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1  Introduction 

“Biomedical data” refers to the increasingly large corpus of machine-mineable data encompassing 
two similar, yet pointedly distinct fields: biology and medicine. In recent years, experimental and 
technological advancements in these fields have resulted in an unprecedented diversity of 
molecular omics data and longitudinal health record data available for analysis (Lee et al., 2020; 
Mandel et al., 2016; Turro et al., 2020). Moreover, entirely new data sources such as social 
networking data, wearable technologies, and environmental measurements have emerged and are 
relevant indicators of phenomena observed across biology and medicine (Eagle et al., 2010; Le 
Goallec et al., 2020). Creative and sophisticated integration of these datasets promises the 
opportunity to further biological knowledge and understanding of disease and ultimately advance 
our ability to holistically detect and treat disease and improve patient care. However, challenges 
stemming from limited data quality and standardization, coupled with a dramatic increase in data 
size and required computational resources arise in pursuit of these goals.  

Pacific Symposium on Biocomputing 26:256-260 (2021)

256

https://paperpile.com/c/6smmOx/SPtE+iDeQ+oRIy
https://paperpile.com/c/6smmOx/SPtE+iDeQ+oRIy
https://paperpile.com/c/6smmOx/l180+5CZ2
https://paperpile.com/c/6smmOx/l180+5CZ2


Overcoming these inherent challenges to elucidate meaningful and relevant patterns from 
biomedical data requires integrating distinct data modalities and developing related 
methodological approaches (Lakhani et al., 2019). Data integration is necessitated by the 
noisiness, incompleteness, and/or other insufficiencies of information contained in any single 
biomedical data source when considered in isolation. Sometimes data is missing from certain 
sources in a biased manner as well. In other cases, labels assigned to data can be misleading or 
non-randomly incomplete. Additionally, emerging technologies are leading to more data that may 
not be amenable to traditional analysis approaches. Social media data, environmental data, 
wearable data, and patient-provided data, for instance, have become increasingly common in 
recent years, and each present unique challenges. Domain-specific knowledge and advanced 
technical processing are critical for properly integrating and deriving signals from these data. 
 
Methodologically, it is critical to identify and understand the limits of labels assigned to 
biomedical data. For example, there are challenges in assigning levels of confidence or evidence 
to discoveries that do not have strong gold-standard truth assessments. In other instances, gold 
standard labels may be attainable through a costly and time-consuming process (e.g., clinical 
chart review). In biomedicine, multiple data sources are thus leveraged in practice to “build a 
case” that supports a hypothesis. For instance, genetic and medical imaging data can be examined 
in conjunction for improved pathology predictions (Pasco et al., 2011; Yu et al., 2016). Properly 
correcting for censoring challenges may require examining long term outcomes. Additionally, it 
may be necessary to impute data or otherwise account for its presence or absence.  Building tools 
to visualize data or metadata may be helpful for human in-the-loop learning. Finally, it is critical 
to understand and mitigate sources of bias stemming from external factors or the data generation 
process, such as batch effects, institutional discrepancies in recording, and dataset shift.  
 
Here, we highlight recent, innovative approaches utilizing new combinations of biomedical data 
sources to address previously intractable questions. We focus specifically on cutting-edge 
methods aimed at pattern discovery in biomedical data through novel pattern recognition or data 
integration. The research discussed here has two common themes: (i) using representation 
learning to model structures in data to enable biological or etiological understanding, and (ii) data 
integration with applications to cancer. 
 
2 Understanding Biology by Modeling Structure and Processes with Machine Learning  
 
In recent years, significant advances in learning representations have proven critical for modeling human 
biology and disease etiology processes with machine learning (Ching et al., 2018). These advances in 
knowledge representation can be applied to challenging questions such as modeling genomic and 
protein-protein interaction patterns in cancer to understand dysregulation patterns (Durmaz et al., 2020), 
learning a framework for the connection between chemical compounds and their effects on gene 
expression (Finlayson et al., 2020), and using varied levels of structure to learn both local and global 
patterns from histological images (Levy et al., 2020). Considering graph structures is a common trend 
across each of these latter works.  
 
Durmaz et al. propose a framework to use subgraph mining to identify functional dysregulation patterns 
in cancer. They perform unsupervised learning by probabilistically mining graph structures of 
protein-protein interactions. To this end, they utilized subgraph frequency and random walk approaches. 
Their approach recovers pathways included in expert-knowledge graphs, and, through clustering, points 
towards the biological significance of functionally dysregulated pathways.  
 
Understanding the ways in which chemical structure can lead to different molecular activities could 
greatly enhance therapeutic development and mechanistic understanding of existing therapeutics. Despite 
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these immense advantages, accurately understanding the relationship between chemical structure and 
molecular activity has proven to be a challenging problem in the general sense. Finlayson et al. employ an 
approach to train a set of neural networks to learn how to associate the structure of a given small molecule 
with its effect on changes in gene expression. This method attempts to jointly optimize representations of 
chemical structure and the transcriptional changes resulting from exposure to these chemicals. Despite 
observing mixed performance when attempting to generalize to new tissues, this method shows great 
potential to make progress on a longstanding, challenging problem and may lead to the ability to more 
effectively perform in silico prioritization of molecules to elicit specific transcriptional responses.  
 
