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PACIFIC SYMPOSIUM ON BIOCOMPUTING 2021 
 
2021 marks the 26th Pacific Symposium on Biocomputing (PSB). Unfortunately, circumstances surrounding the 
Covid-19 pandemic prevent us from gathering together on the Big Island to engage in the traditional scientific sessions, 
invited lectures, workshops and collegiality-by-the-beach (and pool) that has become the hallmark of PSB. Fortunately, 
we still received very high-quality submissions and these will be presented virtually and allow continued (socially 
distanced) interaction and scientific exchange. We are also arranging virtual workshops and a virtual poster session. We 
have shortened the total length of the meeting, to help participants avoid “zoom fatigue” but many of the presentations 
will be recorded and available, so the reach and impact of the meeting may in some ways be extended.   
 
Covid-19 has changed life on earth in 2020 in ways that few of us could have imagined. Many of the most basic life and 
work practices and assumptions have been challenged. The biomedical informatics, bioinformatics and computational 
biology communities have played a special role in contributing to the fight against the virus. While many of our 
experimental colleagues had to shut down their labs for weeks to months during the pandemic, many computational labs 
were able to continue their work with access to their computing facilities and a move to virtual meetings. There are many 
examples of early contributions to understanding the biology of the SARS-Cov-2 virus based on computational analysis 
of its genome, epitope targets for vaccine development, and its proteome and connections to the host. In addition, the 
tsunami of publications (particularly preprints) has created challenges in automatic understanding and integration (and 
triage) of scientific findings, in order to help scientists track the rapidly evolving landscape of our understanding of the 
virus. Finally, there have been opportunities in tracking population health and the delivery of clinical care—in many 
cases, informatics technologies have helped decision makers understand the details of the pandemic, and how best to 
deploy resources. At the same time, the pandemic has exposed weaknesses in our health information infrastructure—for 
both communicating health data, storing it, integrating it and analyzing it. For example, computational researchers who 
may have never sent or received a fax (!) are now trying to help figure out how to automate their analysis (many Covid-
19 case reports are still faxed to local health departments) and ensure that they are soon replaced as first-line 
communication methods.  There are also great challenges in modeling the pandemic and its impacts on health and the 
economy. Never before have analytic and computational capabilities in biology and medicine been so important. So, we 
persevere under difficult circumstances to continue the mission of PSB to bring scientists together as they approach 
some of the most challenging and important problems. 
 
In addition to being published by World Scientific and indexed in PubMED, the proceedings from all PSB 
meetings are available online at http://psb.stanford.edu/psb-online/. PSB has 1227 papers listed in PubMED (as of 
today). These papers are routinely cited in archival  journal articles and o f t en  represent important early 
contributions in new subfields—many times before there is an established literature in more traditional journals; for 
this reason, many papers have garnered hundreds of citations.  
 
The Twitter handle PSB 2021 is @PacSymBiocomp and the hashtag this year will be #psb21. 
 
The efforts of a dedicated group of session organizers have produced an outstanding program. The sessions of 
PSB 2021 and their hard-working organizers are as follows: 
 
Advanced Methods for Big Data Analytics in Women's Health 
Organizers: Graciela Gonzalez-Hernandez, Karin Verspoor, Maricel G. Kann, Su Golder, Lisa Levine, Mary Regina 
Boland, Natalia Villanueva-Rosales, Karen O'Connor 
 
Achieving Trustworthy Biomedical Data 
Organizers: Dennis Wall, Nicholas Tatonetti, Jan Liphardt, Bethany Percha, Serena Yeung, Peter Washington 
 
Pattern Recognition in Biomedical Data for Discovery 
Organizers: Brett Beaulieu-Jones, Christian Darabos, Dokyoon Kim, Shilpa Kobren, Anurag Verma 
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What about the environment? Leveraging multi-omic datasets to characterize the environment’s role in human 
health 
Organizers: Kristin Passero, Shefali Setia Verma, Kimberly McAllister, Arjun Manrai, Chirag Patel, Molly A. Hall 
 
Biocomputing and AI for infectious disease modelling and therapeutics 
Organizers: Gil Alterovitz, Wei-Lun Alterovitz, Gail H. Cassell, Lixin Zhang, A. Keith Dunker 
 
Computational Challenges and Artificial Intelligence in Precision Medicine 
Organizers: Olga Afanasiev, Joanne Berghout, Steven Brenner, Martha L. Bulyk, Dana Crawford, Jonathan H. 
Chen, Roxana Daneshjou, Łukasz Kidziński 
 
We are also pleased to present four workshops in which investigators with a common interest come together to 
exchange results and new ideas in a format that is more informal than the peer-reviewed sessions. For this year, the 
workshops and their organizers are: 
 
Bioinformatics of Corals 
Organizers: Lenore J. Cowen, Judith Klein-Seetharaman, Hollie Putnam 
 
Translational Bioinformatics 
Organizers: Jason Moore, Ju Han Kim, Dokyoon Kim 
 
Making Tools that People Will Use: User-Centered Design in Computational Biology Research 
Organizers: Mary Goldman, Nils Gehlenborg 
 
Raising the Stakeholders: Improving Patient Outcomes Through Interprofessional Collaborations in AI for 
Healthcare 
Organizers: Carly A. Bobak, Kristine A. Giffin, Marek Svoboda, Jason Moore, Dennis P. Wall 
 
Establishing the Reliability of Algorithms in Biomedical Informatics 
Organizers: Lara Mangravite, Sean Mooney, Iddo Freidberg, Justin Guinney 
 
Tiffany Murray has managed the peer review process and assembly of the proceedings since 2001 and plays a key 
role in many aspects of the meeting. We are grateful for the support of the National Institutes of Health1. The 
Research Parasite Awards benefit from support from GigaScience, Jeff Stibel, Mr. and Mrs. Stephen Canon, and Drs. 
Casey and Anna Greene. The Research Symbiont Awards benefit from support from the Wellcome Trust, Springer-
Nature and the DragonMaster Foundation. 
 
We are particularly grateful to the PSB staff Cynthia Paulazzo and Ryan Whaley for their assistance. We also 
acknowledge the many busy researchers who reviewed the submitted manuscripts on a very tight schedule. The 
partial list following this preface does not include many who wished to remain anonymous, and of course we 
apologize to any who may have been left out by mistake. 
 
We look forward to a great virtual meeting and very much hope to see you all again on the Big Island in 2022. 
Aloha! 
 
Pacific Symposium on Biocomputing Co-Chairs, 
October 8, 2020 
 
Russ B. Altman 
Departments of Bioengineering, Genetics, Medicine & Biomedical Data Science, Stanford University 
 
A. Keith Dunker 
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine 
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Lawrence Hunter 
Department of Pharmacology, University of Colorado Health Sciences Center 
 
Marylyn D. Ritchie 
Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania 
 
Teri E. Klein 
Departments of Biomedical Data Science & Medicine, Stanford University 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1Funding for this conference was made possible (in part) by R13LM006766 from the National Library of Medicine. The views expressed in 
written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the 
Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply endorsement 
by the U.S. Government." 
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Privacy and trust of biomedical solutions that capture and share data is an issue rising to the center 
of public attention and discourse. While large-scale academic, medical, and industrial research 
initiatives must collect increasing amounts of personal biomedical data from patient stakeholders, 
central to ensuring precision health becomes a reality, methods for providing sufficient privacy in 
biomedical databases and conveying a sense of trust to the user is equally crucial for the field of 
biocomputing to advance with the grace of those stakeholders. If the intended audience does not trust 
new precision health innovations, funding and support for these efforts will inevitably be limited. It 
is therefore crucial for the field to address these issues in a timely manner. Here we describe current 
research directions towards achieving trustworthy biomedical informatics solutions.  

Keywords: privacy; trust; data security; biomedical systems; bioinformatics; artificial intelligence 
(AI); trustworthy AI 

Pacific Symposium on Biocomputing 2021

1



 
 

 

 

1. Introduction 

The importance of trust in biomedical and healthcare technologies, especially consumer-facing 
artificial-intelligence (AI) software, cannot be overstated. Issues of privacy and trust with regard to 
large-scale data capture and analysis, particularly passive data capture by mobile devices and social 
media, have recently come to the forefront of public and academic discourse across multiple 
domains [1-4]. Such issues are especially important for healthcare, where solutions must prioritize 
patient privacy. At a minimum, biomedical tools in the United States must satisfy the Health 
Insurance Portability and Accountability Act of 1996 (HIPAA), which mandates a set of regulations 
regarding the privacy of patient health data [5]. While satisfying legal constraints is necessary, the 
true metric of achieving satisfactory patient trust will come from the patients themselves, who may 
request more stringent solutions. 
                       In recent years, the biomedical research community has produced a wide array of research 
findings relating to trustworthy biomedical data, spanning multiple fields and subdomains. Work in 
these areas has included genomic data storage [6], privacy and sharing of protected health 
information (PHI) [7-9], cryptography solutions to sharing genetic data that allow public querying 
while protecting patient privacy [10], ethical considerations of new technologies and paradigms 
[11], and privacy-preserving machine learning methods [12-13]. However, the increasing 
prevalence of large-scale biomedical data collection capabilities and efforts (such as the continued 
decrease in sequencing costs), coupled with the explosion of applied machine learning systems and 
products, continually creates demand for innovations in trustworthy methods which can handle 
growing technological capabilities. 
      Here, we focus on four active themes in biomedical data science where the importance of trust 
in data has taken center stage: (1) preserving privacy and explaining the decisions of artificial 
intelligence algorithms, (2) sharing genomic and health records, (3) deploying digital health 
solutons, and (4) crowdsourcing healthcare. For each research theme, we describe several core 
methodological approaches (Figure 1)  for building trustworthy biomedical data solutions which 
apply across the data science pipeline: (1) data transformation (e.g., dimension reduction and image 
modification), (2) access control (e.g., federated learning and cryptography), (3) data aggregation 
(e.g., aggregate queries and differential privacy), and (4) transparency (e.g., explainable AI). We 
discuss how these trust-enabling methodologies can and should be invoked and describe prior 
efforts. We conclude with a brief discussion of the bioethics literature. 
 
2. Preserving Privacy and Explaining Decisions of Artificial Intelligence 

AI in healthcare is increasingly rising in importance for solving challenges in the medicial workflow 
including clinicial decision support, preventing errors, and scaling redundant tasks. Privacy 
preservation and explainability are crucial when machine learning algorithms are deployed in these 
settings. We describe three common machine learning paradigms for attaining and preserving 
patient privacy when biomedical data are used to train algorithms: (1) transformation of the data, 
(2) federated learning, and (3) differential privacy. We also discuss efforts to attain explainable AI. 
       If the data can be transformed in such a way that the downstream model still yields high 
predictive performance, simply altering the data to obfuscate the identity of the subject may be the 
most desired option.  For example, when using computer vision for use in activity recognition in 
hospital bedside settings [14-15], Yeung et al. leverage thermal [16] and depth [17] sensors to create 
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privacy-preserved video streams. Washington et al. simply place a face box over the patients’ faces 
and pitch shift the audio when generating behavioral phenotypes of children with autism using 
machine learning and crowdsourcing [18], only minimally degrading performance compared to 
when using unaltered videos. Machine learning models should be trained and tested on the 
maximally private alteration of the data while maintaining acceptable performance. 
       Federated learning as a privacy enhancing technique has garnered widespread attention for 
achieving privacy in distributed mobile devices that may collect multimedia data streams. In 
federated machine learning, several distributed machines train models based on local data and share 
only model weights, which do not contain any protected information, on either the other distributed 
devices or a centralized server [19]. Federated learning has been applied to analyze data from 
electronic health records [20-22], recognize activity patterns based on data from wearable devices 
[23], and improve the interpretation of medical images [24]. 
      A third commonly used privacy preserving technique is differential privacy. Differential privacy 
involves injecting random noise into the training dataset such that the identifiability of each 
individual record is destroyed while the aggregate properties of the dataset are preserved [25]. 
Examples of applying differential privacy to protect patient privacy in the biomedical domain 
include injecting noise into data from wearable sensors [26], genome wide association studies [27], 
and healthcare social networks [28]. This session includes a paper by Shi et al. that explores the 
tradeoffs between the performance of commonly used machine learning models and the level of 
privacy attained using differential privacy. 
      Another crucial property of trustworthy machine learning is explainability, including but not 
limited to interpretability. Some machine learning algorithms are inherently explainable. In 
classification with logistic regression, for example, the exact prediction can be calculated from the 
input values by plugging them into an equation. Making the coefficients associated with each 
variable transparent to the patient in a user-friendly manner would increase trust. However, with a 
large dataset of high complexity, explainable algorithms may not be sufficient, requiring more 
powerful yet less interpretable algorithms like neural networks. While components of certain neural 
networks can be interpreted, such as by visualizing the weights and activations of feature maps in 
the intermediate layers of a convolutional neural network, making neural networks explainable is 
an emerging active area of research [29]. Creating explainable AI has enabled increased reasoning 
about the decision making process behind stroke prediction algorithms [30], further understanding 
of changes in the skin microbiome [31], and elucidation of the reasoning of algorithms trained on 
electronic health record [32]. In some cases, explainable AI can lead to scientific discovery, for 
example by elucidating complex disease pathways in autism [33]. As explainable AI is becoming a 
popular research direction across computing research fields, we expect more translatable 
innovations in the coming years that safely embed AI  in a variety of sectors of the healthcare 
ecosystem. 
 
3. Sharing Genomic and Health Records 

The genome is a core foundation of precision healthcare, and shared human DNA records are 
essential to advancements in human health. Millions of human genomes have been sequenced, either 
through direct-to-consumer DNA platforms (e.g., 23andme and Ancestry) or through a healthcare 
provider, with the number likely to exponentially increase as genomic sequencing becomes 
progressively more affordable and more speedy, improving at a rate faster than Moore’s Law [34]. 
Genomic data are exceptionally sensitive, and increasingly so as advancements in bioinformatics 
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methods can uncover a patient’s identity in a dataset with a small number of queries [35-39] through 
approaches like membership inference attack [40]. Addressing secure storage and sharing of 
genomic data to solve such issues is a key research challenge required to advance genomics-based 
precision health and medicine pipelines to the clinic [41]. Several methods for preserving genetic 
privacy have been published, including differential privacy-based approaches [42-44], perturbing 
the data with Bayesian statistics and Markov Chain Monte Carlo techniques [45], applying 
cryptographic protocols and frequency-based clinical genetics [10], and encrypting the data before 
offloading it to the cloud [46]. 
      While the genome is a key data modality for precision health, it must be tightly tied to the 
phenotype, perhaps best embodied in electronic medical record (EMR) data.  EMR can be mined to 
make data driven predictions about important biomedical issues such as the risk for diseases at the 
heart of immediate public health crises (i.e., COVID-19) [47-49], understudied and unknown 
adverse drug interactions [50-51], and psychiatric and behavioral conditions with a small number 
of behavioral biomarkers [52-56], including in underserved countries with differing laws and 
expectations about data sharing [57]. EMR are susceptible to attack, for example by inferring disease 
heritability from exposed pedigree information [58]. Previously explored solutions to addressing the 
sensitive nature of such records include only performing inference on common medical events while 
keeping the remainder private [59], reducing the dimensionality of the dataset [60-61], transforming 
the dataset with the use of generative adversarial networks [62], giving the patient control over who 
has access to the electronic health records [63], only allowing aggregate queries without revealing 
the underlying dataset [64], and deploying cryptography schemes such as symmetric key or 
asymmetric key encryption [65].  
 

 
Figure 1. An opportunity space for innovation in methods for achieving trustworthy biomedical data 

solutions. We list the 4 most active areas where security and trust in the exchange of data is highest: private 
and explainable artificial intelligence; sharing and integration of genomic and medical records; construction 

and use of digital health tools; and crowdsourcing of healtcare management.  In all 4, methodologies of 
data transformation, access control, data aggregation, and transparency can and should be deployed. 
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4. Deploying Digital Health Solutions  

While EMR are traditionally generated in the clinic, digital health solutions are increasingly 
deployed to home settings [66-68]. As digital devices continue to receive FDA approval for medical 
use [69-70], it is inevitable, and exciting, that large portions of EMR data will be acquired through 
consumer devices such as smartphones and embedded hardware. Digital devices can longitudinally 
quantify patient symptoms when away from the clinic for conditions such as brain-mediated 
neurological and psychiatric disorders [71-72], cardiovascular disease [ 73-74], and infectious 
disease [75], among others. Examples of digital health solutions used in sensitive settings include 
therapeutic devices administered by clinicians [76], therapeutic tools administered in home settings 
[77-79], monitoring systems in hospital settings [80-81], dual-purpose interventions which 
explicitly collect patient health information to train machine learning models [82-84], pediatric 
healthcare interventions disguised to the child as a game [85-86], and wearable devices [87]. Many 
of these therapeutic and diagnostic devices collect potentially sensitive audio, image, and video 
streams for clinical use [88-91], and these data streams are often shared with clinicians or even 
crowdsourced with the consent of the patient. Furthermore, several digital therapies are used in 
home settings, and such rich data streams are filled with protected health information accompanied 
by potentially sensitive identifiable information such as the patient’s face, images and video of the 
patient’s home, and audio recordings of the patient or their family while using the device. It is 
therefore crucial to ensure patient privacy when these data leave the patient’s device and are 
introduced into clinical workflows. Best practices discussed by Martínez-Pérez et al. include 
creating role-based access to data, making the privacy policy precise and clear to the user, 
transferring data with TLS using 256-bit encryption, erasing the data after it has been used for its 
intended purpose, and creating a data breach notification system [92].  
      Because consumer health technologies do not have direct oversight by clinicians, biased and 
deliberately inaccurate reporting by the target audience can be a risk. Therefore, it is particularly 
important to assess the quality of incoming data to garner the trust of healthcare providers and 
scientists, using those data for healthcare management and innovation. Algorithms that perform 
quality control to safeguard against biased or inaccurate reporting must go hand-in-hand with  digital 
innovations. It is crucial for researchers to easily identify invalid or unintended data. For both 
consumers and scientists to gain confidence in the generalized applicability of digital tools, the data 
must be representative of the target population, making it pertinent to collect data that are balanced 
across race, ethnicity, geography, gender, and other relevant demographics. 
 
5. Crowdsourcing Healthcare 

Crowdsourcing is another approach used increasingly in clinical workflows [93-97]. Digital health 
and telemedical solutions that can scale through crowdsourcing approaches will become a norm for 
healthcare. The use of crowdsourcing in healthcare can be broadly partitioned into three categories:  
(1) crowdsourcing to achieve consensus on the presence or absence of medical conditions; (2) 
crowdsourced capture (whether active or passive, or a combination) of longitudinal data streams 
from from a large target cohort; (3) crowdsourcing the construction of training libraries of robustly 
labeled health data (e.g., radiological images), that enable progressive improvement of predictive 
models that can augment or replace decision points in the healthcare process.  
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      Crowdsourcing appears in diverse healthcare settings and has been used for measurement of 
autism symptoms for diagnostic decision support [98-101], ranking adverse drug reactions [102], 
and COVID-19 contact tracing and surveillance [103-105]. Despite the strong clinical utility of 
crowdsourcing approaches, studies of trust and privacy for text, audio, image, and video streams 
rated on crowdsourcing platforms (e.g., Amazon Mechanical Turk [106-107] and 
Microworkers.com [108]) are lacking in the literature, especially with respect to biomedical 
research. As with digital consumer technologies, labeled data from crowdsourcing pipelines have 
the potential to suffer from low quality [109], requiring methods to filter crowd workers and into a 
trusted workforce of repeatedly high quality workers. This session includes a paper by Washington 
et al. which introduces quantitative metrics for evaluating crowd workers for their trustworthiness 
and reliability and provides behavioral metrics for identifying a valuable subset of crowd workers 
for inclusion in private clinical workflows. We hope that this study will inspire further work toward 
ensuring trustworthy crowd-powered telemedicine. Figure 1 highlights that research into 
trustworthy biomedical crowdsourcing is relatively light. In particular, privacy-preserved 
crowdsourced annotation of transformed data and on aggregate data is a currently unexplored yet 
fruitful research direction. 

