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Continuously decreasing cost, speed and efficiency of DNA and RNA sequencing, coupled with 
advances in real-world sensing, storage of electronic health records, publicly available databases, 
and new data processing techniques enable precision medicine at unprecedented scale. Machine 
learning and artificial intelligence emerge na
supporting clinical decisions with data-driven insights and further unlocking genetically driven 

complex relations in large datasets, they pose new challenges especially because a patient's health 
is at stake. Due to an often black-box nature and high reliance on the training data, these new tools 
are prone to biases and most commonly provide correlational rather than causal insights. Results of 
these analyses have been difficult to validate, interpret, and explain to practitioners, and most 
genetic studies have struggled to encompass the full spectrum of human diversity. In this work, we 

trends in addressing these issues with examples from submissions to the 
“Computational Challenges and Artificial Intelligence in Precision Medicine” session at Pacific 
Symposium on Biocomputing 2021. We observe growing research interest in identifying biases, 
deriving causal and interpretable relations, tuning parameters of models for production, and using 
artificial intelligence for quality control. We expect further upsurge in work on interpretability and 
low-risk applications of advanced computational tools. 

Keywords: artificial intelligence, augmented clinical decision making, bioinformatics, genomics, 
machine learning

Pacific Symposium on Biocomputing 26:166-171 (2021)

166



© 2021 The Authors. Open Access chapter published by World Scientific Publishing Company and 
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 
License. 

 

1.  Introduction 

High-volume genetic sequencing and 'omics data collection as well as increasingly accessible data 
streams from electronic health records (EHRs), clinical imaging, biobanks, wearables and more are 
opening up new vistas in biomedical and health data research. To integrate and/or identify 
meaningful insights from these large and typically noisy multi-dimensional data resources, the field 
has developed and applied novel computational tools, including many based on machine learning 
and artificial intelligence. Applied to genetics, these new methods have connected DNA variation 
to molecular functions and cellular perturbations, identified disease or patient subgroups and the 
biological processes driving these differences, suggested new therapeutic targets, and overall, 
dramatically increased our understanding of biomedicine. By integrating these datasets with rich 
clinical data, or developing algorithms to interpret, condense, or transform facets of these data into 
more interpretable modalities, much of the hidden information and patterns can be revealed and 
made useful for the practice of medicine. 

2.  Genomics and multi-omics data for precision medicine 

overrepresentation of European-ancestry participants in large-scale biobanks and omics resources1. 
Tools developed and trained on predominantly European-ancestry datasets have largely performed 

and scientific consequences that include missed insights, widened health disparities, and predictive 
inaccuracies2,3

DNA methylation, transcript expression, and sequence data in order to discover methylation-
adjusted expression quantitative trait loci (eQTL) in cadaveric liver samples derived from donors of 
African American genetic ancestry4. Intersecting these data with cataloged genome-wide 
association study (GWAS) summary results presented several new genetic targets underlying 
GWAS loci in diseases that disproportionately impact African American populations. These targets 
had not been identified as candidates in previous work, and underscore the need for additional 
resources, methods development, and work in this area. 

Along with better capturing the common variation present in humanity by expanding sample 
ascertainment to include historically excluded and currently underrepresented populations, one of 
the most compelling areas of research in precision medicine is to understand the functional impact 
of rare variation, and indeed, which rare variation is functional at all. Multiple tools have been 
generated to predict the functional consequences of protein coding variation, but only a few tools 

problem is challenging due to 
incomplete annotation of functional regions and statistical limitations when considering ultra-rare 
variants that may appear uniquely within a dataset. Dong et al. (2021) have developed the AeQTL 
tool to identify rare heterogeneous variants that impact on levels of gene expression by aggregating 
rare variants according to user-specified regions and combining this genetic information with 
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patient-matched transcriptomic data5. They applied their methods to breast cancer sample data and 
were able to discover associations between aggregated rare germline variants in cis exomic regions 
with the expression of BRCA1 and SLC25A39. 

