype p-values from somatic truncations (a) and missense mutations 
(b) on likely driver genes in 32 cancer types. The red diagonal line is the expected value. Gene-cancer pairs 
showing significant associations (P < 0.05) are marked in blue and the top three ranked pairs are labeled. 
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3.4.  eQTL patterns of oncogenes and tumor suppressor genes 

Cancer driver genes, depending on their mutated cancer type and pathway context, can be 
subclassified into oncogenes and tumor suppressor genes (TSGs). But most existing methods to 
classify oncogenes and TSGs leveraged cohort-level mutation data22–25 that lack considerations of 
their downstream consequences. To understand whether eQTL patterns could capture the distinction 
between oncogenes and TSGs, we further investigated the significant genes classified as oncogene 
or TSG from Bailey et al.’s DNA mutation-based study16.  

In the likely-driver-gene subset analysis, the genotype coefficients of truncations showed a 
strong association with their respective predicted classifications of oncogenes or TSGs. Genes 
predicted to be oncogenes or possible oncogenes had larger positive genotype coefficients while 
genes predicted to be TSGs or possible TSGs had larger negative genotype coefficients (Fig. 4a), 
demonstrating a polarized pattern of how truncations in oncogenes versus TSGs may affect their 
respective genes’ expression in opposite directions. Moreover, we performed a receiver operating 
characteristic (ROC) analysis evaluating how well genotype coefficients could predict the labels of 
driver genes. The analyses yielded an area under the curve (AUC) of 86.3% (Fig. 4c), suggesting 
the potential of using somatic truncations eQTL patterns to distinguish between oncogenes and 
TSGs. In comparison, such a pattern was not recapitulated in the genotype coefficients of missense 
mutations, where both oncogene and TSG mutations were associated with increased gene 
expressions (Fig. 4b). Overall, genotype-expression analyses revealed distinct eQTL patterns 
associated with missenses versus truncations and oncogenes versus TSGs in cancer drivers.  

3.5.  Comparison with existing variant-aggregation methods 

We used the intermediate mapped files from TCGA somatic likely driver subset to test two of the 
most popular variant-aggregation methods, SKAT8 and SKAT-O9, and performed the same multiple 
testing correction based on the BH procedure using FDR. For each gene-cancer pair, we analyzed 

Fig. 4. Violin plots of signed log10 genotype coefficients from significant somatic truncations (a) and 
missense mutations (b) on likely driver genes in 32 cancer types (P < 0.05). The driver gene predictions are 
obtained from Bailey et al. and genes with no predictions are filtered out. (c) ROC curve of significant 
somatic truncations labeled as either “Oncogene” or “TSG” (AUC = 0.863). Genes labeled as “Possible 
Oncogene” or “Possible TSG” are filtered out. 
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the difference between the adjusted p-value from AeQTL and the adjusted p-values from SKAT and 
SKAT-O. The majority of the adjusted p-values from AeQTL were lower than the ones from SKAT 
and SKAT-O (median difference for truncations = -0.076 (SKAT) and -0.017 (SKAT-O), median 
difference for missense = -0.012 (SKAT) and -0.010 (SKAT-O), Fig. S2). For both truncations and 
missenses, SKAT-O identified more significant associations than SKAT while recapturing the ones 
identified by SKAT. This is not surprising since SKAT-O leverages both SKAT and burden test and 
implements a small-sample adjustment procedure, which should work well with somatic data. 
Notably, AeQTL was able to identify more significant truncation associations than SKAT-O and 40 
out of the 243 associations were unique to AeQTL (Fig. S3a). On the other hand, SKAT-O identified 
more significant missense associations than AeQTL (Fig. S3b). This is possibly due to SKAT-O's 
better compatibility with scenarios where only a fraction of variants show functionalities and 
potentially different directionalities. Further, neither SKAT nor SKAT-O provides a regression 
coefficient for regional genotype, which makes it difficult to understand the direction of variant’s 
effect on gene expression and make discoveries such as the polarized eQTL patterns of oncogenes 
and TSGs.  

 Most existing variant-aggregation methods are designed to conduct association tests on 
quantitative traits, most notably for SNP-array genotype data. While each gene expression value can 
be considered as a continuous trait for analyses using these methods, few of those readily 
accommodate sequencing data formats such as large VCFs/MAFs and expression matrices from 
cohorts. To address this challenge, AeQTL can complement the existing methods since it provides 
intermediate mapped files which can be routed into other aggregational statistical tests based on the 
users' preference and hypothesis. We believe such user-friendly functionality would be essential to 
help the field adopt aggregated eQTL testing from sequencing data. 