6. Considering the Bioethics 

It is important to keep sight of the ethical considerations and formal bioethical perspectives with 
respect to biomedical innovations using trustworthy methods, or the lack thereof. Bioethical 
arguments are typically grounded in traditional ethical theories. Deontology is an ethical theory that 
considers actions as moral if they pass a series of conditions or rules [110]. A contrasting family of 
ethical theories, consequentialism, requires that moral actions maximize the public good and the 
utility of the action to all relevant stakeholders [110]. A third category, virtue ethics, states that 
moral actions should be a manifestation of a virtuous character trait [110]. While all ethical theories 
sound optimal in isolation, bioethical decisions may often satisfy one ethical theory while violating 
another. For example, heavy COVID-19 surveillance will maximize the good to all people 
(Utilitarianism, a type of consequentialism) while violating a core principle (deontological ethics) 
of the right to privacy. Bioethical analyses have been applied to genome sequencing for newborn 
screening [111-112], clinical machine learning [113-114], precision medicine [115-116], wearables 
and mobile health [117-118], and crowdsourcing [119-120].  
      This session includes a paper by Greenbaum et al. discussing the implications of expanded 
access programs with respect to COVID-19, a particularly timely topic. We hope that informaticians 
and scientists will interact more often with bioethicists to understand the societal implications of 
their work. 
 
7. Anticipating the Future 

Trustworthy biomedical data solutions will be crucial for realizing wide adoption of emerging 
technologies and methodologies for precision health. This session includes promising directions of 
exploration for the biomedical informatics research community. We have summarized some of the 
methods for building trust in key parts of the data analysis pipeline: data analysis(for artificial 
intelligence), data sharing (of genomic and health records), data capture (through digital devices), 
and data labeling (through crowdsourcing).  
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      The study of trustworthy biomedical data science is in its infancy and ripe for innovations. We 
hope that this session will inspire further work in this important area, complementing the public’s 
broader discussion of privacy and security considerations related to large-scale data collection and 
analysis. We anticipate that research that aims to improve the trustworthiness of biocomputing 
methods will become a major part of the PSB and a major focus for biomcomputing research in the 
coming years. 
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Crowd-powered telemedicine has the potential to revolutionize healthcare, especially during times 
that require remote access to care. However, sharing private health data with strangers from around 
the world is not compatible with data privacy standards, requiring a stringent filtration process to 
recruit reliable and trustworthy workers who can go through the proper training and security steps. 
The key challenge, then, is to identify capable, trustworthy, and reliable workers through high-
fidelity evaluation tasks without exposing any sensitive patient data during the evaluation process. 
We contribute a set of experimentally validated metrics for assessing the trustworthiness and 
reliability of crowd workers tasked with providing behavioral feature tags to unstructured videos of 
children with autism and matched neurotypical controls. The workers are blinded to diagnosis and 
blinded to the goal of using the features to diagnose autism. These behavioral labels are fed as input 
to a previously validated binary logistic regression classifier for detecting autism cases using 
categorical feature vectors. While the metrics do not incorporate any ground truth labels of child 
diagnosis, linear regression using the 3 correlative metrics as input can predict the mean probability 
of the correct class of each worker with a mean average error of 7.51% for performance on the same 
set of videos and 10.93% for performance on a distinct balanced video set with different children. 
These results indicate that crowd workers can be recruited for performance based largely on 
behavioral metrics on a crowdsourced task, enabling an affordable way to filter crowd workforces 
into a trustworthy and reliable diagnostic workforce. 

Keywords: Crowdsourcing; Machine Learning; Diagnostics; Trust; Privacy; Autism 

 
1.  Introduction 

Autism spectrum disorder (ASD, or autism) is a pediatric developmental condition affecting 1 in 40 
children in the United States [1], with prevalence continuing to rise [ 2]. While access to care relies 
on a formal diagnosis from a clinician, an uneven distribution of diagnostic resources across the 
United States contributes to increasingly long waitlists. Some evidence suggests that 80% of 
counties lack sufficient diagnostic resources [3], with underserved communities disproportionately 
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affected by this shortage [4]. Telemedicine has the potential to minimize this gap by capitalizing on 
the increasing pervasiveness and affordability of digital devices. Such diagnostic solutions are 
especially pertinent during times of pandemic, most notably the coronavirus, which further hinders 
access to diagnosis and care.  

Mobile digital autism interventions administered on smartphones [5-12] and on ubiquitous 
devices [13-27] passively collect structured home videos of children with neuropsychiatric 
conditions for use in subsequent diagnostic data analysis [27-28]. In order for the video data 
collected from digital therapies to become widely used, trustworthy data sharing methodologies 
must be incorporated into the diagnostic pipeline [29]. One possible approach, which we realize in 
the present study, is to carefully recruit a trustworthy set of workers to transform the video streams 
into a secure, quantitative, and structured format. While modern computer vision algorithms could 
handle this task in several domains, extracting complex behavioral features from video is currently 
beyond the scope of state-of-the-art machine learning methods and therefore requires human labor. 
However, the collected videos naturally contain highly sensitive data, requiring careful selection of 
trustworthy and reliable labelers who are allowed access to protected health information (PHI) after 
completion of Health Insurance Portability and Accountability Act (HIPAA) training, Collaborative 
Institutional Training Initiative (CITI) human subjects training, and whole disk encryption.  

In the present study, we examine strategies for quantitatively determining the credibility and 
reliability of crowd workers whose labels can be trusted by researchers. It is important that the 
metrics for evaluating workers are speedy and simple, as formally credentialing recruited crowd 
workers through institutional channels is laborious and slow. We crowdsource the task of providing 
categorical feature labels to videos of children with autism and matched controls. For each 
crowdsourced worker, we evaluate correlations of their mean classifier probability of the correct 
class (PCC) using their answers as input with (1) the mean L1 distance between their responses to 
the same video spaced one month apart, (2) the mean L1 distance between their answer vector to 
each video and all other videos they rated, (3) the mean time spent rating videos, and (4) the mean 
time and L1 distance of answers when the worker is explicitly warned about not spending enough 
time rating a video and provided with a chance to revise their response. We then feed the metrics 
which are correlated with PCC into a linear regression model predicting the PCC. 

2.  Methods 

2.1.  Clinically representative videos 

We used a set of 24 publicly available videos from YouTube of children with autism and matched 
neurotypical controls (6 females with autism, 6 neurotypical females, 6 males with autism, and 6 
neurotypical males). Criteria for video selection and inclusion were that (1) the child’s hand and 
face must be visible, (2) opportunities for social engagement must be present, and (3) an opportunity 
for using an object such as a toy or utensil must be present. Child diagnosis was determined through 
the video title and description. The videos were short, with a mean duration of 47.75 seconds (SD 
= 30.71 seconds). The mean age of children in the video was 3.65 years (SD = 1.82 years).  
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Fig. 1.  Crowd worker feature tagging user interface deployed on Microworkers.com. Each 

worker answered a series of multiple-choice questions corresponding to each input feature of a 
gold standard classifier. 

2.2.  Crowdsourcing task for Microworkers 

Prior work has validated the capability of subsets of the crowd recruited from the Amazon 
Mechanical Turk crowdsourcing platform [ 30] to provide feature tags of children with autism 
comparable to clinical coordinators working with children with autism on a daily basis [31-32]. We 
instead recruited workers from Microworkers.com, as Microworkers consists of a diverse 
representation of worker nationalities [ 33] compared to Mechanical Turk, which contains workers 
mostly from the United States and India [34]. Furthermore, Microworkers provides built in 
functionality for allowing workers to revise their answers if a requester is unsatisfied but believes 
the worker can redeem their response. This functionality was crucial for our trustworthiness metric.  
      The task consisted of a series of 13 multiple choice questions identified, in prior work which 
employed feature selection algorithms on electronic health records [35-44], as salient categorical 
ordinal features for autism prediction. Workers were asked to watch a short video and answer the 
multiple-choice questions using the interface depicted in Fig. 1. Microworkers automatically records 
the time spent on each task. 

Through a pilot study of internal lab raters providing 9,374 video ratings for which we logged 
labeling times, we observed that the mean time per video was 557.7 seconds (9 minutes 18 seconds), 
with a standard deviation of 929.7 seconds (15 minutes 30 seconds). The pilot task consisted of 
answering 31 multiple choice questions, while the Microworkers task only contained 13 questions; 
the proportional mean time is 233.9 seconds (3 minutes 54 seconds). We therefore required workers 
to spend at least 2 minutes per video, a time threshold significantly below the 233.9 second mean 
proportional time. If any crowd worker spent less than 2 minutes rating a video, we leveraged the 
built-in functionality on Microworkers to prompt these users to revise their answers and sent them 
a warning message disclosing that we know the “Impossibly short time spent on task.” We measured 
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the additional time spent by the worker, if any, as well as the changes in the answer vector (L1 
distance) after receiving this message. 
      We posted all tasks for all 24 videos exactly 30 days after the original task, allowing workers 
who completed the first task to complete the task again while minimizing the chance that they 
could use the memory of their prior responses to bias the test. Previous studies which evaluate 
test-retest reliability consider 2 weeks to be sufficient time to prevent memorization of prior 
administrations of the questionnaire [45-48], and we increased this time frame to 30 days to 
minimize the likelihood that any memory of the workers’ previous answers remained. The same 
video of the child was provided for both administrations of the task. Workers were not provided 
with their original answers for reference. The difference between the worker’s original answers 
and their revised answers on the same video served as quantitative information about the 
reliability of the worker. 

2.3.  Classifier to evaluate performance 

 
Fig. 2.  Process for collecting the data needed to evaluate trust and reliability metrics for crowd 

workers. Each crowd worker watches unstructured videos of children with autism and 
neurotypical controls, answering multiple choice questions about each video. These multiple-
choice answers serve as categorical ordinal feature vectors for a previously validated logistic 

regression classifier, trained on clinician-filled electronic health records, that predicts the 
probability that a child has autism. 

 
For a gold standard, we use a previously published and validated [49-54] logistic regression 
classifier (Fig. 2), trained on electronic health record databases of autism diagnostic scoresheets 
filled out by expert clinicians, which emits a probability score of autism using the crowd workers’ 
multiple-choice responses as categorical ordinal feature vectors. Because logistic regression 
classifiers produce a probability, we treat the probability as a confidence score of the crowdsourced 
workers’ responses. We analyze the probability of the correct class (referred to as PCC), which is p 
when the true class is autism and 1-p when the true class is neurotypical. When assessing classifier 
predictions, we use a threshold of 0.5. We use a worker’s average PCC for videos the worker has 
rated as a metric of the worker’s video tagging capability, with a higher mean PCC corresponding 
to greater mean performance by the worker. 
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2.4.  Metrics evaluated 

We strive to develop metrics which only take input parameters that do not depend on a priori 
knowledge about the correct classification score of the videos. We test the following metrics for 
correlation with the PCC, where N is the number of videos rated by a worker, M is the number of 
questions per video rating task (inputs to the diagnostic classifier), and Ai,j,k is the answer for video 
i and question j for the kth time. 
 

 
Fig. 3.  Process for calculating trust and reliability metrics for crowd workers. The reliability of 
workers is determined by how different their answers are when rating the same video one month 
apart. The trustworthiness of workers is determined by whether they spend the minimal amount 

of time needed to properly answer the questions, whether they spend sufficient time when 
receiving a warning, and whether their original answers change after receiving the warning. 

 
        Mean same-child L1 distance (MSCL1): We asked crowd workers to rate the same child at 
least one month apart. Workers did not have access to their originally recorded answers and were 
unaware that they would be asked to rate the same video a second time when providing the first set 
of ratings. We observe the mean deviation for all videos between a worker’s original ratings for the 
video and their subsequent ratings one month later. We call this metric the mean same-child L1 
distance (MSCL1), which we consider as a metric of the worker’s test-retest reliability. Higher 
values for the MSCL1 correspond to greater variation in worker responses when re-rating the same 
video one month apart. Formally, MSCL1 is calculated as: 

 

𝑀𝑆𝐶𝐿! =
∑ ∑ |𝐴",$,% −	𝐴",$,!|&
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        Mean pairwise internal L1 distance (MPIL1): To analyze the reliability of the worker’s 
answers across videos, we look at the mean L1 distance between a worker’s answer to each video 
and all other videos they rated. We call this metric the mean pairwise internal L1 distance (MPIL1). 
MPIL1 is high when workers provide a wide variety of answer patterns across videos. If the worker 
answers all questions the same way per video, the MPIL1 will be 0. Formally, MPIL1 is calculated 
as: 
 

𝑀𝑃𝐼𝐿! =
∑ ∑ ∑ |𝐴"%,$ −	𝐴"!,$|&
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        Penalized time (PT): We aimed to build a metric that prioritizes rewarding workers who spent 
sufficient time rating the first time while rewarding, to a lesser extent, workers who spend sufficient 
time rating after receiving a warning. We also aimed to penalize workers who either do not spend 
more time rating after receiving a warning or who do not sufficiently update their answers. We 
create a metric of worker trustworthiness taking both of these factors into account which we call the 
penalized time (PT). If workers spend longer than a time threshold T rating, then they are not asked 
to revise their answers and receive a baseline score M. If they do not spend a sufficient time (T) 
rating, then they are asked to spend more time and to revise their answers. In this case, the metric 
consists of two terms, balanced by a weighting constant c. The first term is the “revision” mean 
same-child L1 distance (𝑅𝑀𝑆𝐶𝐿!) between initial and revised answers only for videos that the 
worker was explicitly asked to revise. The second term is the mean of the total time spent rating, 
which is the time spent initially (t1) and the time spent revising the answers (t2). Formally, PT is 
calculated as: 

 

𝑃𝑇 = 	 :
			𝑀,																																										𝑡! ≥ 𝑇

			
𝑡! + 𝑡%
𝑁 + 𝑐	𝑅𝑀𝑆𝐶𝐿!, 𝑡! < 𝑇 

        
        Time spent: Finally, we record the mean amount of time spent rating per video, in seconds. 
We hypothesized that workers who spend more time on the rating task will tend towards achieving 
higher performance. 
        We hypothesized that all four metrics are correlated with PCC. We only calculate metrics for 
workers who rated at least 10 videos. Because 13 questions were asked, an MSCL1 or MPIL1 of 13 
means that, on average, the worker’s answer differed by 1 categorical ordinal answer choice per 
question (e.g., the difference between “Mixed: some regular echoing of words and phrases, but also 
some language” and “Mostly echoed speech” in Fig. 1). 

2.5.  Prediction of crowd worker performance from metrics 

We train and test a linear regression model to predict the mean PCC of the workers using 5-fold 
cross validation. We evaluate all non-empty subsets of the correlative metrics described in section 
2.4 as inputs to the model. Since not all workers reopened the task after receiving a warning and not 
all workers conducted the second task in the series, we evaluated our model both using all available 
workers with complete data for all metrics as well as using the subset of 55 workers with data for 
all metrics. 
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3.  Results 

3.1.  Correlation between metrics and probability of the correct class 
Correlations of each of the worker metrics with their mean PCC are displayed in Fig. 4. Mean 
values per worker are only plotted and analyzed if at least 5 data points are available for the 
worker. MSCL1, MPIL1, and mean time spent were all significantly correlated with PCC 
(r=0.31, p=0.0212 for MSCL1; r=0.57, p<0.0001 for MPIL1; r=0.16, p=0.0284 for time), 
supporting the predictive power of these metrics. Intuitively, this means that higher variability 
in worker answers for the same video and across videos correlates with increased worker 
performance. We note that only MPIL1 passes Bonferroni correction. Penalized time was not 
significantly correlated with PCC (r=0.17, r=0.1413 for penalized time).  

Interestingly, Fig. 4 reveals that the presence of enough data to calculate certain metrics is in 
itself predictive of worker performance. Fig. 4C shows that there are several workers who had a 
mean PCC below 50%. However, none of these workers appear in the plot for MSCL1 (Fig. 4A), 
MPIL1 (Fig. 4B), or penalized time (Fig. 4D), indicating that workers with low average 
performance did not rate videos again after one month and did not revise their answers when 
prompted.  

 
Fig. 4.  Correlations between metrics and probability of the correct class (PCC). (A) Correlation 
between mean same-child L1 distance and PCC. (B) Correlation between mean pairwise internal 
L1 distance and PCC. (C) Correlation between time spent (s) and PCC. (D) Lack of correlation 

between penalized time and PCC. 
 

We evaluate all values of the weighting constant c for the penalized time metric in the interval 
[0.05, 10.0] using a step size of 0.05. No value resulted in a metric that positively correlates with 
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PCC. To investigate, we review the correlation between both terms of penalized time: (1) the 
mean total time spent rating post-warning and (2) the mean L1 distance between the answer vector 
before and after the warning (Fig. 5). Neither of these metrics are correlated with PCC (r=-0.10, 
p=0.3414 for revision L1 distance; r=0.11, p=0.2908 for total time), explaining the inability of the 
penalized time metric to predict PCC regardless of the parameters chosen. 

 

 
Fig. 5.  Lack of correlation between PCC and (A) the total time spent rating post-warning and 

(B) the L1 distance between the answer before and after the warning.  

3.2.  Regression prediction of the mean probability of the correct class 

Table 1 contains the mean average error (MAE) of a linear regression model predicting the 
probability of the correct class for each worker using metrics on the same set of videos. There were 
55 workers with data for all 3 metrics used in the regression model. For these workers, all metrics 
predicted the PCC with less than 10% MAE.  

The MAE when using all 3 features performs nearly identically, to two decimal places, 
compared to using only MSCL1 and MPIL1. Mean time does not contribute much predictive power 
given the other metrics. Interestingly, the most predictive input configuration when using the same 
55 workers is MPIL1 together with mean time (6.97% MAE), followed by MPIL1 alone as a close 
second (6.98% MAE). This is a testament to the success of the MPIL1 metric. 
 

Input Features 5-fold MAE (%)  
All data points 

5-fold MAE (%)  
55 workers with all 

metric data 

N 

MSCL1, MPIL1, mean time 7.51 7.51 55 
MSCL1, mean time 8.89 8.89 55 
MPIL1, mean time 7.43 6.97 81 

MSCL1, MPIL1 7.51 7.51 55 
MSCL1 9.24 9.24 55 
MPIL1 7.39 6.98 81 

Mean time 15.56 9.83 193 
Table 1.  5-fold cross validated mean average error (MAE) of a linear regression model predicting the 

probability of the correct class for each worker using metrics on the same set of videos. 
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Table 2 contains the mean average error of a linear regression model predicting the probability 
of the correct class for each worker using metrics from one set of children and mean probability of 
the correct class calculations for a distinct set of children. The most predictive input feature 
configuration (MSCL1 and MPIL1) results in a MAE of 10.41%, only 3.44% higher than the best 
MAE when training and testing on the same set of videos and workers using cross-validation (Table 
1). MPIL1 is involved in all of the top-4 input metric configurations resulting in the lowest MAE, 
again verifying the success of the MPIL1 metric. 
 

Input Features MAE (%)  
All data points 

MSCL1, MPIL1, mean 
time 

10.93 

MSCL1, mean time 13.03 
MPIL1, mean time 11.50 

MSCL1, MPIL1 10.41 
MSCL1 11.87 
MPIL1 10.91 

Mean time* 12.10 
Table 2.  Mean average error (MAE) of the linear regression model predicting the probability of the correct 
class for each worker using the same metric data and resulting classifier weights for the workers and videos 

used in Table 1 and mean probability of the correct class calculations for a distinct set of videos for a 
distinct set of workers. *Mean time as the only feature is the only configuration of input features that 

requires a different set of data points: N=102 instead of a subset of size N=62 for all other configurations. 