Digital pathology has seen an immense amount of activity where deep learning and convolutional neural 
networks have been applied to analyze pathology images. One unique challenge in digital pathology has 
been that whole slide images are too large for many of these neural network approaches to process. Levy 
et al. propose methods that use a combination of topological domain analysis and graph neural networks 
to reduce the need to break whole slide images into smaller patches of images that are computationally 
tractable; this latter approach is lossy yet common. Importantly, their topological analysis allows Levy et 
al. to quantify a graph neural network’s quality of fit and help determine regions of interest. The 
combination of topological domain analysis and graph neural networks showed significant improvement 
over traditional convolutional neural networks applied to the task. 
 
 
3  Data Integration with Applications to Cancer 
 
One of the most genetically, functionally, and medically heterogeneous diseases afflicting humans in 
modern times is cancer. This disease, typified by one’s own cells growing and dividing uncontrollably 
while evading the immune system to form tumors, is still challenging to detect, diagnose, and treat due to 
the various molecular mechanisms involved and diverse medical presentations. The papers we highlight 
here have employed biomedical data integration specifically to address cancer-specific challenges. In 
general, multiple distinct data modalities can be integrated via novel techniques to more effectively use 
poorly labeled or unlabeled data. Data sources that can be examined together include: molecular ‘omics 
data (genomics, transcriptomics, proteomics, metabolomics etc.), medical imaging data, free text, and 
longitudinal outcomes data. The inclusion and integration of new and novel data sources can help 
examine and understand various biological processes, many of which have been implicated in cancer 
progression.  
 
Scott et al. highlight the lack of heterogeneity in discovery populations and subsequent inability to 
accurately translate biomarkers for general use in the clinic. To address this challenge, the authors 
attempted to leverage heterogeneity, both biological and technical, across independent cohorts to find 
biomarkers more likely to generalize. By utilizing a primary dataset that includes 23 different cancers and 
combining it with 57 independent microarray datasets, they found the gene KRT8 to be significantly 
hypomethylated in the 57 independent datasets and overexpressed in 22 out of 23 cancers. Scott et al. then 
performed additional validation steps, including single-cell analyses, immunohistochemistry of tumor 
biopsies, and finally, detecting levels of KRT8 in the serum of patients with pancreatic cancer vs. healthy 
controls. While they have not yet shown its ability as a predictive marker for cases who have not yet been 
identified by other means, these validation steps show great potential for translational applicability.  
 
Durmaz et al.’s approach to subgraph analyses allowed for the examination of single cancers using The 
Cancer Genome Atlas (TCGA) pan-cancer data. Their approach enabled the data-driven identification of 
patient clusters across different TCGA disease codes based on related dysregulation patterns and led to 
elucidating significant differences between survival for various disease codes, including lower grade 
gliomas and uterine cancer. The survival differences illustrate the potential of applying pathway-based 
functional networks to stratify cancer as compared to traditional gene-centric models. Additionally, 
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considering cancer-relevant dysregulation at the pathway level versus the gene level provides additional 
insight into disease etiology.  
 
Similarly, Levy et al.’s combination of topological data analysis with a graph neural network allows for 
identification of regions of interest in whole slide pathology images. The authors were subsequently able 
to measure the degree of overlap between regions of interest in a tumor and in the adjacent normal tissue 
and then associate these regions of interest with clinical outcomes by means of cancer staging. Their 
approach allows for human-readable highlighted regions of interest as well as a prediction of cancer stage 
where they found they were able to predict advanced colon cancer staging and positive lymph nodes at 
>0.9 AUC.  
 
4  Discussion 
 
Pattern recognition has already had and will continue to have a large role in understanding both biology 
and medicine. Technological developments are leading to larger and more varied biomedical datasets. 
Both novel and repurposed methodologies must be developed and applied to these data in order to derive 
insights that can drive more precise patient care, yield novel therapeutics, guide earlier interventions and 
in general provide greater understanding of biomedicine.  
 
The work highlighted here targets these developments. Finlayson et al. aim to make the identification of 
therapeutically-relevant small molecules possible at faster speeds, and Durmaz et al. aspire to characterize 
the molecular mechanisms of cancer development and progress through computation that considers graph 
structure in protein interaction networks. Levy et al. propose novel methods to precisely extract regions of 
interest from histopathology images and to identify prognostic predictors to enable more precise patient 
care. Finally, Scott et al. identified a biomarker that may help lead to earlier and more accurate diagnoses 
of cancer. Each of these works is guided by the common theme of using pattern recognition to go beyond 
computational performance and to drive biomedical discovery and understanding. 
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