4.  Discussion 

AeQTL increases the power of eQTL detection by aggregating variants in a defined genomic region. 
We have applied AeQTL to both synthetic and real datasets. The synthetic dataset demonstrated that 
variant aggregation consistently yielded similar or higher powers for rare variant eQTL detection. 
For real datasets, we used rare germline truncations in breast cancer to showcase that AeQTL can 
efficiently identify significant associations between grouped variants and gene expressions. 
Furthermore, we applied AeQTL to somatic mutations in a pan-cancer dataset and identified top-
ranked gene-cancer pairs that were significantly associated with either truncations or missense 
mutations in their respective gene regions.  

To facilitate users’ adoption of AeQTL, we also provide input files to conduct analyses using 
MAF datasets, as used by TCGA PanCancer somatic mutation data15. The application procedure is 
described in detail and included as an example on Github. 

AeQTL is easy to use and customize. Out of the three required input files (region, variant, and 
expression files), both variant and expression files can be directly taken by AeQTL without any 
complicated reformatting or pre-processing, while the user-constructed region file allows great 
flexibility for setting up association tests. Moreover, we provide the exome BED file used in our 
TCGA analyses on the Github page so that users can easily explore the tool in the cis-eQTL mode.  
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The simplicity of AeQTL’s method design means that it can be broadly applied to datasets 
without imposing on them excessive assumptions or limitations. We have demonstrated AeQTL’s 
promising performance when applied to cancer datasets. However, with more genomic and 
transcriptomic data being collected and made available in other fields such as neurodegenerative 
diseases and psychiatric diseases, we believe AeQTL will contribute to multiple areas of study. 
Aside from research, another important application of AeQTL is in educational settings. From 
processing standard sequencing data formats, to building classic regression models, and to 
producing FDR-controlled outputs, AeQTL has a clear and simple workflow that can facilitate the 
learning process of eQTL analysis.  

There are a few aspects of the method that may be improved. First, a potential downside of 
having a simple method that suits more datasets is that the aggregated genotype of each region is 
not weighted. Having unweighted variants does not necessarily lead to worse performance, since 
the underlying mechanism is often unknown and having preset weights may actually confound the 
results. Nevertheless, we would like to offer more options for users in cases where there are known 
variations in the magnitudes of effect for certain variants. We plan to introduce more optional 
settings such as an annotated variant file with a scaling factor, either specified by the user or 
generated using other algorithms.  

Traditional methods to classify oncogenes or tumor suppressors rely on algorithms considering 
only DNA-mutation patterns or functional curation22–25. Herein, we present truncation eQTL 
patterns revealed by AeQTL as a potential new method to distinguish oncogenes (elevated 
expression) from tumor suppressors (reduced expression). In TSGs, truncations including nonsense 
variants or frameshift variants may introduce early stop-codons that likely have led to nonsense-
mediated decay (NMD), thus abolishing gene transcripts. In contrast, oncogene truncations show a 
higher frequency of inframe indels16, albeit the mechanisms through which they are associated with 
higher gene expression warrant further investigation.  

With increasingly available cohorts of matched genomic (e.g. whole-genome sequencing) and 
transcriptomic (e.g. RNA-seq) data, we expect that the robust and versatile AeQTL tool can be 
applied broadly for discovering rare coding and noncoding variants associated with gene expression.   
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6.  Appendix 

 
Fig. S1. (a) Histogram of the log-transformed sample median gene expression. (b) Sensitivity analysis of 
whether genomic region size affects eQTL detection. A randomly scattered pattern is shown when adjusted 
genotype p-values are plotted against region sizes. The Spearman correlation test also shows no significant 
correlation (rs = 0.16, P = 0.18). 

Fig. S2. Histograms of the differences between adjusted p-values from AeQTL and (a) SKAT for 
truncations, (b) SKAT-O for truncations, (c) SKAT for missense mutations, (d) SKAT-O for missense 
mutations in TCGA somatic likely-driver-subset analysis. 
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Table S1. Summary of the number of variant sites used in TCGA somatic likely-driver-subset analysis. 

 Likely Driver Genes Likely Driver Genes (sig.) 
Unique Truncations 15430 4190 
Total Truncations 18124 5311 

Unique Missense Mutations 5233 1364 
Total Missense Mutations 9882 3059 
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