4.  Discussion and Future Work 

We identify three metrics which are individually highly correlated with the mean probability of the 
worker’s categorical behavioral feature tags predicting the correct class. In particular, one of our 
two reliability metrics - the mean pairwise internal L1 distance, which is the mean L1 distance 
between a worker’s answer to each video and all other videos they rated - stood out as the most 
predictive metric. Mean pairwise internal L1 distance alone can predict a worker’s PCC within 7% 
MAE when trained on the same set of workers as in the test set but with different videos, and it 
can predict PCC within 11% MAE when trained on one group of workers and tested on an entirely 
district set of workers and videos. This metric alone therefore provides a powerful behavioral 
predictor of worker performance and is therefore likely to be useful for rapidly filtering workers. 
The positive correlation shown in Fig. 4B suggests that unreliable workers will provide the same 
or similar patterns of answer sequences for each task. We see that an increasing diversity of 
answers between tasks results in a higher PCC for the entire spectrum of possible L1 distances. 
Intuitively, this may be a result of the diverse set of features exhibited by the heterogeneous 
behavioral characteristics of the children in our dataset.  

Interestingly, the raw time metric is not particularly correlative with PCC, indicating that 
analyzing the answer domain is more informative than the time domain.  For workers who received 
a warning for low time spent, neither the time spent revising post-warning nor the L1 distance 
between the original and revised set of answers was predictive of the workers’ final performance. It 
is possible that once workers are aware that their time is tracked, they idly keep the rating interface 
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open, accumulating time without accumulating thoughtful work. This hypothesis is speculative, and 
more fine-grained timing information must be recorded to evaluate such hypotheses. 

Future work should evaluate workers on a larger scale, which will validate the preliminary 
findings of the present study. It is possible that predictive time-based trustworthiness metrics exist. 
Evaluation on a larger scale in conjunction with more fine-tuned worker metrics will lead to more 
precise predictions. 

5.  Conclusion 

We demonstrate that behavioral metrics about crowd workers can predict, with a high degree of 
accuracy, the performance of crowd workers on behavioral feature extraction tasks for the binary 
diagnosis of autism. Metrics like these can be used for quickly and efficiently identifying crowd 
workers who are trustworthy and reliable enough for exposure to highly sensitive PHI based on a 
quantification of their reliability. 
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Machine learning is powerful to model massive genomic data while genome privacy is a
growing concern. Studies have shown that not only the raw data but also the trained model
can potentially infringe genome privacy. An example is the membership inference attack
(MIA), by which the adversary can determine whether a specific record was included in
the training dataset of the target model. Differential privacy (DP) has been used to defend
against MIA with rigorous privacy guarantee by perturbing model weights. In this paper, we
investigate the vulnerability of machine learning against MIA on genomic data, and evaluate
the effectiveness of using DP as a defense mechanism. We consider two widely-used machine
learning models, namely Lasso and convolutional neural network (CNN), as the target
models. We study the trade-off between the defense power against MIA and the prediction
accuracy of the target model under various privacy settings of DP. Our results show that
the relationship between the privacy budget and target model accuracy can be modeled
as a log-like curve, thus a smaller privacy budget provides stronger privacy guarantee with
the cost of losing more model accuracy. We also investigate the effect of model sparsity
on model vulnerability against MIA. Our results demonstrate that in addition to prevent
overfitting, model sparsity can work together with DP to significantly mitigate the risk of
MIA.

Keywords: Differential privacy; Membership inference attack; Machine learning; Genomics.

1. Introduction

Genomics has emerged into a frontier of data analytics empowered by machine learning and
deep learning, thanks to the rapid growth of genomic data that contains individual-level
sequences or genotypes at large scale. To build powerful and robust machine learning models
for genomics analysis, it is critical to collect, aggregate, and deposit sufficiently large assembly
of genomic data. However, genetic privacy is a growing and legitimate concern that prevents
wide sharing and aggregation of genomic data. Since genomic data is naturally sensitive and
private, the sharing of such data can potentially disclose an individual’s sensitive information
such as identity, disease susceptibility or family history.1,2 The current strategies of protecting
genomic privacy is centered around relevant regulations and guidelines (i.e. HIPAA3), together

c© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and 
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 
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with the controlled access of individual-level genomic data (e.g. dbGaP4). However, we are
in great need of new techniques for protecting genetic privacy toward an overarching goal of
achieving trustworthy biomedical data sharing and analysis. Specifically, it is imperative to
develop computational strategies to mitigate leakage of genetic privacy including the following
two types of privacy leakage:

• Privacy leakage via sharing data: an individual’s genomic data record may be leaked by
sharing raw genomic data or summary statistics data; and

• Privacy leakage via sharing models: the information that an individual’s genomic data is
included in the training dataset of a particular machine learning model, may be leaked by
sharing the model.5

While most of the prior works focus on the former type of privacy leakage resulted from
sharing data,6–8 in this study, we mainly focus on the latter type of privacy leakage from
sharing machine learning models. Several studies have recently showed that trained models
might memorize training data and thus disclose privacy of data records.9,10 Although there
exists a wide spectrum of attacks on machine learning models, the membership inference attack
(MIA)11 has recently attracted research efforts that induces privacy leakage when sharing
machine learning models. More specifically, MIA refers to an attack to infer if the target
record was included in the target model’s training dataset. MIA has been demonstrated as
an effective attack on images and relational data.5,11,12 However, it remains unclear if MIA is
effective on genomic data that significantly differ from conventional data.

Although less explored in genomics study, membership privacy leakage does pose an emerg-
ing risk given the increasing application and sharing of machine learning models in genomic
data analysis. One particular scenario is that a publicly accessible model trained on valuable
patient data may leak the privacy of patient.13 For example, suppose a cancer treatment cen-
ter builds a machine model to predict therapeutic responses based on patients’ genomic and
other biomedical data. The cancer center then releases the trained model to the public (e.g. for
publications or depositing the model into a public model repository) or deploys the model as
a machine-learning-as-a-service platform (e.g. Amazon Web service, Microsoft Azure, Google
Cloud). An adversary may use the model’s output to infer if a person, whose genomic data
the adversary has access to, is a cancer patient or cancer survivor, and such information may
provide the adversary some additional information that can be exploited. Hence, in this study,
we will investigate the efficiency of MIA on machine learning models for phenotype prediction
based on genomic data, a widely assessed prediction task carried out in agriculture, animal
breeding, and biomedical science.

To defend against various attacks including MIA, a few techniques have been developed to
mitigate privacy leakage such as homomorphic encryption,14 federated learning,15 and differ-
ential privacy (DP).16 While homomorphic encryption and federated learning are mainly used
to provide privacy protection for data sharing,17,18 DP provides a popular solution for publicly
sharing information not only about the data19 but also the models.20 The idea behind DP is
that the query results cannot be used to infer information about any single individual, if the
effect of perturbing in the database is small enough.16 Recently, multiple defense mechanisms
against MIA21–23 have been explored, with DP16 standing out as an efficient strategy that
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provides a rigorous privacy guarantee against MIA.11 Previous studies on imaging data24,25

have shown that DP is an effective solution for granting wider access to machine learning
models and results, while keeping them private. Therefore, we will mainly consider DP as a
defense mechanism against MIA, given its theoretical privacy guarantee and its applicability
for data and models. In this study, we investigate the effectiveness of using DP as a defense
mechanism against MIA for phenotype prediction on genomic data to prevent the risk of shar-
ing two widely-used machine learning methods including Lasso26) and convolutional neural
network (CNN27). The main contributions of our study lie in two folds:

First, we investigate the vulnerability of machine learning against MIA on genomic data,
and evaluate the effectiveness of using DP as a defense mechanism. Particularly, we evaluate
the trade-off between the defense power against MIA and the prediction accuracy of the target
model under various privacy settings of DP. Our results show that the relationship between
the privacy budget and target model accuracy can be modeled as a log-like curve, and hence
there exists a trade-off between privacy and accuracy near the turning point.

Second, we evaluate the effect of model sparsity on privacy vulnerability to effectively
defend against MIA. Genomic data is primarily high dimensional, where the feature size is
significantly larger than sample size. Hence, adding sparsity (e.g. the regularization terms in
Lasso models) to machine learning models is a critical and effective strategy to alleviate the
curse of dimensionality and avoid overfitting high-dimensional genomic data. Our results show
that model sparsity together with DP can significantly mitigate the risk of MIA, in addition
to providing robust and effective models for genomic data analysis.

2. Related Work

Membership inference attack (MIA). MIA is a privacy-leakage attack that predicts
whether a given record was used in training a target model based on the output of the target
model for the given record.11 Shokri et al.11 is the first work that defines MIA and inspires a
few follow-up studies. For example, Truex et al.28 characterize the attack vulnerability with
respect to the types of learning models, data distribution, and transferability. Salem et al.5

design new variants of MIA by relaxing the assumptions of model types and data. Long et al.12

generalize MIA by identifying vulnerable records and indirect inference. While most existing
works focus on MIA against discriminative models, relatively fewer works have considered
MIA against generative models.29,30 Liu et al.,31 Song et al.32 and Hayes et al.33 propose new
MIA variants against deep learning models including variational autoencoders (VAEs) and
generative adversarial networks (GANs). These MIA attacks require only black-box access
to a trained model. In practice, many studies usually release their models with white-box
access.17 Such white-box access provides many additional properties of the training models,
which make an MIA attack even easier.
Differential privacy (DP). DP16 has become the most widely-used approach that measures
the disclosure of privacy pertaining to individuals. The guarantee of a DP algorithm lies in that
anything the algorithm might output on a database containing some individual’s information,
is almost as likely to have come from a database without that individual’s information. DP
strategies have been applied to preserve genome privacy in genome-wide association studies
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(GWAS).8 For example, Johnson et. al34 developed privacy-preserving algorithms for comput-
ing the number and location of single nucleotide polymorphisms (SNPs) that are significantly
associated with certain diseases. Uhlerop et. al7 proposed a method that allows for the release
of aggregate GWAS data without compromising an individual’s privacy. Various DP mech-
anisms also have been developed35 to preserve model privacy, including a logistic regression
with DP36 and a random forest algorithm with DP.37 Going beyond classic machine learning
models, Shokri et al.38 adapted DP to deep neural networks. Abadi et al.25 developed a differ-
entially private stochastic gradient descent (SGD) algorithm for the TensorFlow framework.

3. Methods

In this section, we introduce the methods used in our study, including differential privacy and
membership inference attack. The supplementary materials and source code are available at
https://github.com/shilab/DP-MIA.git.

3.1. Membership inference attack (MIA).

As illustrated in Fig. 1, MIA assumes that a target machine learning model is trained on
a set of labeled samples from a certain population. The adversary utilizes the output of the
target model of a given sample to infer the membership of the sample (i.e., the given sample
was included in the training dataset of the target model). Formally, let ftarget() be the target
model trained on a private dataset Dtrain

target which contains labeled samples (x,y). The output of
the target model is a probability vector y = ftarget(x) whose size is the number of classes. Let
fshadow() be the shadow model trained on a dataset Dtrain

shadow, that is generated by the attacker
to mimic the target model ftarget() (i.e. take similar input and output of the target model).
We use the same assumption as in the pioneering work,11 that the shadow dataset is disjoint
from the private target dataset used to train the target model (i.e., Dtrain

shadow ∩Dtrain
target = ∅). Let

fattack() be the attack model. Its input xattack is composed of a predicted probability vector and
a true label, where the distribution of predicted probability vectors heavily depends on the
true label. Since the goal of the attack is membership inference, the attack model is a binary
classifier, in which the output 1 indicates that the target record is in the training dataset, and
0 otherwise.

To construct the MIA model, a shadow training technique is often applied to generate the
ground truth of membership inference. One or multiple shadow models are built to imitate
the target model. In this study, we consider the white-box setting, where the adversary has
the full knowledge of the target model including its hyperparameters and network structure.
This white-box threat setting reflects the observations that researchers often share their full
models and accidentally white-box representations of models may fall into the hands of an
adversary via means such as a security breach.

3.2. Differential privacy (DP)

DP describes the statistics of groups while withholding individuals’ information within the
dataset.16 Informally, DP ensures that the outcome of any data analysis on two databases
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Fig. 1. An illustration of the membership inference attack. A record in the target dataset
is fed into the target model and outputs a predicted probability vector. The shadow dataset and
unused dataset are either simulated or selected from publicly available datasets that have the same
distribution as the target dataset. A shadow model is built on the shadow and unused datasets to
mimic the target model. The attack dataset is composed of the probability vectors and true labels.
The attack model performs a binary classification (in/out) to determine whether a data record is
included in the training dataset (in) or not (out).

differing in a single record does not vary much. Formally, a randomized algorithmM : D → R
with domain D and range R is (ε, δ)-differentially private if for all subsets of S ⊆ R and for all
database inputs d, d′ ∈ D such that ‖d− d′‖1 ≤ 1 satisfied with Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈
S] + δ. Here, ‖d− d′‖1 requires that the number of records that differ between d and d′ is at
most 1. The parameter ε is called the privacy budget and a lower ε indicates stronger privacy
protection. The parameter δ controls the probability that ε-differential privacy is violated.
A lower δ value signifies greater confidence of differential privacy. If δ = 0, we say M is ε-
differentially private, and simplify (ε, 0)-differential privacy as ε-differential privacy. A rule of
thumb for setting δ is that it is smaller than the inverse of the training data size (i.e. 1/‖d‖).25

4. Experimental Setup

4.1. Dataset

We evaluate the effectiveness of DP against MIA on a widely-used yeast genomic dataset.39

We choose this yeast dataset because it provides an ideal scenario for evaluating the power
and privacy of phenotype prediction with well-controlled genetic background and phenotype
quantifications, without worries about complex genetic background and the hard-to-defined
phenotypes in humans. We extract and filter missing values of the original genotypes39 and
organize them into a matrix that contains genotypes of 28,820 genetic variants or features (with
values of 1 and 2 representing the allele comes from a laboratory strain or a vineyard strain
respectively) from 4,390 individuals. Similar to any typical human genomic data, the yeast
data is high dimensional where the feature size (28,820) is much larger than the sample size
(4,390). We also obtain phenotypes or labels of these 4,390 individuals for 20 traits,39 where
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we pick the trait of copper sulfate as our target phenotype in this study. This trait represents
the growth of yeast by measuring the normalized colony radius at a 48-hour endpoint in
agar plates with different concentrations of copper sulfate.39 Since MIA is mainly launched
on classification models, we binarize the quantitative phenotype values as 1 if they are larger
than the mean value and 0 otherwise.

4.2. Implementation of target models

For the target models of MIA, we implement a Lasso model26,40 as an example of sparse
learning models, and a CNN model27,41,42 as an example of deep learning model, that are
widely-used in analyzing high-dimensional genomics data.

Lasso is a regression analysis method that performs variable selection with a regularization
term using `1 norm.26 Lasso minimizes the residual sum of squares subject to the sum of the
absolute value of the coefficients being less than a constant. The general objective of Lasso

is min
β

1

2
‖y −Xβ‖22 + λ‖β‖1, where X is the feature matrix, β is the coefficient vector, and y is

the label vector. λ is the coefficient of `1 norm which controls the model sparsity. Lasso uses
an `1 norm regularization to shrink the parameters of the majority of features to zero which
are trivial, and those variants corresponding to non-zero terms are selected as the identified
important features. We set λ to be 0 (without model sparsity) and 0.001352 (with model
sparsity selected using the glmnet package in R43).

CNN has shown its capability to capture local patterns in genomic data.27 For demonstra-
tion, the CNN model in this study includes one CNN layer, followed by a dense layer as an
output layer. To improve model robustness, the `1 norm is applied to all layers to shrink small
weights to zero. We utilize a grid search with 5-fold cross validation to find the optimized
hyperparameters. In particular, we use two different learning rates (0.01 and 0.001) and two
micro batch sizes (50% and 100% of batch size). Regarding `2 norm clipping which deter-
mines the maximum amounts of `2 norm clipped to cumulative gradient across all network
parameters from each microbatch, we use four unique `2 norm clipping values (0.6, 1.0, 1.4,
and 1.8 respectively). For CNN models, we use two different kernel sizes (5 and 9), and two
different numbers of kernels (8 and 16). Furthermore, we set the values of λ as 0 (without
model sparsity) and 0.001352 (with model sparsity chosen using glmnet43).

4.3. Implementation of DP

We implement DP on both Lasso and CNN models with and without `1 norm respectively,
using a Python library called TensorFlow-privacy.44 DP is implemented in these models by
adding a standard Gaussian noise on each gradient of the SGD optimizer. The major process
for training a model with parameters θ by minimizing the empirical loss function L(θ) with
differentially private SGD, is summarized as the following: at each step of computing the
SGD: 1) compute the gradient ∇θL(θ, xi) for a random subset of examples; 2) clip the `2 norm
of each gradient; 3) compute the average of gradients; 4) add some noise in order to protect
privacy; 5) take a step in the opposite direction of this average noisy gradient; 6) in addition
to outputting the model, compute the privacy loss of the mechanism based on the information
maintained by the privacy accountant.
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In the DP implementation, the privacy budget is determined by a function that takes
multiple hyperparameters as the input. These hyperparameters include the number of epochs,
batch size and noise multiplier. The noise multiplier controls the amount of noises added in
each training batch. In general, adding more noise leads to better privacy and lower utility.
The hyperparameters used in this study are: two epoch sizes (50 and 100), two batch sizes (8
and 16) and five noise multipliers (0.4, 0.6, 0.8, 1.0, 1.2). We set the value of the parameter δ
as the inverse of training dataset size (i.e. δ = 0.00066489).25

4.4. Implementation of MIA

To train differentially private machine learning models and perform MIA, we split the whole
dataset into two disjoint subsets, one as the private target dataset and the other one as the
public shadow dataset.11 We randomly split the public shadow dataset, with 80% used for
model training and 20% used to generate the ground truth of the attack model. We focus on a
white-box model attack, where the target model’s architecture and weights are accessible, to
evalute how much privacy will be leaked in the worst case. Hence, the shadow model has the
same architecture and hyperparameters as the target model. We use an open-source library of
MIA45 to conduct MIA attacks on the Lasso and CNN models. We build one shadow model
on the shadow dataset to mimic the target model, and generate the ground truth to train
the attack model. The attack dataset is constructed by concatenating the probability vector
output from the shadow model and true labels. If a sample is used to train the shadow model,
the corresponding concatenated input for the attack dataset is labeled ‘in’, and ‘out’ otherwise.
For the attack model, we build a random forest with 10 estimators and a max depth of 2.
Each MIA attack is randomly repeated 5 times.

4.5. Evaluation metrics

Our evaluation metrics include: (1) the mean accuracy of 5-fold cross validation of the target
model on the private target dataset, and (2) the mean of MIA accuracy of 5 MIA attacks. The
accuracy of the target model on the training (testing, resp.) data is measured as the precision
(i.e., the fraction of classification results that are correct) of the prediction results on the
training (testing, resp.) data. We follow the pioneering work11 and use the attack accuracy to
measure MIA performance. All samples in the target dataset are fed into the attack model.

5. Results

5.1. Vulnerability of target model against MIA without DP protection

We investigate the vulnerability of Lasso and CNN models against MIA for predicting the
target phenotype without any DP protection. Table 1 shows the accuracy of the two target
models without DP and attack accuracy of MIA on these models. When the models are not
sparse (λ = 0), Lasso and CNN achieves a similar accuracy on the target dataset (0.7910
vs. 0.7894). The attack accuracy of MIA on Lasso and CNN with no sparsity is 0.5728 and
0.5726 respectively, which is better than random guess (0.5) and on a par with MIA accuracy
reported in other areas.11 The high dimensionality of genomic data makes MIA on genomic
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data much harder than other types of datasets, since shadow models hardly mimic the target
model on a high dimensional dataset. Nonetheless, with such a MIA accuracy, the adversary
still has a chance to infer the membership in a genomic dataset. After introducing model
sparsity by adding an `1 norm (λ = 0.001352) to coefficients (in Lasso) or weights (in CNN),
the target accuracy of both models is slightly improved and their attack accuracy is reduced.