Moving closer to the clinic, pharmacogenomics has enormous capacity for clinical actionability 
by bringing genotype-data driven guidance to the task of selecting an appropriate maintenance dose 
for individual patients. Rapidly determining the correct dose effectively balances the risk of side 
effects or other adverse outcomes against patient benefit. McInnes and Altman (2021) conducted 

the real-world, observational pharmacy evidence that patient genotype at pre-specified loci may 
influence the maintenance dose of certain drugs prescribed in practice by clinicians6. A significant 
genotype-drug dose relationship was observed across (i) those drugs with Clinical Implementation 
of Pharmacogenomics Consortium (CIPC) guidance7, (ii) drugs with a relationship described in 
DrugBank but no formal practice guideline, and (iii) a discovery set, where six out of 561 tested 

Biobank to identify associations to side-effects including the appearance of new diagnoses. While 
the existence of a genotype-dose relationship is an unsurprising result, it previously had not been 
demonstrated in real prescribing patterns at this scale, and clearly demonstrates how incorporating 
patient genotype can be an important advance to patient safety. 

The fourth paper submitted to this track by Aoki and Ester (2021) presented another new 
computational tool designed to improve causal inference8. Finding relationships between genes and 
outcomes can lead to better understanding of biological pathways and processes. And so, correlating 
outcomes and genes is a natural screening tool. However, in purely observational studies, and 
particularly those with thousands of potential variables, we risk identifying non-causal relations, 
which are of lower importance for biological discovery or intervention. One approach for narrowing 
down research targets is to focus on causal relations rather than correlations. Aoki and colleagues 

a stacking ensemble meta-learner approach 
to combine outcomes of multiple causal discovery methods, exploit partially known causes, and 
predict new ones. They confirmed the efficacy of their approach through simulations and by using 
their analysis over a real-world dataset9 to identify cancer driver genes. 

3.  Artificial intelligence in multi-modal datasets for clinical research and workflows 

Massive amounts of clinical data require new methods for quality control, analysis, processing, 
validation, and deployment of algorithms. Data-
to their black-box nature, and high reliance on the training dataset, resulting in overfitting and biases 
towards certain populations. As opposed to classical hand-crafted algorithms for which the entire 
processing pipeline can be diligently monitored, biases and errors cannot be easily removed from 
data-driven algorithms due to complicated relationships between millions of parameters 
automatically derived from the data. 

Oppor
by the COVID-19 pandemic. COVID-19 disease, caused by a highly infectious SARS-CoV-210, can 
be associated with severe pneumonia resulting in serious complications or death; these poor 
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outcomes are more likely in patients with compromised immune systems due to other underlying 
conditions or age11,12. Rapid upsurge in the number of cases has exposed problems in healthcare 
systems across the globe. Moreover, restrictive measures for limiting the spread of the virus has led 
to the cancellation of face-to-face clinical visits for non-emergency visits. This situation has 
naturally resulted in the upsurge of telemedicine13 and research on reading patient data 
automatically, with the intention of reducing the burden on clinicians. These developments among 
others are reflected in submissions and accepted papers to “Computational Challenges and Artificial 
Intelligence in Precision Medicine” session at Pacific Symposium on Biocomputing 2021. 

Much of recent work in methods for clinical research has been focused on addressing these 
deployment issues, as it is exemplified by submissions and accepted papers to the “Computational 
tools and methods” track of this PSB 2021 session. First, for tuning models to certain populations14, 

-study 

search and random sampling approaches despite prior evidence in literature based on single-study 

different hospitals, but also results in varying behavior depending on demographics15. Third, data 
quality has fundamental importance not only for building medical machine learning tools, but also 
for clinical applications, particularly in telemedicine. Influx of telemedicine data due to COVID-19 
motivated researchers to use deep learning for quality control of data16. 