Table 1. Model performance against MIA (without DP).

Methods
Target model Attack model

Accuracy Std. Accuracy Std.

Lasso (λ = 0) 0.7910 0.0123 0.5728 0.0071
Lasso (λ = 0.001352) 0.7963 0.0157 0.5631 0.0042
CNN (λ = 0) 0.7894 0.0199 0.5726 0.0059
CNN (λ = 0.001352) 0.7936 0.0225 0.5628 0.0050

5.2. Impact of privacy budget on the target model accuracy

In order to evaluate the impact of DP on the accuracy of the target model, we conduct a grid
search to find different privacy budgets and quantitatively investigate the impact of privacy
budget. As summarized in Fig. 2(a), we observe that the fitting curve between the privacy
budget and the target accuracy can be represented as a log-like curve. The performance of all
target models rapidly deteriorates as the privacy budget becomes smaller. When the privacy
budget is large, both non-sparse Lasso (λ = 0) and non-sparse CNN (λ = 0) models achieve
similar target accuracy. Compared with non-sparse models, the target accuracy of sparse Lasso
(λ = 0.001352) and sparse CNN (λ = 0.001352) models, is downgraded by DP to a more extent
even when the privacy budget is large. This is because sparse models only keep coefficients or
weights which are higher than λ, and shrink those coefficients or weights that are smaller than
λ to 0. Therefore, adding a noise to those large weights will have a more significant impact on
the accuracy of the target model.

5.3. Effectiveness of DP against MIA

To assess the effectiveness of DP against MIA, we conduct MIA on the target models with
different DP budgets. Our results (Fig. 2(b)) show that, for Lasso models, the fitting curve
between the privacy budget and the target accuracy can be represented as a log-like curve.
For CNN, we notice that the curve of attack accuracy is different from that of Lasso, since the
attack accuracy becomes unstable when the epsilon is smaller than 10. However, CNN with
DP still can provide strong privacy protection. In both Lasso and CNN models, we observe
that DP can defend against MIA effectively by perturbing the prediction vector output from
the target model, so that the adversary cannot easily infer the membership from such noisy
predictions.

According to results in Fig. 2, we choose the turning point with a maximum curvature
in the log curve as a trade-off between privacy budget and model accuracy. As the privacy
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budget becomes tight, the target accuracy is rapidly dropped after this turning point, while
the target model with DP can still provide sufficient protection against MIA. Based on this
observation, we choose the privacy budget of 10 that best addresses the trade-off between
privacy and target accuracy in this study.

(a) (b)

Fig. 2. Accuracy values of the (a) target model and (b) attack model respectively under
various privacy budgets (5-fold cross validation). Curves indicate the fitted regression lines;
shadow areas represent the 95% confidence intervals for corresponding regressions. Horizontal dotted
lines represent model performances without DP.

5.4. Effect of model sparsity

We investigate the effect of model sparsity by adding an `1 norm to model coefficients or
weights. Due to the large hyperparameter searching space, we only use the value of λ = 0.001352

for both Lasso and CNN, chosen using the glmnet package.43 Our results (Table 1) show
that adding sparsity to a model can improve the accuracy of the target model and reduce the
attack accuracy of MIA when DP is not deployed. This is because that on the high-dimensional
dataset, a Lasso or CNN model with no sparsity (i.e. λ = 0) can overfit the training data.
However, by introducing model sparsity, the overfitting of the model is reduced, leading to
better accuracy of the target model.

We further explore the impact of model sparsity on the accuracy of the target model when
DP is deployed. We observe that sparse models with DP have slightly worse model accuracy
compared with those non-spare models with DP (Fig. 2(a)). This is because each weight in
a sparse model is important to prediction results; and any perturbation to these weights can
significantly impact model accuracy. We also find that when the privacy budget is smaller
than the trade-off (e.g. ε < 10 in our results), the accuracy of the target model is relatively
insensitive to model sparsity compared with larger privacy budgets (i.e., ε > 10). Next, we
evaluate the impact of model sparsity on the defense power of DP against MIA. As shown
in Fig. 2(b), sparse models provide better privacy protection compared with those models
without sparsity, given the same DP budget ε.
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6. Conclusion

We investigate the vulnerability of trained machine learning models for phenotype prediction
on genomic data against a new type of privacy attack named membership inference attack
(MIA), and evaluate the effectiveness of using differential privacy (DP) as a defense mechanism
against MIA. We find the MIA can successfully infer if a particular individual is included in the
training dataset for both Lasso and CNN models, and DP can defend against MIA on genomic
data effectively with a cost of reducing accuracy of the target model. We also evaluate the
trade-off between privacy protection against MIA and the prediction accuracy of the target
model. Moreover, we observe that introducing sparsity into the target model can further defend
against MIA in addition to implementing the DP strategy.

Using yeast genomic data as a demonstration, our study provides a novel computational
framework that allows for investigating not only the privacy leakage induced from MIA at-
tacks on machine learning models, but also the efficiency of classical defending mechanisms
like DP against these new attacks. Nonetheless, there are several limitations of our current
study. We are limited to white-box setting where hyperparameters and model architectures are
accessible to an adversary in this study. In the future, we will also evaluate black-box access
where the adversary simply uses the target model as a black-box for query without any inside
information of the model. We will comprehensively explore the relationship between privacy
budget and model accuracy, under various combinations of model hyperparameters space and
phenotypes. We will apply the framework to analyze large-scale human genomic data where
privacy is of a realistic concern. We will investigate whether DP gives unequal privacy ben-
efits to genomes from minority groups compared with those from majority groups. We will
investigate other factors (e.g., the number of classes) and conventional genomic analysis (e.g.
associations studies, risk prediction) to assess the attack power of MIA and the effectiveness
of appropriate defense mechanisms.
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The coronavirus pandemic has placed renewed focus on expanded access (EA) programs to 

provide compassionate use exceptions to the waves of patients seeking medical care in treating 
the novel disease. While commendable, justifiable, and compassionate, EA programs are not 
designed to collect the necessary vital clinical data that can be later used in the New Drug 
Application process before the U.S. Food and Drug Administration (FDA). In particular, they 
lack the necessary rigor of properly crafted and controlled randomized controlled trials (RCT) 
which ensure that each patient closely monitored for side effects and other potential dangers 
associated with the drug, that the data is documented, stable and are traceable and that the patient 
population is well defined with the defined target condition. Overall, while RCTs is deemed to 
be of the most reliable methodologies within evidence-based medicine, morally, however, they 
are problematic in EA programs. Nevertheless, actionable data ought to be collected from EA 
patients. To this end, we look to the growing incorporation of real-world data real-world 
evidence as increasingly useful substitutes for data collected via RCTs, including the ethical, 
legal and social implications thereof. Finally, we suggest the use of digital twins as an additional 
method to derive causal inferences from real-world trials involving expanded access patients.  

Keywords: Real-World Data, Real-World Evidence, Randomized Clinical Trials, 
Randomized Controlled Trials, FDA, Bioethics, Digital Twin, Machine Learning, GAN 
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1.  Introduction 

1.1 Compassionate use 
Compassionate use is a catchall lay term1 for various legal shortcuts in providing access 

to experimental and limited-access medications.2 Many jurisdictions worldwide provide for 
different levels of compassionate use of in-clinical-trial or unapproved pharmaceuticals under 
varied legal oversight by their respective regulatory bodies.3 Broadly, these regulatory 
programs provide limited access exceptions —alternative legal means to access that missed 
opportunity— particularly for desperate patients who can’t otherwise legally obtain a medical 
product. Most commonly when a patient is unable to join an ongoing clinical trial. 

These loopholes have legal limitations. In the United States, for example, there is no 
constitutional right to compel access to said pharmaceuticals, even for terminally ill patients.4 
It remains up to the various stakeholders in the process, such as the doctors, pharmaceutical 
companies, institutional review boards and regulators to decide whether to help the patient.5 
In some cases, courts have allowed pharmaceutical companies to terminate access even while 
patients are still using the drug, arguably effectively.6  

In the US there are several compassionate use programs including a federal Expanded 
Access (EA) program that is ultimately administered by the Food and Drug Administration 
(FDA) for medical products under Investigational New Drug Applications. 7 The EA program 
is distinct from the similarly sounding and acronymed, but rarely implemented8 Emergency 
Use Authorization (EUA) which allows the FDA to facilitate broad access to an unapproved 
or differently labeled drug during a declared state of emergency, such as a pandemic;9 in 
contrast to the 'effectiveness' standard for FDA approval under conventional conditions, 
EUAs require a much lower 'may be effective' standard to be approved.10 EUA access to 
medication circumvents much of the minimal infrastructure of EA access, and so is not part 
of this analysis. 

The FDA's EA program, enacted in 1987,11 sought to codify a long-standing ad hoc 
system.12 Per 21 CFR 312.300 et seq, the FDA was tasked with facilitating "the availability 
of such drugs to patients with serious diseases or conditions when there is no comparable or 
satisfactory alternative therapy ...” If preconditions are met, the FDA allows for distribution 
of the drug even prior to market approval of the drug.13 These access programs are not 
necessarily small or limited in size or scope: in some cases, thousands of patients were 
provided investigational drugs prior to their final FDA approval.14 

The approval process for EAs can be relatively onerous. It requires a physician to sign on 
to the project, the acquiescence of the drug company to provide the drug, and the eventual 
approval of an institutional ethics review board (IRB) and the FDA. The patient must have 
exhausted all their options before an EA opportunity is even considered.  Federal and state 
laws also provide for even less onerous paths to access investigational drugs through various 
Right to Try (RTT) regulations.15 However, in contrast to EAs with their at least tenuous ties 
to FDA oversight, RTT wholly abandons the FDA’s gatekeeper role, requiring no IRB (as per 
the federal statute, although state statutes vary) or any FDA approval for the requested access, 
just the approval of the treating physician and the drug manufacturer. 

In EAs, given the possible negative outcomes, both the doctor and the drug company are 
disincentivized to approve a Hail Mary use of an unproven drug for an individual that 
otherwise did not qualify to be part of a clinical trial. Some manufactures fear both the 
repercussions to their subsequent new drug application (NDA) as well as bad PR given the 
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probability of poor patient outcomes. (Historically, the former fear has been unfounded; there 
have been less than a handful of cases where an EA program had a negative effect on the 
drug labeling.16) As such, only a percentage of requests ever end up at the final step of 
seeking FDA approval. The FDA approves more than 98% of all requests that reach the 
threshold, depending on the year, of the around a thousand per year expanded access 
requests17. The FDA has even recently mandated additional efforts to further facilitate access 
to the EA programs. 18 A website was recently developed to facilitate the process for patients 
and their advocates.19 

But even if the EA programs do not have a proximate effect on the NDA or the 
pharmaceutical company’s bottom line, they ultimately take away limited resources and 
possibly even consume limited drug supply that could have gone to additional patients within 
a structured clinical trial.20 Moreover, EA efforts don’t produce much useful data for the final 
drug approval. Thus, while such programs may be immediately helpful for a small number of 
desperate patients, they are often unhelpful for the much larger group of patients that will 
benefit from the 75% of EA drugs that are eventually approved by the FDA.21 

1.2 Compassionate use during the pandemic 

The coronavirus pandemic has placed renewed focus on the FDA’s EA programs. While 
commendable, justifiable, and compassionate, from a utilitarian point of view —which is an 
underlying philosophy for other FDA regulations as well22— EAs are arguably wasted 
opportunities and wasted resources. EA programs are rarely able to collect the necessary vital 
clinical data that can be later used in the New Drug Application (NDA) process before the 
U.S. Food and Drug Administration (FDA). In particular, they lack the necessary rigor of 
properly crafted and controlled randomized controlled trials (RCT) which ensure that each 
patient is closely monitored for side effects and other potential dangers associated with the 
drug, that the data is documented, stable and are traceable and that the patient population is 
well defined with the defined target condition.  

1.3 What is an RCT? 

The FDA considers the RCT to be the best research program for use in generating data 
for an NDA for a number of reasons, including: (i) RCTs are optimally largely separate from 
routine clinical practice without its concomitant confusing data. Further, (ii) through the 
rigorous nature of its development, the RCT is specifically designed to control variability and 
to maximize data quality. And, in contrast to EA programs, (iii) RCTs have restrictive 
eligibility to limit participants to certain characteristics and homogeneity such that the 
detection of an effect of a drug, if any, is more concretely determinable.23 Although this can 
also become a problem when an NDA is approved and an untested portion of the population 
reacts unexpectedly. Also, (iv) there is division between the research and the clinical through 
particular procedures and protocols, data collection systems and even the use of non-clinical 
personnel.  

It is because of these central characteristics that RCTs —thought to have been around at 
least since 18th century when James Lind conducted controlled experiments relating to 
scurvy— are the universal gold standard in establishing efficacy and safety data for an entire 
population, and trusted to answer the important NDA questions: does the drug actually work; 
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do the benefits of the drug outweigh the risk; and, what is the optimally safe dosage and 
regimen. Importantly, for FDA labelling, the evidence must be fully supportive of the 
conclusions. The RCT has long provided that necessary support. Nevertheless, RCTs are 
evolving. Versions now include hybrid designs that collect less standardized data, as well as 
pragmatic-styled trials that may more closely reflect clinical rather than research standards.  

1.3 EA data and NDAs 

EA data has historically not been seen as particularly relevant to the NDA application.24 
In contrast to RCTs, EA data is currently not seen to be fully supportive of the necessary 
conclusions: they are not well controlled, patients are less well defined, neither the 
participants not the researchers are blinded making it harder to support casual inferences, 
adherence to regimens are far from assured, and they lack the organizational support of 
standard RCTs with their monitoring and evaluations.25 And while there have already been 
some efforts to include EA data within the regulatory review of therapeutics, the data is often 
weak.26  

That ought to change. With an increase in the frequency of requests for EAs, the FDA 
ought to consider both practical changes in the way data is, if at all, systematically collected 
from EA programs, and regulatory changes that would allow this new data collection to be 
better included in an NDA.  

One possibility is the development of EA programs designed to effectively collect 
relevant and even actionable real-world data (RWD) —which can originate from non-
standard data sources. Data collected from EA participants, both prospectively and 
retrospectively could potentially be used as real-world evidence (RWE) that would support 
efficacy and safety determinations applicable to the FDA drug approval process.  

2. Real-World Information 

2.1 Real-world data in trials 

The immediacy and urgency of the COVID-19 pandemic has resulted in a growing 
appreciation for the need to collect more data faster. Even without the need/opportunity to 
collect data from EA programs, RCTs are inherently tedious to design and implement. The 
use of RWD to create RWE would provide an additional source of usable data to help push 
the regulatory decision-making process forward as well as providing valuable post-market 
data. The growing push to include RWE27  has been proposed for pharmaceuticals, vaccines 
and medical devices.28 

Pharmaceutical RWD falls across a broad spectrum of confidence. The data is rarely 
robust enough to allow for casual inferences, especially difficult when the treatment effects 
from the drug are not large in general.  But RWD, even in EA situations, do not have to be 
poor versions of data collected via RCTs. EA-based trials can be designed to create RWD 
with sufficient confidence levels that they can be included in the new drug application, if not 
even replace RCTs. Non-RCT trials have already been proposed and used in the NDA 
process: these include non-interventional clinical observational-type studies, historical 
retrospective analyses, and pragmatic trials that are more clinical than research in nature.  
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The incorporation of RWD and RWE is mandated. The 21st Century Cures Act (Cures 
Act) requires the FDA to set “standards and methodologies for collection and analysis of real-
world evidence” while providing broad leeway to find other applicability for this type of data. 
Section 505F of the Cures Act specifically defines this RWE broadly any “data regarding the 
usage, or the potential benefits or risks, of a drug derived from sources other than randomized 
clinical trials.”  As per the Cures Act, the FDA is obligated to seek alternatives to the 
expensive, narrow and rigid RCT paradigm and, among other efforts, incorporate RWE into 
its approval process. The FDA and other third parties have already developed numerous 
guidance documents,29 initiatives and frameworks including apps, to this end.30 

However, without reassessing how RWD is collected and extracted, and without 
designing robust EA programs that focus on extracting actionable, reliable and transparent 
RWE from RWD we are far off from achieving the Act’s goals. Currently there is no unified 
system that allows evaluation and quality comparison across various RWD sets; we are far 
from replacing the RCT through RWD extracting trials, although there are efforts.31 

2.2 Real-world data and real-world evidence 

The FDA, in its guidance documents draws a distinction between RWE and the RWD 
that support it. In particular, RWE must be evaluated in light of the reliability and relevance 
of the underlying data. To this end, the FDA defines RWD as “data relating to patient health 
status and/or the delivery of health care routinely collected from a variety of sources,” and 
RWE as “the clinical evidence about the usage and potential benefits or risks of a medical 
product derived from analysis of RWD.”32 

RWD can be extracted from numerous sources, including: electronic health records 
(EHR), although EHRs will typically only collect major events, and not daily relevant data 
outside of hospitalization,33 various data associated with the administrative provision of 
health care, including billing, claims, and insurance data, self-identifying information 
provided by individuals to patient registries, groups, social media pages and the like, and 
information collected by professional and recreational internet of things (Iot) devices ranging 
from insulin pumps to Apple Watches and Fitbits.  

RWD fits in well with continually expanding universe of Big Data: Broadly speaking, 
big data is defined by at least 4 V’s: velocity, variety, volume, and (lack of) veracity. RWD is 
similarly defined, it can be collected in real, or near-real time, from a host of diverse sources, 
providing innumerous data points, but due to its sources and structure, lacks the veracity of 
standard clinical data. Notably, the FDA does not yet see RWE as sufficient to stand on its 
own, but rather as simply further support and additional data collected through “randomized 
trials (e.g., large simple trials, pragmatic clinical trials) and observational studies (prospective 
or retrospective).” 

Moreover, the use or RWD may not, as per the FDA, always result in RWE that can be 
used directly toward a clinical drug trial. Still, the FDA already sees value in RWD in 
optimizing the trial process itself, even if it cannot be used towards an outcome. For example, 
in generating new hypothesis to test via RCTs, identifying relevant biomarkers and 
prognostic indicators, or assessing various inclusion/exclusion criteria. 
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But these limitations can be overcome. The use of RWD within clinical drug trials 
themselves, while still limited, is expanding in many different jurisdictions and have even 
been incorporated into a handful of NDA submissions. To its credit, the UK, under the Early 
Access to Medicines Scheme, was the first to allow RWD from a compassionate use program 
to be officially considered as part of regulatory submission.  

The FDA has published numerous recent papers relating to RWD and RWE, signaling 
their intent to promote their use.34 The FDA has shown additional interest in this area in the 
recently published a Funding Opportunity Announcement that seeks to examine a number of 
potential applications of RWD in the drug regulatory process.35 Even more recently, the FDA 
further announced its participation in the COVID-19 Diagnostics Evidence Accelerator 
organized by the Reagan-Udall Foundation. 

2.2 Real-world limitations 

The RWE and RWD FDA frameworks are intended, as per the Cures Act to be developed 
in consultation with stakeholders. Outside of their incorporation into EA-based clinical trials, 
RWD and RWE are thought to also be useful expanding clinical trials into more rare diseases36 
and cancers37-39 where RCTs are harder to develop, developing tools to estimate the 
effectiveness of treatments, increasing the diversity of the clinical trials in general, expanding 
the usability of the results into new interventions and comparisons of alternative interventions, 
creating actionable data where RCT opportunities are limited, adding evidence from broader 
studies, learning more about safety concerns in the broader population, doing more 
comprehensive risk/benefit analyses beyond simply efficacy, and appreciating how the drug 
actually acts under less constrained conditions than the ones provided in an RCT. 

  
To accomplish this, major limitations associated with RWE and RWD need to be attended 

to, especially lack of structure and standardization, biases, and confounding factors, and 
concerns with clarity and the relevant clinical granularity from the sources. This is non-trivial: 
Biases and confounding factors are typically dealt with through randomization, eligibility 
criteria and follow-up audits, which are much harder to accomplish with RWD. 

 
These biases include, information biases stemming from errors in data capture, lack of 

standardization, or incomplete data retrieval due to holes in the data, limited access to the 
relevant data; attrition biases resulting from patients that wholly drop out of any structured 
surveillance, compliance or performance bias, given the unstructured nature of RWD 
collection, patients might not be as incentivized to adhere as effectively to treatment; 
confounding biases as a result of the heterogeneity of the patients, including but not limited to 
patient demographics, their environment, their health environment including their provider and 
clinical settings, the use of alternative therapies, and the patients’ comorbidities; immortal time 
biases when we cannot ascertain when patients began being tracked, and selection bias of the 
patients and the choice of therapies made by their physicians, among many other potential 
biases. RWD also creates, at least in the outset, additional costs especially relating to sourcing, 
capturing, standardizing, cleaning, integrating, analyzing via data science tools, bioinformatics, 
natural language processing and machine learning the data, and even encrypting the data such 
that patient privacy is protected.  
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Patient privacy is another non-trivial concern. RWE requires the collection of a wide 
variety of hard to anonymize datasets such as insurance records, social media information and 
electronic health records.  Anonymization of this data can raise costs and hinder its utility. And 
re-identification from correlating data with other pubic databases is always a possibility 
creating additional regulatory hurdles: The European General Data Protection Regulation 
(GDPR) is particularly onerous here. 

 

3.0 Making RWD Work  

But for all of its limitations and complications RWD may become an invaluable source 
of data for pre-clinical drug trials and NDAs, especially RWD culled from EA related trials. 
Desperate times allow for the development and implementation of methods and technologies 
that heretofore have not found mainstream approval. A number of these technological and 
regulatory wallflowers have recently found greater traction, including distance learning, 
telemedicine, universal basic income,40 and potentially now RWE and RWD.  

RWD is a technology that has been waiting for an opportunity to spread its metaphorical 
wings. More than just providing more of the same, RWD is potentially less demographically 
homogenous than standard RCTs which often underrepresent minorities and often do not 
represent a spectrum of clinical presentations, and can miss additional useful datapoints that 
might not be collected within the rigid structure of the RCT. RCTs are expensive, unwieldy 
and often difficult to implement especially in low-incidence diseases. 

Now is the opportunity for the FDA to set standards for data collection related to EA 
programs with a focus on reducing design flaws and biases. Under EA programs, the FDA 
can incorporate requirements on both the patient, the managing physician and the 
pharmaceutical company to follow guidelines to limit the number of incomplete data sets and 
variabilities in data collection.  

Additionally, data should be collected and curated such that it is meaningful and 
actionable. Standards such as ICD-1041 and HCPCS42 should be employed when applicable, 
and data should be  expedited such that it can be collected and shared in real-time, and 
transparent in that it can be reproduced and replicated, in addition to being verifiable by 
auditors.43 This last is especially important as outside of the controlled environment of 
clinical studies, there is a concern that physicians and/or patients will consciously or 
subconsciously cherry-pick data to report. 

One of the greatest limitations of RWE relates to the difficulty in making causal 
inferences from the data, especially when there is no placebo data to counterbalance the 
collected data. The incorporation of placebos are especially ethically problematic when the 
RWE comes from compassionate use programs.  

3.1 Digital twins 

One way to circumvent this particular limitation is through the use of digital twins, i.e., 
the development of in silico representations of real-world objects. In silico digital twins 
began being developed in earnest around the turn of the century, originally conceived for 
NASA space vehicle product lifecycle management44 they have been heretofore used 
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primarily in engineering fields wherein devices can be stress-tested without building a second 
device.45  

The engineering concept was designed such that the virtual and physical systems would 
be linked throughout the entirety of the product lifecycle, from creation, through production 
and operation and eventually disposal.46 Nevertheless, digital twins don’t have to necessarily 
be linked and mirror the physical device exactly. They can also be predictive wherein a range 
of potential future states can be created and tested independently on the digital twin.  

This ability to run computer simulations on virtual objects allows devices to be tested 
even before they are fully built and/or deployed. Digital twins range from small devices to 
even cities, with varying degrees of complexity. The virtual system is designed to mirror, as 
closely as possible all the complexities of the original system.  

Digital twins are non-trivial to design and they require complicated modeling, advanced 
computing power and huge amounts of data to accurately reflect the physical object. The 
complexities are further exacerbated when creating a digital twin of a living organism that 
also exists and operates in a complex dynamic living environment. Nevertheless, published 
patent applications47 and some early papers48 suggest that there are significant efforts in the 
early development of patient digital twins.  

One promising example are simulator engines being developed by Unlearn.AI with the 
goal of simulating patient populations, disease progressions, and/or predicted responses to 
various medical treatments.49 The company uses an unsupervised machine learning model 
called a Conditional Restricted Boltzmann Machine (CRBM) to simulate detailed patient 
trajectories.50 These digital twins are intended specifically for the treatment of 
neurodegenerative diseases, including, Alzheimer’s Disease and Multiple Sclerosis.  Termed 
digital subjects by Unlearn.AI, they provide “… a computationally generated clinical 
trajectory with the same statistical properties as clinical trajectories from actual patients. ... 
they present no risk of revealing private health information and make it possible to quickly 
simulate patient cohorts of any size and characteristic.”51  Others have developed synthetic 
individuals from real-life data to predict aging and mortality trajectories via tracking 
predicted health deficits that accumulate through damage.52  

Succinctly, in the medical context, demographic data, family history and other 
unstructured health data, electronic health records, laboratory results, physiologic 
measurements and insurance data, imaging and signal data as well as substantial ‘omic data 
(genome, microbiome, transcriptome, proteome, metabalome and others53 (e.g., all the stuff 
that can also be termed RWD) can be collected and used to develop as close as representation 
to the original patient as possible, for example, via machine learning technologies.54  

In a number of examples, generative adversarial networks (originally developed by 
Goodfellow et al55 and heretofore used primarily in imaging processing to generate synthetic 
content) have been proposed.56 In one early study, a GAN was employed to predict clinical 
outcomes via the determination of the trajectory of laboratory tests, based on data culled from 
thousands of patients.57 In another, a GAN was used to create synthetic electronic medical 
records that closely fit real data.58  
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However, with all their promise, digital twins and similar predictive efforts are still 
limited by the heterogeneity of data and inability to generalize across widely different 
datasets ostensibly collecting the same data. Further, the data privacy concerns discussed 
above also relate to digital twin development, especially as data needs to be collected that not 
only relates to the physical patient and their in silico twin, but also the development of the 
technology itself will require the collection of data on various non-trial related individuals in 
optimizing the algorithms.  

4.0 Conclusions 

The ability to extract casual inferences is fundamental to clinical trials. The validity of 
these inferences are bolstered by many of the attributes of clinical trials that have become de 
facto in the industry, including: double blind randomized controls via placebos, homogenous 
sample populations, transparency, standardization and oversight. The recent pandemic has 
highlighted the limitations of these types of trials, especially when regulatory bodies provide 
broad expanded access to promising therapies in the second and third stages of their clinical 
trials.  

While our humanity demands that we do our utmost to help patients in need, the 
provision of unproven trial drugs to patients that cannot be included in the data-creating trials 
creates numerous practical, legal and ethical problems. Practically, EA programs take 
potentially scarce resources, such as trial drugs that do not yet have dedicated manufacturing 
platforms, as well as clinical personnel, away from a clinical trial. This redistribution of 
scarce resources, often politically motivated, or influenced by the potential for both positive59 
and negative public relations, is aggravated by the current practical and legal inability to 
parlay the potential information collectable by those receiving compassionate use of the drugs 
into the dataset of the clinical trial and toward the NDA.  

COVID-19 has created increasing demand for EAs and the resulting data applicability to 
NDAs is unclear at this early stage.60 In one example, Gilead Sciences was flooded with 
expanded access requests for an unapproved investigational drug Veklury (remdesivir), 
which it initially had to halt, due to the overwhelming nature of the demand and its effect on 
the concurrent clinical trials. Subsequently, with the declaration of a public health 
emergency, the FDA issued an EUA for remdesivir for hospitalized patients with COVID-
19.61  While the FDA does not have the authority to force a pharmaceutical company to 
provide the drug,62 its likely more difficult from a PR standpoint to refuse an EUA.  

While the risk benefit calculus for the individual patients often favors granting EUAs63 
as well as EAs.  From a utilitarian viewpoint of maximizing social benefit, they can be seen 
as problematic as they place the immediate and statistically unproven need of the few 
receiving expanded access medications ahead of the need of a general population that may 
benefit from the final approved drug. (Notably, COVID-19 has resulted in other wasted 
resources due to the fast and furious rush to publish in the field.)64,65 If the EA programs and 
their associated inability to generate actionable data push off the NDA, then there is the 
possibility for substantial harm to the broader population, especially when the drug is a 
promising opportunity to minimize the effects of the pandemic. 
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  But EUA and EA patients need not be deprioritized. There is a regulatory solution: 
the decision by regulatory agencies to develop usable methods to extract RWD from EA 
programs that have been heretofore axiomatically unable to approach the rigor of an RCT to 
create RWE that can be used toward an NDA.  There is already a regulatory drive to find 
opportunities to include RWD and RWE into the NDA process, for example in vaccine 
development.66 Clearly, pandemics provide the opportunity for regulatory agencies like the 
FDA to set up standards and best practices as to how to extract the most useful and actionable 
data from the heterogenous often mortally-ill patients that access pre-clinical drugs through 
the various expanded access programs. 

 Moreover, with the moral problems with providing placebos to expanded access 
patients, the FDA and other regulatory agencies should pursue the emerging area of 
biomedical digital twins. Already a maturing technology in areas such as aerospace, digital 
twins and other in silico biomedical data predicting and data synthesizing technologies can 
provide opportunities to test placebos on virtual rather than real patients to minimize 
confounding factors typically associated with RWD and RWE and finally enabling the 
enhanced derivation of casual inferences from real-world non-clinical data. Such efforts 
might even promote enhanced internal and external validity,67 something that we cannot as 
yet accomplish from RCTs alone.  
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Women's health is an often-overlooked aspect of medicine. The National Institutes of Health has 
emphasized the importance of investigating 'sex as a biological variable' in all new research grants. 
This has placed emphasis once again on the need for more nuanced studies that explore the role of 
sex as a biological variable on study outcomes. This session sought to elicit participation from 
researchers with strong backgrounds in women's health and informatics to develop methods that 
harness big datasets and 'big data techniques' including machine learning and artificial intelligence 
and apply those tools to women's health questions. Some important questions discussed in this 
section include Intimate Partner Violence (IPV) and the importance of early identification along 
with C-section deliveries and the importance of emergency vs. elective procedures.  
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1.  Introduction 

Recent advances in data science and digital epidemiology have unlocked an unprecedented 
amount of data for analysis, and uncovered previously unseen sex-specific patterns that point at 
marked differences in disease symptoms, progression and care that affect women of all ages. In 
2016, the NIH published a guidance document1 and changed its policy for reviewing proposals 
whereby accounting for “sex as a biological variable” became a required and scorable aspect of 
the research strategy, highlighting that “an over-reliance on male animals and cells may obscure 
understanding of key sex influences on health processes and outcomes”. Dr. Kathryn Rexrode, 
chief of the Division of Women's Health at Brigham and Women’s Hospital, is quoted2 as 
succinctly stating the enormity of the problem: "without the inclusion of women, all the way 
through from basic research to clinical research, we can't be sure we really have the right answers 
for 51 percent of the population."  

 
Aside from x-linked inheritable diseases, where women generally are carriers rather than 

express the disease3, there are various aspects of women’s health that challenge current methods. 
Recent research shows that variations in physiology may alter the pharmacokinetics or 
pharmacodynamics that determines drug dosing and effect for women, both in general and 
particularly during pregnancy4, as hormonal and other biological differences may influence the 
impact of drugs, their effectiveness and their side effects. Over two-thirds of women receive 
prescription drugs while pregnant, with treatment and dosing strategies based on data from healthy 
male volunteers and non-pregnant women5. A paucity of research exists for optimizing 
prescription usage during pregnancy and more methods are needed that utilize artificial 
intelligence and machine learning 6-8. In addition, health processes unique to women, such as 
pregnancy and pregnancy loss, menstruation and menopause require differential approaches to 
data representation and analysis. Disorders related to pregnancy and menstruation (such as 
miscarriage and heavy bleeding, which have a significant impact on women’s health) have been 
recently found to be related to specific genetic mutations and are just being explored9,10. 
Furthermore, it has become clear through numerous recent studies that many diseases 
(cardiovascular disease, asthma, eating disorders, lung cancer, and autoimmune disorders, among 
others) impact women differently than men.  Advanced data science methods specifically designed 
for exploring the influence that sex hormones and a women’s physiology can have on the 
pathophysiology of these processes diseases and on their treatment are essential to advance our 
understanding of key processes in women’s health, and, at the same time, the contrast could also 
shed light on the specific mechanisms that affect men. 

 
This session highlights original research in the form of presentations and papers on the subject 

of big data and women's health. These include the use of machine learning methods to predict 
intimate partner violence (IPV) over 1 year before that violence occurs, along with pattern mining 
to determine patterns of IPV and co-occurrence with other subgroups of IPV, including sexual 
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violence. Another method explores the role of emergency vs. elective C-section deliveries on the 
study of C-sections as an adverse outcome of delivery. These studies together enable further 
understanding of processes and diseases that are specific to women or differentially impact 
women. In harmony with the focus of PSB, the session emphasizes methodological advances and 
applications in data science, emphasizing reproducibility and validation. 

2.  Session Summary  

The session includes three full-length papers competitively selected for inclusion that are 
focused on exploring problems associated with the complex problem of intimate partner violence, 
including patterns and injury prediction (2 distinct papers) and another study focused on 
deconstructing Cesarean sections into emergency versus elective to better understand this complex 
health outcome. We selected these important contributions that are applicable to utilize big 
datasets on studying women's health outcomes. 
 

2.1.  Full-length papers 

In Co-occurrence Patterns of Intimate Partner Violence, the authors present a method that 
learns patterns of survivors of intimate partner violence (IPV) 11. The main data-source for their 
study is the National Intimate Partner and Sexual Violence Survey (NISVS). The algorithm then 
clusters IPV into 5 different subgroups, and the authors compare these algorithm-chosen 
subgroups to traditional categories of IPV including physical violence, psychological aggression, 
sexual violence and micro-aggression. An important finding of their pattern analysis and co-
occurrence pattern mining is that physical violence often co-occurs with psychological aggression 
and co-occurs less often with micro-aggression. In addition, the authors found that sexual violence 
tended to be a mutually exclusive form of IPV. Furthermore, this exclusive nature of sexual 
violence was so strong that it formed a single connected component in their subsequent network 
analysis. Overall, the findings from this study underscore the importance of breaking down IPV 
into type of IPV (e.g., physical violence, psychological aggression, sexual violence and micro-
aggression) as these different types of IPV have different co-occurrence patterns and could be 
important for subsequent studies that link IPV to other health outcomes. The authors results 
suggest that their method effectively clusters types of IPV patients into subgroups that pertain to 
the type of IPV experienced by the patient and underscore the importance of co-occurrence 
patterns in IPV. 

In Intimate Partner Violence and Injury Prediction from Radiology Reports, Chen et al. 
present an algorithm to predict which patients will experience injury as a result of IPV12. Because 
there are different types of IPV and not all IPV results in an injury to the partner, this method 
would be useful in determining a priori what patients will be likely to experience injuries as a 
result of IPV. This study differs from the previous study in that Chen et al.'s algorithm utilizes 
data from a large academic hospital's violence prevention support program from Jan 2013 - Jun 
2018. For information on the subsequent injuries, the authors also had access to the patients' 
radiology reports. The authors develop a machine learning model assess IPV patients for risk of 
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injury. Their method was successfully able to predict IPV 1.34 years before entrance into a 
violence prevention program with 95% sensitivity and 71% specificity. There are future plans to 
deploy their model as a clinical risk model for early detection of IPV. 

In Not All C-sections are the same: Investigating Emergency vs. Elective C-section Deliveries, 
Canelón et al. present a method that utilizes Electronic Health Records (EHR) data to breakdown 
Cesarean sections (C-sections) into emergency vs. elective C-sections 13. This breakdown is 
important because C-sections are often deemed an 'adverse outcome' across the board. However, 
there can be situations where it is the best outcome for a particular patient. Therefore, detailing out 
the important difference between a patient with an elective or planned C-section (e.g., in the case 
of a patient with complex comorbidities) versus an emergency C-section (e.g., as the result of an 
amniotic fluid embolism) is important when determining if the C-section is an adverse delivery 
outcome or not. In this study, the authors confirm that they adequately capture the differences 
between emergency and elective C-section by comparing the rates on weekday versus weekend, 
observing the expected drop in elective C-sections on the weekends. In addition, they modeled 
emergency deliveries in general as an adverse outcome and found that the following patient 
characteristics increased the risk of an emergency delivery: preterm birth, being younger than 25, 
identifying as Black/African American, Asian, or Other/Mixed, after adjusting for pregnancy 
number and C-section number for each patient. Interestingly, later pregnancies and repeat 
cesareans decreased the risk of an emergency delivery, and identifying as White, Hispanic, and 
Native Hawaiian/Pacific Islander patients appeared to lower the risk of an emergency delivery. 
The same risk factors and trends were found also for Cesarean deliveries (when looking at 
emergencies as the outcome) except that Asian patients did not have an increased risk of an 
emergency delivery in the C-section population, and Native Hawaiian/Pacific Islander patients did 
not have a reduced risk in this group. Overall, modeling the relationship between emergency vs. 
elective deliveries is important to understanding the relationship between other comorbidities and 
risk factors for C-sections. In addition, it is important for breaking down C-sections into those that 
are likely adverse events (e.g., emergencies) versus those that are due to comorbidities or other 
patient health issues (e.g., elective or planned). 

3.  Discussion  

Informatics and 'Big Data Analytics' algorithms as applied and developed specifically for women's 
health questions such as those presented in this session enable novel approaches of existing data 
from diverse sources including EHR and survey data sources. These methods can be used for early 
prediction of IPV (over 1-year before violence occurs) and these methods have potential to be 
implemented in clinics for early identification of at-risk patients. Before these methods can be 
implemented, care must be taken that these machine learning algorithms have not 'learned' any 
features or other signals that may be indicative of patterns of care that may be biased against 
women or other minority or otherwise disadvantaged groups. However, the work presented in this 
session does represent important first steps towards early risk prediction for a complex issue such 
as IPV. 
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Overall, the research presented in this session focuses on different clinical questions that pertain 
to women and women's health, including IPV and C-section as an adverse outcome following 
delivery or birth. The studies presented explore the complexity and the need to take these larger 
groups (either IPV or C-sections) and further break them down into meaningful subclusters, in the 
case of IPV that would be breaking it down into physical violence vs. sexual violence and so forth. 
In the case of C-sections, it requires breaking it down into emergency vs. elective C-sections. This 
highlights the complexity of these outcomes and the importance of developing novel informatics 
algorithms to study these important women's health outcomes. The overarching goal will be to use 
these findings and algorithms to improve clinical care in the form of enhanced understanding of 
risk factors or to predict patients at risk for IPV for early identification at the point of care. 
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Intimate partner violence (IPV) is an urgent, prevalent, and under-detected public health is-
sue. We present machine learning models to assess patients for IPV and injury. We train the
predictive algorithms on radiology reports with 1) IPV labels based on entry to a violence
prevention program and 2) injury labels provided by emergency radiology fellowship-trained
physicians. Our dataset includes 34,642 radiology reports and 1479 patients of IPV victims
and control patients. Our best model predicts IPV a median of 3.08 years before violence
prevention program entry with a sensitivity of 64% and a specificity of 95%. We conduct
error analysis to determine for which patients our model has especially high or low perfor-
mance and discuss next steps for a deployed clinical risk model.