3.1.  Optimization of genomic classifiers 

Machine learning and artificial intelligence allows researchers to identify relationships between 
patients' gene expression and their outcomes. These techniques can bring clinical benefits, but 
translation of research models into in-hospital deployment requires proper validation frameworks. 
While the research community focuses on accuracy metrics within a single cohort, practitioners 
often fail when attempting to deploy such models in practice. 

Mayhew et al. (2021) addressed this problem by providing a framework for benchmarking 
solutions in the context of real-world deployment14. To that end, they built their models on a 
multi-

 
The authors illustrate an application of their framework on data on acute in-hospital infections 

with data coming from multiple studies. In contrast to previous research, they found that a 

-centered 
benchmarking and validation on multi-study cohorts.  

3.2.  Automatic reading of radiographic images 

Developments in computer vision, particularly in deep convolutional neural networks, have 
enabled a range of applications in medical imaging. Expert-level predictive models have been 
developed and published descriptions of algorithms capable of diagnosing skin cancer, brain 
cancer, lung lesions, or osteoarthritis progression from RGB camera photos, MRI sequences, X-
ray, or CT scan input data. 
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Expert-level results can be achieved in a wide variety of use cases; however, applicability of 
these algorithms in practice is inhibited by any differences between the new real-world clinical 
data never seen by the model, and the datasets used for training. Additionally, even though 
demographics or ethnicity of patients are not explicitly expressed in radiographic images, there 
can be a bias in diagnostics, due to underrepresentation of certain groups or biased labels provided 
by clinicians. 

In order to investigate the behavior of machine learning models as a function of demographics, 
ethnicit
Positive Rate statistic of a model in different groups of interest. To that end, Sayyed-
al. (2021) built a deep learning model for classifying chest X-rays, using multiple public chest X-
ray datasets15. They trained a model with close to state-of-the-art performance and found that its 
accuracy depends on the patient's demographics, ethnicity, and insurance type. This discovery 
implied that validating the quality of the model across different populations should be one of the 
key quality checks for practitioners deploying a machine learning model in clinics. Without these 
kinds of quality checks, deep learning models may end up perpetuating biases rather than 
alleviating them. 

3.3.  Quality control of images in telemedicine 

Other elements of clinical workflows can be addressed much more immediately than algorithmic 
imaging diagnostics, such as automating quality control. This is particularly important whenever 
images are collected by patients themselves (as in telemedicine) rather than by trained personnel 

immediate benefits to clinics and present low risk to patients while improving their care. 
Confident image assessment for clinicians, such as dermatologists, who are using telemedicine is 
challenging. Low quality images require extra time to read, causing additional delays related to 
retakes and extra reads. Vodrahalli et al. (2021) proposed a machine learning system for 
identifying low quality images automatically using a deep convolutional neural network 
classifier16. Their proof-of-concept algorithm could identify 50% of poor-quality images at a cost 
of only mislabeling 20% of the good quality images. Given a massive upsurge in telemedicine 
visits during the COVID-19 pandemic, this fraction could lead to significant time savings for 
hospitals and patients, as well as improved outcomes for time sensitive cases, such as malignant 
skin cancers. Moreover, these preliminary results could be further improved with better data and 
more thorough machine learning modelling. 

4.  Conclusion and future directions 
Submissions to  “Computational Challenges and Artificial Intelligence in Precision Medicine” 
session at Pacific Symposium on Biocomputing 2021 have revealed the growing importance and 
interest in decomposing components of black-box machine learning models, particularly for 
causality and for finding biases in data. Moreover, while automating the work of clinicians has 
always been a holy grail of artificial intelligence in medicine, papers in this session highlighted 
that there are more direct benefits of machine learning methods. Based on submissions to this 
session we expect further developments in interpretability of computational methods for precision 
medicine and more low-risk clinical applications, such as those motivated by COVID and post-
COVID healthcare requirements. 
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