Keywords: intimate partner violence; radiology; risk stratification; natural language pro-
cessing; contextual word embeddings.

1. Introduction

Intimate partner violence (IPV) is defined as physical, sexual, psychological, or economic
violence that occurs between former or current intimate partners. While men can also be
affected, IPV is a gendered phenomenon largely perpetrated against women by male partners.1

The Centers for Disease Control report that more than 1 in 3 women, and 1 in 10 men
in the U.S. will experience physical violence, sexual violence, psychological violence, and/or
stalking by an intimate partner during their lifetime.2 IPV victims have a greater risk of
health problems including higher rates of mental health illnesses, chronic pain, reproductive
difficulties, and generally poorer health.3–5 According to the United Nations, half of the women
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who are intentionally killed globally are killed by their intimate partners or family members.6

It is essential to detect IPV victims early to provide timely intervention.
Healthcare providers have the opportunity to screen patients for IPV, but several barriers

at both patient and provider levels limit the effectiveness. IPV victims often seek treatment
within healthcare settings;7 however, despite its high prevalence, IPV is substantially under-
diagnosed due to underreporting of violence by the victim to health care providers. Because
IPV victims generally do not present with obvious trauma, even in emergency departments,8

they do not readily receive IPV-specific resources.
Imaging studies provide an objective measurement of patient status, especially for vulnera-

ble individuals who are not forthcoming.9 In a prior observational study, researchers identified
IPV-related injury patterns including soft-tissue and musculoskeletal injuries from imaging
studies of victims who visited the emergency department. They also found that IPV victims
receive more radiology studies than a comparable control cohort.10

In this work, we present algorithms to predict IPV and injury from radiology reports. We
predict IPV from a dataset of 24,131 radiology reports from 262 IPV victims who enrolled into
a violence prevention support program and 794 controls from the same hospital who were age
and sex-matched based on a subset of the IPV victims. We demonstrate strong quantitative
results with our best model achieves a mean area under the received operator curve (AUC)
of 0.852. With a sensitivity of 64% and a specificity of 95%, we are able to predict IPV a
median of 3.08 years in advance of entry into the violence prevent support program. To better
detect severe forms of IPV, we predict injury from a dataset of radiology reports from only
IPV victims with labels from four emergency radiology fellowship-trained radiologists. Our
best model achieves a mean AUC of 0.887.

We analyze our models for validity and usability. Because IPV can manifest differently
across race,11 gender,12 age,13 and marital status,14 we present error analysis comparing accu-
racy, sensitivity, and specificity across these groups using demographic information extracted
from the clinical record. As IPV continues to affect vulnerable individuals—especially in times
of great crisis15,16—we demonstrate how automated predictive algorithms can be used to iden-
tify patients at high risk of IPV and injury.

2. Related Work

2.1. Intimate partner violence

Early detection in IPV is critical to facilitate early intervention in the cycle of abuse, thereby
preventing worsening health conditions,3–5 life threatening injuries, and potentially homi-
cides.17 The main obstacle to early intervention is underreporting by the patient due to variety
of factors including shame, economic dependency, or lack of trust in healthcare providers.18

Automated screening can help physicians identify high risk individuals—potentially from ra-
diology studies,19 substance abuse disorders,20 or other clinical data—and intervene quickly.
Prior work has focused on analyzing associative patterns among IPV victims.10 To our knowl-
edge, we present the first work to present an algorithm for IPV and injury prediction.
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2.2. Clinical prediction

Machine learning methods can assess patients and other individuals for different levels of risk
to allocate resources and improve clinical workflows.21,22 The strength of machine learning lies
in its ability to learn latent patterns from observational data and make robust predictions
on new and previously unseen patients. Researchers have shown promising results about the
use of machine learning on chronic diseases like diabetes,23 diagnosis from radiology reports,24

rare conditions like preterm infant illnesses,25 and public health concerns like child welfare.26,27

In particular, supervised learning models excel in structured settings with large datasets and
clearly defined labels, e.g. radiology report text and whether the patient ultimate enters a
violence prevention program.

2.3. Natural language processing

Natural language processing (NLP) techniques can extract information from unstructured
text.28 In healthcare settings, researchers have leveraged NLP on clinical text such as nursing
notes, discharge summaries, and radiology and pathology reports for disease surveillance,24,29

cohort creation,30,31 prediction of adverse events,32–34 and diagnosis.35,36

A promising new area of natural language processing research is the use of contextual
word embeddings. Whereas traditional approaches represent text as a non-sequential bag of
words or a sequence of static word embeddings, more recent approaches construct unique rep-
resentations for each word (or sub-word) depending on its surrounding context. For instance,
the abbreviation “MS” may refer to mitral stenosis or multiple sclerosis depending on the
surrounding context. BERT,37 RoBERTa,38 AlBERT,39 and numerous other recent models
are pretrained on large amounts of text using language modelling objectives and then fine-
tuned on a smaller task-specific dataset. Among other examples, large open-source clinical
datasets40 have enabled researchers to release clinical contextual word embedding models.
ClinicalBERT is a publicly available BERT model initialized from BioBERT41 and further
trained on intensive care unit notes.42

3. Dataset

We predict IPV using a dataset of IPV victims and age-matched control patients. We predict
injury using a dataset of only IPV victims, with labels from emergency radiologists.

3.1. IPV patient selection

The study cohort consisted of victims who were referred to a large academic hospital’s violence
prevention support program between January 2013 and June 2018. For the early detection of
IPV through IPV prediction, we randomly selected 265 women reporting physical abuse. We
excluded all victims without any radiological studies from both groups because our algorithm
seeks to predict IPV from radiology reports. The final IPV dataset consists of 262 patients.

For injury prediction, we examine a wider set of patients from two groups of victims referred
to a large academic hospital’s violence prevention support program between January 2013 and
June 2018. For the first group, we randomly selected 940 victims out of 2948 reporting any
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type of IPV-physical, psychosocial, or sexual. The second group comprised of all 308 IPV
victims (including 265 women) reporting physical abuse. We excluded all victims without any
radiological studies from both groups. The final IPV dataset consists of 530 patients.

3.2. Control group selection

We age-matched against 265 women with physical abuse and filtered for patients with at least
one radiology study that was not canceled. We selected the first 795 of the resulting 1006
patients to build our control cohort. Note that the control cohort was matched against the
265 female IPV victims and does not contain any men.

3.3. Injury labels

The full set of radiological studies and reports of the injury prediction patient cohort were ana-
lyzed for the presence of injury for each study. Any radiological findings unrelated to potential
physical injury such as pancreatitis, malignancy, subarachnoid hemorrhage due to aneurysm
rupture, etc. were not recorded as “injury”. All images were reviewed by four emergency radi-
ology fellowship-trained radiologists who were aware of history of IPV but were blinded to the
date of identification of IPV and clinical notes. The readers had full access to the radiology
reports. The radiologists also recorded any injuries such as soft tissue swelling, rib fracture,
etc. which might be overlooked or not mentioned in the original radiology reports. Each report
was reviewed separately and labeled with an injury or not. Of the 15,639 radiology reports
reviewed, 2.57% of them were found to have an injury.

3.4. Data cleaning

For each radiology report, we remove extraneous information to improve clarity for the pre-
dictive models. We remove all header and footer information, punctuation, and line breaks.
We change the text to lowercase and create tokens from each word through bag of words or
clinicalBERT.42 Radiology reports that lack meaningful information after this cleaning are
removed from the dataset. Patients who do not have any radiology reports after this step are
removed from the dataset completely.

3.5. Demographic data

We extract demographic data from IPV victims and controls including age, gender, race, and
marital status. To structure free-form responses for some fields, we consolidate each field into
several categories. For age, we discretize the field into < 30, 30-50, 51-65, and 66+. The average
age of patients in dataset is 43.8±18.5, with IPV victims average age at 40.9±13.3 and control
population average age at 46.3±4.7. For race, we consider white, Black, Hispanic, and “other”
categories with patients allowed to belong to more than one group. For marital status, we
categorize single, married, and other. Note that because our control population was sex and
age-matched against a cohort of female IPV victims, our control population contains no men.
We do not use demographic information for predictions and use only radiology reports. For
summary statistics about the dataset, see Table 1.
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Table 1. Summary statistics for dataset, with percentages of radiology reports.

IPV Prediction Injury Prediction
Total IPV Control Total Injury No Injury

# Patients 1,056 262 794 530 135 395
# Radiology Reports 24,131 5,127 19,004 10,009 172 9,837

Age < 30 6.8% 14.4% 4.8% 9.8% 10.5% 7.6%
30-50 32.0% 47.4% 27.8% 53.6% 58.7% 58.6%
51-65 37.2% 32.1% 38.5% 29.3% 21.5% 25.7%
66+ 23.9% 6.1% 28.7% 7.3% 9.3% 8.1%

Gender Female 100.0% 100.0% 100.0% 93.4% 90.7% 94.8%
Male 0.0% 0.0% 0.0% 6.6% 9.3% 5.2%

Race Black 50.8% 34.6% 55.2% 28.3% 29.1% 23.6%
Hispanic 12.0% 24.7% 8.6% 22.2% 19.2% 21.9%
White 10.0% 29.4% 4.8% 38.7% 40.7% 43.6%
Other 27.6% 11.6% 32.0% 11.6% 11.6% 12.0%

Marital Status Single 45.0% 56.6% 41.8% 50.8% 57.0% 47.9%
Married 36.1% 19.4% 40.7% 29.7% 27.3% 36.2%
Other 18.9% 24.0% 17.5% 19.5% 15.7% 15.9%

4. Methodology

4.1. Experiment setup

We train our models on 60% of the patients, validate and select hyperparameters based on 20%
of the patients, and report test performance on 20% of the patients. To avoid data leakage,
we split our data based on patient rather than radiology study. Once a patient is assigned to
train, validation, or test dataset, we assign all radiology reports and labels for that patient to
the corresponding dataset. We perform analysis on five trials with shuffled splits of the data.
All models are compared against the same five dataset splits.

4.2. Models

We compare two tasks and five models. We predict IPV and injury based on collected labels.
We consider data from extracted demographic data, radiology reports, and a combination of
the two. We use logistic regression, random forest, gradient boosted trees, neural network with
bag of words representation, and neural network with clinicalBERT42 representation.

For logistic regression, we search over hyperparameters including regularization constant
C = [0.001, 0.01, 0.1, 1., 2., 5.] and regularization type of L1 or L2. For random forest, we search
over maximum depth of trees of 10, 50, 100, 500, or no maximum depth. For gradient boosted
trees, we search over hyperparameters learning rate of 0.01, 0.1, 0.5, or 1 and maximum depth
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of 2, 3, and 4. We use the sklearn-learn Python package43 with otherwise default settings.
We train two neural network models using the AllenNLP library.44 Both models contain

an embedding layer followed by two feed forward layers with rectified linear unit function and
linear activations. The first model represents each note as a vector of word frequencies (“Bag
of Words”) projected down to a lower dimensional vector while the second model leverages
clinicalBERT’s contextual word embeddings to represent each note.

To facilitate more rapid training on CPUs, we freeze the clinicalBERT embeddings and
only train the feed forward layers. The first model was trained for 40 epochs with an early
stopping patient of 5 epochs, and the second model was trained for 10 epochs due to computa-
tional constraints. Gradient norms were rescaled to a max of 5.0, and training examples were
batched by note length to minimize excess padding. Hyperparameters were selected according
to validation set performance, resulting in a learning rate of 0.001, weight decay of 0.0001 and
batch size of 32 for both models.

4.3. Evaluation

4.3.1. Prediction and predictive features

We report the predictive performance as the area under the receiver operator curve (AUC)
on the same train, validation, and test datasets for all models compared. We compute AUC
means and standard deviations for the test datasets of the five shuffled splits of the data.

We present predictive features by finding words with high feature importance. Because
many compared models are non-linear, it is difficult to use interpretability methods to find
predictive words. As logistic regression performance is comparable to that of other other non-
linear methods (see Table 2), we present linear coefficients of the logistic regression across five
test sets of the shuffled splits of the data.

4.3.2. Error analysis

As clinical models face high stakes decisions, it is important that machine learning reduce
health disparities45 rather than amplify existing biases.46 We audit our best prediction model
for IPV and injury by comparing accuracy, sensitivity, and specificity for different subgroups
including age, race, gender, and marital status.47–49 We compute means and standard devi-
ations of performance metrics for each subgroup with model sensitivity set to 0.95 because
the clinical healthcare system can accommodate many false positives—e.g. offering a conver-
sation with a social worker—whereas false negatives can be more dire—e.g. not providing an
IPV victim with additional resources for help. Predicted probabilities are computed for test
datasets and compared to the true labels for the five shuffled splits of the data.

4.3.3. Report-program date gap

One practical measure of IPV prediction is how much earlier does our model predict IPV
compared to the date of patient entry into a violence prevention program. Although some
patients may be reluctant to seek clinical assistance,18 earlier detection and appropriate triage
of IPV victims can help empower clinicians to intervene and provide better care for victims.19
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Table 2. Model AUC means and standard deviations over five data
splits for IPV and injury prediction using radiology reports. Bold rows
indicate best performance for task.

Model IPV Injury

Logistic Regression 0.841 ± 0.033 0.866 ± 0.016
Random Forest 0.852 ± 0.022 0.887 ± 0.019
Gradient Boosted Trees 0.842 ± 0.027 0.858 ± 0.030
Neural Network (Bag of Words) 0.849 ± 0.026 0.879 ± 0.010
Neural Network (clinicalBERT42) 0.843 ± 0.022 0.852 ± 0.021

For each radiology report, we compare the radiology report date with the entry date into
the program. We call this difference in dates the report-program date gap, or simply the date
gap. Negative date gaps denote reports that occur before program entry. A radiology report
with a large magnitude date gap is one that occurs long before program entry whereas a low
magnitude date gap occurs shortly before program entry. A model that can make predictions
with a large magnitude date gap per IPV victim would allow us to allocate resources and
support to high risk individuals more efficiently. For each IPV victim, we compute the largest
date gap for which the model predicts IPV above the chosen threshold.

We select the prediction threshold to satisfy specificity constraints. A trivial way to max-
imize the early IPV detection would be to predict IPV for every patient in the dataset. This
simplification would yield redundant results and a high sensitivity (true positive rate). Ac-
cordingly, we fix our specificity level (true negative rate) to be at least 95% and compute the
corresponding model threshold. We report the median earliest date gap for all IPV victims
for whom the model predicts correctly.

5. Results

5.1. IPV and injury prediction and predictive features

We are able to predict IPV (best mean AUC of 0.852, random forest classifier) and injury (best
mean AUC of 0.887, random forest classifier). For more results, see Table 2. We find that words
that are most predictive for IPV and injury match clinical literature in IPV injury patterns
from radiology reports. In Table 3, we show words with highest feature importance from
logistic regression for both tasks. Findings include soft-tissue abnormalities such as swelling
and hematomas and musculoskeletal injuries such as fractures. These findings reflect prior
research on IPV injury patterns.10

5.2. Error analysis

We find differences in performance in subgroups of age, gender, race in our error analysis
(see Table 4). We focus on sensitivity because in cases of IPV and injury, it is much more
important to detect all true positives. In particular, older patients (51-65, 66+) have lower
sensitivity for both IPV and injury prediction. Other groups have low sensitivity for either

Pacific Symposium on Biocomputing 2021

61



20 10 0
Earliest possible date gap (years)

25

20

15

10

5

0

5

E
ar

lie
st

 p
re

di
ct

ed
 d

at
e 

ga
p 

(y
ea

rs
)

30 20 10 0 10
Report-program date gap (years)

0.0

0.2

0.4

0.6

0.8

1.0

IP
V 

pr
ed

ic
tio

n 
pr

ob
ab

ili
ty

Fig. 1. Scatterplots and marginal histograms for random forest classifier for IPV prediction. Left:
Earliest possible report-program date gap per patient (x-axis) compared to earliest predicted date
gap (y-axis) with sensitivity of 64% and specificity of 95%. Right: Report-program date gap (x-axis)
and IPV prediction probability (y-axis) for all radiology reports of IPV victims.

Table 3. Predictive words for IPV and injury averaged across five trials
based on linear coefficients of logistic regression. Underline indicates words
consistent with clinical literature.10

Task Predictive words

IPV ordering, final, trauma, hematoma, technique, swelling, cell, fracture,
type, fractures, lymphoma, electronically, male, pancreatitis, reason,
gms, implants, unresponsive, assault, none, cancer, pregnancy, mca

Injury hematoma, fracture, fractures, swelling, trauma, subchorionic, for-
eign, ankle, third, hand, nondisplaced, fall, stab, phalanx, finger, de-
formity, skullbase, fifth, wound, laceration, sob, digit, measuring

IPV or injury prediction, but not both. For example, Black patients have lower sensitivity
for injury prediction. White patients have low sensitivity for IPV prediction. It appears that
patients who are not single or married (e.g. widowed, separated) have lower sensitivity for
injury whereas married patients have lower sensitivity for IPV prediction.

5.3. Report-program date gap

We can detect IPV from radiology reports much earlier than a patient’s entry into a violence
prevention program. We compute the report-program date gap with specificity threshold of
the random forest classifier set to 95% and find a median date gap of 3.08 years, compared to
the median earliest possible date gap of 5.83 years. For visual representations of the predicted
date gap compared to the earliest possible date gap and the prediction scores, see Figure 1.
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Table 4. Error analysis for IPV and injury predictions from random forest classifier. Means and standard
deviations of accuracy, sensitivity (TPR), and specificity (TNR) computed over 5 data splits with overall model
sensitivity set to 0.95. Bold indicates subgroups with particularly low metrics.

IPV Prediction Injury Prediction
Accuracy TPR TNR Accuracy TPR TNR

Age < 30 83.6 ± 4% 97.7 ± 1% 53.6 ± 11% 62.5 ± 11% 93.9 ± 9% 61.2 ± 11%
30-50 87.4 ± 1% 96.3 ± 1% 49.6 ± 5% 54.1 ± 12% 94.8 ± 1% 52.9 ± 13%
51-65 71.8 ± 5% 92.5 ± 2% 49.1 ± 2% 41.4 ± 18% 89.5 ± 3% 40.4 ± 19%
66+ 60.9 ± 5% 84.4 ± 2% 45.2 ± 9% 33.5 ± 16% 98.0 ± 4% 31.1 ± 17%

Gender Female 77.2 ± 1% 94.6 ± 1% 48.4 ± 4% 50.0 ± 15% 93.4 ± 1% 48.9 ± 15%
Male — — — 31.7 ± 21% 96.2 ± 4% 28.8 ± 21%

Race Black 72.3 ± 2% 95.6 ± 0% 41.4 ± 7% 47.8 ± 14% 88.3 ± 3% 46.5 ± 14%
Hispanic 91.1 ± 2% 97.9 ± 0% 51.9 ± 11% 58.0 ± 13% 96.9 ± 3% 57.4 ± 13%
White 84.6 ± 1% 90.5 ± 2% 43.0 ± 5% 41.6 ± 18% 95.1 ± 3% 39.8 ± 18%
Other 68.7 ± 3% 98.0 ± 0% 55.1 ± 5% 58.3 ± 13% 95.0 ± 6% 57.4 ± 13%

Marital Status Single 81.5 ± 2% 95.4 ± 0% 45.5 ± 7% 49.6 ± 13% 95.3 ± 1% 48.1 ± 14%
Married 70.6 ± 1% 92.2 ± 2% 49.8 ± 3% 49.2 ± 18% 92.6 ± 7% 48.5 ± 19%
Other 83.4 ± 2% 95.4 ± 2% 49.8 ± 9% 46.5 ± 16% 88.7 ± 3% 45.4 ± 17%

6. Discussion and conclusion

We present a range of findings on the use of prediction algorithms to address IPV in the
clinical setting through the analysis of radiology reports. Our results demonstrate several main
takeaways. First, with a dataset of 34,642 reports and 1,479 patients, we are able accurately
predict IPV and injury with AUCs of 0.852 and 0.887, respectively. Second, while our algorithm
demonstrates some bias in the form of differences in accuracy, sensitivity, and specificity with
respect to age, gender, race, and marital status, we are able to predict a median report-program
date gap of over 3.08 years with sensitivity of 64% and specificity of 95%.

Our work leads naturally to many directions for future research. One limitation of our
current work is that we consider one radiology report at a time for IPV and injury prediction
and exclude clinical history. Because IPV victims seek greater medical care from clinical set-
tings like the emergency department,7,8 patient data including previous visits, clinical notes,
and diagnoses could yield more accurate predictions and therefore earlier detection.19 Ad-
ditionally, predictive algorithms can help identify the best intervention for an IPV victim.
Currently screening programs for IPV vary in execution and effect,50 and once screened, IPV
victims face many obstacles before leaving an abusive relationship.51 Deeper understanding of
targeted interventions could provide a crucial contribution to patient advocacy.

Deployment of a predictive model for IPV and injury detection faces several practical
challenges. As with many machine learning algorithms in clinical settings, question of general-
ization across hospitals22 and across subgroups47 raise concerns about robustness and fairness.
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Moreover, better understanding of physician reliance on, distrust of, and confusion towards
predictive models in clinical settings is an active area of research.52 We have shown in our
analysis that automated detection through machine learning can predict IPV and injury from
radiology reports. We look forward to future work towards the deployment of an IPV early
detection model in a clinical setting.

References

1. E. Fulu, R. Jewkes, T. Roselli, C. Garcia-Moreno et al., Prevalence of and factors associated
with male perpetration of intimate partner violence: findings from the un multi-country cross-
sectional study on men and violence in asia and the pacific, The lancet global health 1, e187
(2013).

2. M. Black, K. Basile, M. Breiding, S. Smith, M. Walters, M. Merrick, J. Chen and M. Stevens,
National intimate partner and sexual violence survey: 2010 summary report (2011).

3. J. C. Campbell, Health consequences of intimate partner violence, The lancet 359, 1331 (2002).
4. K. Tollestrup, D. Sklar, F. J. Frost, L. Olson, J. Weybright, J. Sandvig and M. Larson, Health

indicators and intimate partner violence among women who are members of a managed care
organization, Preventive medicine 29, 431 (1999).

5. M. Ellsberg, H. A. Jansen, L. Heise, C. H. Watts, C. Garcia-Moreno et al., Intimate partner
violence and women’s physical and mental health in the who multi-country study on women’s
health and domestic violence: an observational study, The lancet 371, 1165 (2008).

6. U. N. O. on Drugs and Crime, Global Study on Homicide: Gender-related Killing of Women and
Girls (UNODC, United Nations Office on Drugs and Crime, 2018).

7. C. Wisner, T. Gilmer, L. Saltzman and T. Zink, Intimate partner violence against women,
Journal of family practice 48, 439 (1999).

8. S. R. Dearwater, J. H. Coben, J. C. Campbell, G. Nah, N. Glass, E. McLoughlin and B. Beke-
meier, Prevalence of intimate partner abuse in women treated at community hospital emergency
departments, Jama 280, 433 (1998).

9. A. Russo, A. Reginelli, M. Pignatiello, F. Cioce, G. Mazzei, O. Fabozzi, V. Parlato, S. Cappabi-
anca and S. Giovine, Imaging of violence against the elderly and the women, in Seminars in
Ultrasound, CT and MRI , (1)2019.

10. E. George, C. H. Phillips, N. Shah, A. Lewis-O’Connor, B. Rosner, H. M. Stoklosa and B. Khu-
rana, Radiologic findings in intimate partner violence, Radiology 291, 62 (2019).

11. S. Lipsky, R. Caetano, C. A. Field and G. L. Larkin, The role of intimate partner violence, race,
and ethnicity in help-seeking behaviors, Ethnicity and Health 11, 81 (2006).

12. P. Tjaden and N. Thoennes, Prevalence and consequences of male-to-female and female-to-male
intimate partner violence as measured by the national violence against women survey, Violence
against women 6, 142 (2000).

13. C. M. Rennison, Intimate partner violence and age of victim, 1993-99 (US Department of Justice,
Office of Justice Programs, Bureau of Justice . . . , 2001).

14. A. Salomon, S. S. Bassuk and N. Huntington, The relationship between intimate partner violence
and the use of addictive substances in poor and homeless single mothers, Violence Against
Women 8, 785 (2002).

15. N. Van Gelder, A. Peterman, A. Potts, M. O’Donnell, K. Thompson, N. Shah and S. Oertelt-
Prigione, Covid-19: Reducing the risk of infection might increase the risk of intimate partner
violence, EClinicalMedicine 21 (2020).

16. B. Gosangi, H. Park, R. Thomas, R. Gujrathi, C. P. Bay, A. S. Raja, S. E. Seltzer, M. C. Balcom,
M. L. McDonald, D. P. Orgill et al., Exacerbation of physical intimate partner violence during
covid-19 lockdown, Radiology , p. 202866 (2020).

Pacific Symposium on Biocomputing 2021

64
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Electronic Health Records (EHR) contain detailed information about a patient’s medical history and 
can be helpful in understanding clinical outcomes among populations generally underrepresented 
in research, including pregnant individuals. A cesarean delivery is a clinical outcome often 
considered in studies as an adverse pregnancy outcome, when in reality there are circumstances in 
which a cesarean delivery is considered the safest or best choice given the patient’s medical history, 
situation, and comfort. Rather than consider all cesarean deliveries to be negative outcomes, it is 
important to examine other risk factors that may contribute to a cesarean delivery being an adverse 
event. Looking at emergency admissions can be a useful way to ascertain whether or not a cesarean 
delivery is part of an adverse event. This study utilizes EHR data from Penn Medicine to assess 
patient characteristics and pregnancy-related conditions as risk factors for an emergency admission 
at the time of delivery. After adjusting for pregnancy number and cesarean number for each patient, 
preterm birth increased risk of an emergency admission, and patients younger than 25, or identifying 
as Black/African American, Asian, or Other/Mixed, had an increased risk. Later pregnancies and 
repeat cesareans decreased the risk of an emergency delivery, and White, Hispanic, and Native 
Hawaiian/Pacific Islander patients were at decreased risk. The same risk factors and trends were 
found among cesarean deliveries, except that Asian patients did not have an increased risk, and 
Native Hawaiian/Pacific Islander patients did not have a reduced risk in this group. 

Keywords: Electronic Health Records; pregnancy; cesarean section; C-section; emergency 
admission; population health. 

1.  Background and Significance 

Electronic Health Records (EHR) contain rich information on patient medical history and treatment 
and can be used to study effects of prenatal exposures on delivery-related outcomes. These databases 
chronicle a patient’s medical history, and therefore information at the pregnancy-level for each of a 
patient's pregnancies must be extracted from patient-specific medical information. This study 
utilizes an algorithm designed to extract delivery episode details from the EHR [1]. Our previously 
developed algorithm enables multiple deliveries to be extracted per patient from the EHR and does 
not limit the data to one pregnancy per patient, which is an improvement over other algorithms in 
the field. The purpose of this study is to assess the impact of pregnancy-specific maternal morbidity 
and patient-specific characteristics on experiencing an emergency admission at the time of delivery 
and its relationship to Cesarean section (C-section) deliveries.  
                                                        
* This work is supported by the University of Pennsylvania. 
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The United States has one of the highest rates of maternal mortality among developed nations 
at 24.7% [2,3] and high rates of C-section deliveries at 31.6%[4]. The World Health Organization 
found that a country-level C-section rate of greater than 10% was not associated with reductions in 
maternal and newborn mortality rates[5]  and the American College of Obstetricians and 
Gynecologists expressed concern for the potential that C-sections were being overused after 
observing the rapid increase of C-sections between 1996 and 2011 without clear evidence of 
concomitant decreases in maternal morbidity or mortality rates [6,7]. Some suggest financial 
incentives [8–10] and the resource and scheduling convenience associated with C-section 
procedures [11–13] may play a role.  

Primary C-sections, or individuals' first C-section, have been associated with some increased 
risk in morbidity, and subsequent or repeat C-sections in the future pose even greater risk[14]. There 
also exists consensus within the medical community that a C-section procedure is sometimes the 
best approach, as in placenta previa or uterine rupture [7]. Understanding that not every C-section 
can be considered an adverse pregnancy outcome, it is important to consider other factors that may 
be indicative of an adverse event. In this study, we examine emergency admissions as an adverse 
event among the general population as well as the population of patients with C-sections while 
considering a variety of patient- and pregnancy-specific characteristics as risk factors. We 
investigate preterm birth, multiple birth, and stillbirth diagnoses as risk factors along with patient-
specific characteristics (at time of birth) including age, marital status, and race/ethnicity. The 
decision to investigate a patient’s race or ethnicity as a risk factor has no biological basis but rather 
is grounded in an effort to explore how systemic racism[15,16] may be reflected in the health 
outcomes studied. Importantly, there are no race-based or ancestry-specific genetic factors that have 
been implicated in increasing the risk of C-section deliveries. 

2.  Methods 

We identified pregnant patients who delivered via a C-section using structured EHR data that 
included a combination of inpatient and outpatient encounters within the health system. This data 
was coupled with information about type of admission to the clinic (i.e. elective or emergency), 
patient race/ethnicity, and patient age and marital status at the time of the encounter. We also 
determined if each pregnancy resulted in a multiple birth, preterm birth, or stillbirth using structured 
billing codes. We constructed a generalized logistic model to explore the relationship between these 
predictors and an emergency admission as a binary outcome variable. 
All code for this analysis and data visualization was implemented in R[17] (version 4.0.2) using the 
tidyverse collection of packages[18], and EHR data was stored on a HIPAA secure server in a 
MySQL database. This study was approved by the Institutional Review Board of the University of 
Pennsylvania.  
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2.1.  Dataset characteristics 

We obtained EHR data for 1,060,100 female patients with visits to inpatient or outpatient clinics 
within the Penn Medicine system between 2010 and 2017. Previously, we developed and validated 
an algorithm to extract delivery episode information and delivery dates for each patient (accuracy 
of 98.6% and F-1 score of 92.1%) called MADDIE [1]. This algorithm identified 50,560 female 
patients with 63,334 distinct deliveries. The predominant race/ethnicity descriptions of the patients 
with deliveries were non-Hispanic Black or African American (47.3% of deliveries) and non-
Hispanic White (33.9% of deliveries). We were able to identify pregnant patients who delivered by 
C-section and found that 35.52% (17,951 of 50,560) of patients delivered at least once via C-section 
and 32.99% (20,894 of 63,334) of all deliveries were via C-section (Table 1). 

2.2.  Identification of delivery outcomes 

Each delivery episode comprised a window of time containing an inferred delivery date. This 
delivery episode window consists of a start and end date corresponding to the start and end dates of 
when delivery codes were assigned. We needed to use an episode window because the visit to the 
hospital related to a delivery often can cross over multiple days and, in some cases, can last for 
several days. This is especially true for preterm deliveries where an attempt is made to delay the 
delivery, but is often unsuccessful. We use several outcomes (defined in subsections below) in this 
study. To link a patient delivery to a specific outcome, we required that the outcome diagnostic code 
be assigned within the delivery episode window for a particular delivery. We conducted our study 
at the pregnancy-level rather than the patient-level. However, later analysis looks at the effects of a 
prior C-section or a prior-pregnancy on subsequent pregnancy outcomes (thereby incorporating 
patient-level information). 

2.2.1.  Cesarean section deliveries 

We used the U.S.-modified International Classification of Diseases version 9 (ICD-9) and version 
10 (ICD-10) codes to identify all records that were assigned a C-section diagnosis or procedure 
code, and that had a C-section code assigned within the delivery episode window or time frame. In 

Table 1. Demographics of Patients with Deliveries at Penn Medicine 

 All deliveries C-section deliveries 
 Patients (%) Deliveries (%) Patients (%) Deliveries (%) 
Demographics 50560 (100) 63334 (100) 17951 (100) 20894 (100) 
Patient race/ethnicitya     

Black/African American 23777 (47.0) 29965 (47.3) 8220 (45.8) 9502 (45.5) 
White 17034 (33.7) 21443 (33.9) 6413 (35.7) 7626 (36.5) 
Hispanic 4031 (8.0) 4985 (7.9) 1403 (7.8) 1611 (7.7) 
Asian 3305 (6.5) 4073 (6.4) 1110 (6.2) 1269 (6.1) 
Other or Mixed 2426 (4.8) 2883 (4.6) 569 (3.2) 638 (3.1) 
Native Hawaiian/Pacific Islander 75 (0.15) 94 (0.15) 36 (0.2) 39 (0.2) 
American Indian/Alaskan Native 61 (0.12) 81 (0.13) 19 (0.1) 28 (0.1) 
Unknown 865 (1.71) 971 (1.53) 270 (1.5) 291 (1.4) 

Patient age 29.5 ± 6.1 N/A 30.6 ± 6.1 N/A 
aRace/ethnicity descriptions are ‘non-Hispanic’ unless otherwise indicated 
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the event that a C-section code was assigned on more than one date within a delivery episode, the 
date closest to the patient delivery date was selected as the C-section date.  

2.2.2.  Preterm birth, stillbirth, and multiple birth deliveries 

In the absence of gestational weeks in the structured data, we used ICD-9 and ICD-10 codes to 
identify records that were assigned a preterm birth diagnosis code within the delivery episode, and 
created a binary variable accordingly. The same process was used to identify a stillbirth or multiple 
birth within the delivery episode. These three variables were included as predictors in the regression 
models. 

2.3.  Integration of data from encounter records 

All delivery records were matched with admission type details in the encounter data to determine if 
patients had “emergency” or “elective” admissions to the hospital. Delivery admissions of type 
“emergency” were categorized as emergency deliveries while those recorded as “elective”, 
“routine/elective”, or “routine/elective admission” were categorized as elective deliveries. 
Categorization as an emergency admission was modeled as a binary response variable in the logistic 
regression models.  

Each encounter date was mapping to the day of the week information (i.e. Monday, Thursday, 
Saturday, etc.) using R. Additional details within the encounter records were used to extract the 
patient’s race/ethnicity as well as their age and marital status at the time of the delivery encounter. 
Patient age was included in the regression model as a categorical predictor variable with categories 
“<25 years”, “25-34 years”, and “>35 years”, with “25-34 years” serving as the reference variable. 
This age breakdown was chosen to assess whether patients younger or older than the majority of 
pregnant patients in our cohort[1] were at a different risk of emergency admission. Marital status 
was considered only so far as whether the patient was ‘Single’ at the time of the encounter, and 
included in the model as a binary predictor variable.  

2.4.  Generalized regression models 

We constructed a binomial multivariate logistic regression model to explore the relationship 
between a variety of predictor variables and emergency admission as the binary response, within 
the delivery population. Age, race/ethnicity, marital status single, preterm birth, multiple birth, and 
stillbirth diagnoses were all modeled as predictors of an emergency admission.  

A similar model was constructed to explore the risk of an emergency admission specifically 
among patients with C-sections. Age, race/ethnicity, marital status single, preterm birth, multiple 
birth, and stillbirth diagnoses were all modeled as predictors of an emergency admission. To account 
for any prior deliveries and/or C-sections, we also created adjusted models that included the delivery 
number and C-section number as predictors. All predictors were binary with the exception of age 
which was categorical, and delivery number (ranging from 0-7 deliveries) and C-section number 
(ranging from 0-5 C-sections) which were both continuous. 

Patients’ first deliveries were also modeled as a separate group to consider the possibility that a 
patient’s first experience giving birth could relate differently to the risk of an emergency admission. 
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The odds ratio for each predictor in all models was estimated by exponentiating the coefficients 
produced by the regression models. 

3.  Results 

3.1.  Utilization of cesarean section codes 

We found that 10 unique ICD-9 codes and 6 unique ICD-10 codes were utilized to record a C-
section diagnosis or procedure within the EHR. Among ICD-9 codes, the most common diagnosis 
code was 649.81 “Spontaneous labor with planned C-section-delivered”, and the most common 
procedure code was 74.1 “Low cervical C-section” (Figure 1A). Among ICD-10 C-section codes, 
which were utilized starting in 2015, the most common diagnosis code was O82 “Encounter for 
Cesarean delivery without indication,” and the most common procedure code was 10D00Z1 
“Extraction of products of conception, low, open approach” (Figure 1B). Overall, the most common 
codes were procedure codes ICD-9 74.1 and ICD-10 10D00Z1 (Figure 1C). 

 
3.2.  Admission types recorded in encounter records 
The encounter records revealed 62 distinct admission types (excluding the empty field) among all 
delivery records and 47 among C-sections. The most common admission types recorded in the EHR 
at the time of the encounter for both groups included “emergency”, “elective”, and “routine elective 

 

 

 
Fig 1. Distribution of ICD-9/10 codes most commonly utilized to code for a C-section delivery. 
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admission”. Among all deliveries, “emergency” made up 25.3% of records, “elective” made up 
4.8%, and “routine elective admission” made up 0.9%. The most common admission types and a 
similar pattern were seen among C-section deliveries, with “emergency” making up 22.1%, 
“elective” making up more encounters compared to all deliveries at 10.1%, and “routine elective 
admission” making up 1.3% of records (Table 2). We grouped all admission types that were not 
explicitly emergency and not explicitly elective into an 'Other' admission type for the purposes of 
our study. 

3.3.  Age distribution by delivery admit type 
Among all deliveries, the average age at the time of delivery was 27.9 ± 6.3 years for emergency 
deliveries, 31.6  ± 5.9 years for elective deliveries, and 30.1 ± 5.8 years for “Other” admission types. 
Within C-sections, the average age was higher for all admission categories with an average age of 
29.2 ± 6.5 years for emergency deliveries, 32.1 ± 5.5 years for elective deliveries, and 30.9 ± 5.9 
years for other admissions (Figure 2).  
 

Table 2.  Ten Most Common Admission Types Recorded in the Encounter Records 

Admission type Encounters Patients Deliveries 
All deliveries N = 78505 N = 50560 N = 63334 

PREGNANCY 37699 (48%) 30688 (60.7%) 35856 (56.6%) 
EMERGENCY 19873 (25.3%) 17250 (34.1%) 19766 (31.2%) 
(empty field) 6930 (8.8%) 6477 (12.8%) 6645 (10.5%) 
OTHER 3912 (5%) 3879 (7.7%) 3894 (6.1%) 
ELECTIVE 3806 (4.8%) 3541 (7%) 3614 (5.7%) 
RETURN OB 2295 (2.9%) 2237 (4.4%) 2269 (3.6%) 
NON STRESS TEST 1610 (2.1%) 1594 (3.2%) 1606 (2.5%) 
ROUTINE ELECTIVE ADMISSION 688 (0.9%) 655 (1.3%) 657 (1%) 
INDUCTION 436 (0.6%) 430 (0.9%) 430 (0.7%) 
US LIMITED 295 (0.4%) 292 (0.6%) 293 (0.5%) 

C-section deliveries N = 27034 N = 17951 N = 20895 
PREGNANCY 11905 (44%) 10213 (56.9%) 11216 (53.7%) 
EMERGENCY 5971 (22.1%) 5447 (30.3%) 5883 (28.2%) 
(empty field) 2960 (10.9%) 2760 (15.4%) 2798 (13.4%) 
ELECTIVE 2717 (10.1%) 2461 (13.7%) 2526 (12.1%) 
OTHER 1137 (4.2%) 1126 (6.3%) 1128 (5.4%) 
NON STRESS TEST 700 (2.6%) 692 (3.9%) 696 (3.3%) 
RETURN OB 670 (2.5%) 639 (3.6%) 644 (3.1%) 
ROUTINE ELECTIVE ADMISSION 364 (1.3%) 334 (1.9%) 335 (1.6%) 
US LIMITED 131 (0.5%) 129 (0.7%) 129 (0.6%) 
INDUCTION 113 (0.4%) 107 (0.6%) 107 (0.5%) 
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3.4.  Number of deliveries by weekday and admit type 

Overall, most deliveries occurred during the work week from Monday to Friday with a noticeable 
decline on Saturday and Sunday, a trend further emphasized within C-sections (Figure 3). The 
decrease in elective admissions between weekdays and the weekend was 2.25x greater among C-
section deliveries (12.4% vs. 5.5% for all deliveries). This difference between C-section deliveries 
and all deliveries was similar for the modest increase in emergency admissions on the weekend 
(1.6% vs. 0.7% for all deliveries). This transition between weekday and weekend with regards to 
emergency vs. elective C-section deliveries was expected given that C-sections are not scheduled 
for the weekend except in the case of an emergency. Most deliveries were associated neither with 
an elective nor an emergency admission but one of the “Other” admission types (Table 3). 

 
 

 
Fig 2. Distribution of patient age at time of delivery by admit type for (A) all deliveries and (B) C-sections. 

 

 
Fig 3. Deliveries on weekdays compared to weekends by admit type for (A) all deliveries and (B) C-sections. 
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Table 3.  Proportion of Deliveries by Weekday and Admit Type 

Weekday Elective Emergency Other 
All deliveries    

Avg. Weekday 777 (7.8%) 3107.2 (31.1%) 6118.4 (61.2%) 
Avg. Weekend 150.5 (2.3%) 2115 (31.8%) 4395 (66.0%) 

C-section deliveries    
Avg. Weekday 544.8 (15.4%) 993.6 (27.9%) 2020.6 (56.8%) 
Avg. Weekend 45.5 (2.9%) 457.5 (29.5%) 1047.5 (67.6%) 
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4.  Generalized regression model 

Figure 4 presents odds ratio estimates for risk of an emergency delivery from the logistic regression 
models constructed for three groups of deliveries: first deliveries, all deliveries, and C-section 
deliveries. Among first deliveries for all patients, preterm birth and age <25 years increased the risk, 
and patients Black/African American, Other or Mixed, or Asian were at increased risk. Patients >35 
years of age, single, White, Hispanic, or Native Hawaiian/Pacific Islander were at a decreased risk.  

 
Fig 4. Odds ratio estimates showing risk of an emergency delivery for first deliveries (A), all deliveries 
(B), and C-section deliveries (C). 
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These trends persisted when considering all deliveries together and also after adjusting for the 
delivery number and C-section number, the only difference being that patients >35 years were no 
longer at decreased risk of an emergency admission.  

In the C-section subgroup, all the same significant risk factors were identified, with the 
exceptions that Asian patients were no longer at increased risk and Native Hawaiian/Pacific Islander 
patients were no longer found to be at decreased risk of an emergency admission (Table 4).  

Across all three groups, preterm birth, age, and single marital status were found to be significant 
risk factors for an emergency admission, as well as identifying as Black/African American, Other, 
or Mixed, White, or Hispanic. All deliveries and the C-section subgroup also shared in common the 
number of delivery and number of C-section as significant risk factors. Notably, each model reflects 
that Black/African American patients were at a higher risk of having an emergency delivery than 
any other racial/ethnic group. Hispanic patients were the least likely to experience an emergency 
delivery, followed closely by White patients. 

Table 4.  Logistic Regression Model Results 
 Original Model  Adjusted Model  
Predictor OR (95% CI) P-value OR (95% CI) P-value 
All deliveries     

Preterm Birth 1.52 (1.42-1.64) <0.001 1.51 (1.41-1.62) <0.001 
Multiple Birth 0.98 (0.87-1.10) 0.709 1.05 (0.93-1.18) 0.437 
Stillbirth 1.08 (0.90-1.30) 0.409 1.04 (0.86-1.25) 0.716 
Age <25 years 1.52 (1.45-1.58) <0.001 1.44 (1.38-1.51) <0.001 
Age >35 years 0.93 (0.88-0.97) 0.003 0.96 (0.91-1.01) 0.091 
Marital Status Single 0.94 (0.90-0.98) 0.009 0.93 (0.89-0.98) <0.01 
Black/African American 2.16 (1.88-2.50) <0.001 2.40 (2.08-2.78) <0.001 
Other or Mixed 1.30 (1.11-1.53) 0.001 1.37 (1.17-1.61) <0.001 
American Indian/Alaskan Native 1.19 (0.72-1.92) 0.491 1.34 (0.80-2.18) 0.245 
Asian 1.21 (1.04-1.42) 0.015 1.27 (1.09-1.49) 0.002 
White 0.58 (0.50-0.67) <0.001 0.61 (0.53-0.58) <0.001 
Hispanic 0.42 (0.36-0.50) <0.001 0.45 (0.38-0.53) <0.001 
Native Hawaiian/Pacific Islander 0.43 (0.22-0.77) 0.008 0.46 (0.23-0.82) 0.014 
Delivery Episode N/A N/A 0.55 (0.53-0.58) <0.001 
C-section Episode N/A N/A 0.84 (0.81-0.87) <0.001 

C-section deliveries     
Preterm Birth 1.55 (1.38-1.74) <0.001 1.49 (1.33-1.68) <0.001 
Multiple Birth 0.99 (0.86-1.15) 0.935 0.99 (0.86-1.15) 0.922 
Stillbirth 1.15 (0.66-1.94) 0.690 1.17 (0.67-1.98) 0.577 
Age <25 years 1.50 (1.38-1.62) <0.001 1.46 (1.34-1.58) <0.001 
Age >35 years 0.94 (0.86-1.02) 0.128 0.94 (0.87-1.02) 0.156 
Marital Status Single 0.89 (0.82-0.96) 0.004 0.87 (0.80-0.95) <0.001 
Black/African American 1.77 (1.38-2.29) <0.001 1.93 (1.50-2.49) <0.001 
Other or Mixed 1.33 (1.00-1.76) 0.050 1.36 (1.02-1.80) 0.035 
American Indian/Alaskan Native 1.35 (0.58-2.99) 0.467 1.73 (0.73-3.90) 0.194 
Asian 1.06 (0.80-1.40) 0.690 1.09 (0.83-1.44) 0.538 
White 0.50 (0.39-0.65) <0.001 0.53 (0.41-0.68) <0.001 
Hispanic 0.34 (0.25-0.46) <0.001 0.36 (0.27-0.48) <0.001 
Native Hawaiian/Pacific Islander 0.49 (0.18-1.12) 0.117 0.49 (0.18-1.14) 0.127 
Delivery Episode N/A N/A 0.62 (0.54-0.72) <0.001 
C-section Episode N/A N/A 0.76 (0.64-0.90) <0.001 
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4.1.  Surgical Incision Type for C-section and Effect on Emergency Admission 

Not all C-section procedures are the same with regards to the surgical incisions, so we explored 
whether the type of C-section incision was indicative of an elective vs. emergency delivery. Low C-
section procedures have become the default procedure compared to the classical/high approach[19]. 
Figure 1B showed the two most common categories of C-section procedures corresponded to low 
C-section procedures and classical/high C-section procedures which were much less common. 
Including both ICD-9 and ICD-10 codes, low C-section procedures made up nearly 97% of all C-
section records. In contrast, classical/high C-section procedures only made up roughly 2.5% of 
records. After categorizing these two types of procedures by admission type, we did not find that 
surgical incision type varied much by admission type (elective vs. emergency delivery): 10.7% vs. 
13.6% of classical vs. low C-sections were elective deliveries and 28.4% vs. 28.0% of classical vs. 
low C-sections were emergency deliveries (Table 5). From this, we conclude that the emergency vs. 
elective admission type confers different information then surgical incision type. 

5.  Discussion 

The extraction of diagnosis and procedure records, encounter records, and delivery date information 
from the EHR facilitates the study of adverse pregnancy-related outcomes with patient-specific as 
well as pregnancy-specific information. This information serves to provide rich context for patient’s 
healthcare experience and makes it possible to investigate outcomes with a broader perspective. A 
C-section procedure as the mode of delivery is an example of a health outcome that requires richer 
context. There may be multiple reasons for a patient and their healthcare provider to consider a C-
section delivery over a vaginal delivery, which may include a medical indication or patient 
preference. Therefore, automatically categorizing all C-sections, as adverse pregnancy outcomes 
would not be appropriate because not all C-sections are the same. It is important when studying 
pregnancy-related outcomes to explore additional factors that may contribute to an adverse 
experience.  The approach taken by this study considers emergency deliveries to be the adverse 
event rather than C-sections more generally speaking, and evaluates a number of patient-specific 
and pregnancy-specific details as risk factors for an emergency admission at the time of delivery. 

In addition to investigating C-sections as a subset of all deliveries, we also studied a subset 
containing only the first delivery from each patient in the dataset. Because our dataset includes EHR 
data for patients at Penn Medicine, the first delivery of each patient in our cohort is the first delivery 
that Penn Medicine has on record for that patient. This is a limitation because it means our dataset 

Table 5.  Proportion of C-section Patients and Deliveries by Procedure Type and Admit Type 

Procedure type Elective Emergency Other 
Patients    

Low C-section 2669 (15.3%) 5261 (30.2%) 10668 (61.1%) 
Classical (high) C-section 54 (11.0%) 142 (28.8%) 301 (61.1%) 
Other C-section 192 (24.4%) 143 (18.2%) 457 (58.0%) 

Deliveries    
Low C-section 2745 (13.6%) 5665 (28.0%) 11810 (58.4%) 
Classical (high) C-section 54 (10.7%) 143 (28.4%) 307 (60.9%) 
Other C-section 192 (24.2%) 143 (18.0%) 458 (57.8%) 
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does not include deliveries that may have occurred prior to that first record or outside of Penn 
Medicine. The first deliveries subset provides a baseline perspective and accounts for the possibility 
that a patient’s first delivery experience at Penn Medicine may itself relate to an emergency delivery. 
A limitation to note here is potential selection bias with our cohort if patients had an extremely 
negative delivery experience at Penn Medicine and chose not to return for future pregnancy care.  

Our logistic regression models found that patients with a preterm birth diagnosis, younger than 
25 years, and identifying as Black/African American or Other/Mixed, were at an increased risk of 
an emergency delivery among first deliveries, all deliveries, and C-section deliveries. A greater risk 
among patients with a preterm birth diagnosis is expected, as public health efforts to prevent preterm 
birth have suggested as an intervention the elimination of early elective deliveries [20]. For related 
reasons, multiple birth and stillbirth diagnoses were also included in the analysis though neither 
were found to increase risk of emergency C-sections. A greater risk at a younger age may be due in 
part to a lack of familiarity with the birth process and anxiety in anticipation of birth [21]. This may 
cause them to choose to be admitted through the emergency department when entering labor and 
have an elective delivery (C-section or otherwise) that is ultimately captured as an emergency 
admission. This theory is supported by the decreased risk for patients with more deliveries or repeat 
C-sections among all deliveries and C-sections. This was unexpected as repeat C-sections have been 
associated with other adverse outcomes[14], suggesting other risk factors are more strongly 
correlated with emergency deliveries. The health disparities evident in the results of this study align 
with patterns identified in pregnancy care[22] and more broadly throughout healthcare[16,23]. 

Patients who have experienced more births (multiparous) may have a lower risk of an emergency 
delivery because they are more informed about what to expect and perhaps more confident in 
advocating for themselves and/or finding support in their delivery experience. Patients with more 
births may also have had prior positive experiences at Penn Medicine and/or suffer less disease 
overall and be able to sustain more pregnancies as a result. Relative to all deliveries combined, 
patients with C-sections were on average older regardless of admission type, and there was a clearer 
distinction between elective and emergency deliveries. When considering deliveries throughout the 
week, we confirmed that most deliveries occurred on weekdays (Monday–Friday), including C-
sections. For both groups, the proportion of elective deliveries dropped substantially from weekdays 
to the weekend. Among C-sections the drop was more pronounced showing it is less likely for a 
patient to have an elective C-section scheduled on the weekend, but instead during the conventional 
work week. These last findings support the hypothesis that resource and scheduling conveniences 
of C-section procedures contribute to overall C-section rates[11–13]. 

This study elucidated the importance of considering a variety of risk factors contributing to a 
patient’s adverse experience during delivery, and the benefit of considering admission type as a way 
to distinguish between elective and emergency C-sections. It also generated opportunities to further 
explore, including: the decreased risk of an emergency delivery with later pregnancies and C-
sections, further understanding of "other" admission types (i.e., not emergency or elective), and the 
relationship between repeat C-sections and emergency deliveries. We believe leveraging pregnancy-
specific details extracted from the EHR is critical in understanding pregnancy-related outcomes at 
the patient level, and a useful approach to exploring deliveries with a greater level of granularity. In 
conclusion, our methodological approach enabled the findings presented in this study that support 

Pacific Symposium on Biocomputing 2021

77



 
 

 

the importance of examining emergency vs. elective C-sections and assessing emergency C-sections 
as an adverse outcome rather than assuming that all C-sections are adverse events.  
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Intimate partner violence (IPV) is an important social and public health problem, affecting
millions of women worldwide. Violence in a relationship can occur in multiple ways, includ-
ing physical violence, psychological aggression, and sexual violence. In this study, utilizing
data from the National Intimate Partner and Sexual Violence Survey (NISVS), we compre-
hensively investigate the interplay between physical, psychological, and sexual violence, in
terms of their co-occurrence patterns, their relation to trauma symptoms and overall health
of victims. For this purpose, we perform network analysis and develop a visualization tech-
nique that enables in-depth navigation of the three-dimensional (physical, psychological,
sexual) space of violence. Our findings show that physical violence tends to significantly
co-occur with psychological abuse, and violence intensifies when both are present. We also
find that sexual violence tends to overlap less with other types of violence, particularly with
physical violence. Milder forms of psychological abuse are prominent in the population and
seem to represent a separate type of abuse (micro-aggression) in terms of its occurrence
patterns. Finally, we observe that trauma symptoms and health problems tend to be re-
ported more by survivors at the presence of intense psychological aggression. Our findings
can be useful in developing treatments that target different patterns of IPV.

Keywords: Intimate partner violence, psychological aggression, physical violence, sexual
violence, micro-aggression, co-occurrence, network analysis, clustering, data visualization

1. Introduction

Intimate partner violence (IPV), also commonly referred to as domestic violence, is a sig-
nificant public health issue that adversely affects the well-being of millions of women across
the world. IPV is often defined as physical, sexual, and psychological aggression by a cur-
rent or former intimate partner. According to CDC data, during their lifetime, one in every
four women experience severe forms of physical violence.1 Breiding et al.1 define physical vi-
olence as using physical force with the intent to harm, inflict injury or cause death. Physical
violence encompasses behaviors such as pushing, punching, kicking and using weapons.2 Psy-
chological aggression is defined as using communication, both verbal and non-verbal, with
intent to mentally and emotionally harm another person. They also include exerting control
into their definition.1 Psychological aggression encompasses explosive anger, coercive control,
degradation and isolation.3,4 The definition of sexual violence includes any sexual acts either
committed or attempted without the informed consent of the victim and/or despite their
refusal.1 Sexual violence encompasses but is not limited to intentional unwanted sexual touch-
ing, pressuring for sex, and forced penetration.1,2 The intensity of IPV cases range in severity
from executing threats to committing homicide.5

Harmful effects of IPV on the physical health of women are often linked to acute injuries
including bruises, lacerations, fractions, as well as chronic conditions including chronic pain

c© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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syndrome, hypertension, and fibromyalgia.5 IPV is also detrimental to sexual health and is
frequently linked with sexually transmitted infections and urinary tract infections.6 Further-
more, IPV’s harmful effects on mental health are often associated with depression, anxiety,
post-traumatic stress disorders, excessive stress, and suicidality47.8

The co-occurrence of multiple types of violence is also common.9 Different types of vio-
lence can co-occur with varying ranges of intensity in a relationship9.10 Indeed, past research
indicated high positive correlation with psychological and physical abuse.11 Identifying pat-
terns of different types of IPV that are simultaneously occurring in the relationships can
help immensely with treatment efforts.12 However, elucidation of these complex co-occurrence
patterns require comprehensive computational analyses on large scale data. In this paper, cap-
italizing on the availability of data from the National Intimate Partner and Sexual Violence
Survey (NISVS), we aim to comprehensively characterize the co-occurrence patterns of IPV.

NISVS surveyed thousands of women in the United States to collect comprehensive data
on the manifestation of different types of violence. While these large-scale data have been
useful in assessing the prevalence and intensity of different types of violence, little is known on
the interplay between these different types. Here, we develop a comprehensive computational
framework to systematically characterize the interplay between different types of violence.
Our computational framework and contributions include the following components:
(1) Using contingency analysis, we comprehensively quantify the overlap between four dif-

ferent types of violence (also including micro-aggression (MA) in addition to the other
three types that are explicitly measured, as our analysis suggests that MA comprises an
individual type of violence in terms of its prevalence and occurrence patterns).

(2) Using network analysis, we investigate the co-occurrence of individual violence items and
identify the items that are central to each violence type and characteristic of the interplay
between different violence types.

(3) We develop a radial visualization technique that quantifies the intensity and the type of
IPV (reported by a survivor), which allows elaborate visualization of the interplay between
different violence types and subgroups, as well as the projection of other variables (trauma
symptoms, health problems) to the space defined by violence type and intensity.

(4) Using clustering, we identify subgroups of survivors who are similar in terms of their
reported violence and assess how the resulting subgroups align with violence types.

2. Materials and Methods

2.1. Description of Data and Pre-Processing

Data from the National Intimate Partner and Sexual Violence Survey (NISVS) is utilized in
this study.13 This data was obtained through phone surveys of households across the United
States. Randomly selected households were sent letters indicating they would be contacted
for an interview. Overall, 16507 participants completed the interviews through the end.

NISVS is specifically designed to measure various characteristics related to relationship
demographics, IPV and their adverse effects on health. The 39 items measuring the type,
frequency and intensity of IPV are listed in Table 1. These items ask how many times the
perpetrator did a specific action in the past year and answers are rated by the survivor in a
scale of 0 (never), 1 (ten time), 2 (two to ten times), 3 (eleven to fifty times), and 4 (more
than fifty times). We use these reported numbers directly in our analyses as an approximation
to log-transformed frequencies of occurrence.

The items in the violence questionnaire are grouped into three violence types: (i) Physical
violence (PV, 12 items), (ii) Sexual violence (SV, 22 items), and (iii) Psychological aggression
(PA, 5 items). As we discuss in Section 3, we move some items between violence types. Based
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Table 1: The questionnaire items used in our study.

- How many times did [perpetrator] . . . ?
MA1: called you names like ugly, fat, crazy, or
stupid
PA1: acted very angry towards you in a way that
seemed dangerous
PA2: told you that you were a loser, a failure, or
not good enough
PA4: insulted, humiliated, or made fun of you in
front of others
PA5: told you that NO one else would want you
PA6: made threats to physically harm you

- How many times did [perpetrator] . . . ?
PV2: slapped you
PV3: pushed or shoved you
PV4: hit you with a fist or something hard
PV5: kicked you
PV6: hurt you by pulling your hair
PV7: slammed you against something
PV9: tried to hurt you by choking or suffocating
PV10: beaten you
PV11: burned you on purpose
PV12: used a knife or gun on you

- How many times did [perpetrator] . . . you
didn’t want it to happen?
SV1: exposed their sexual body parts to you,
flashed you, or masturbated in front of you
SV2: made you show your sexual body parts to
them
SV3: made you look at or participate in sexual
photos or movies
SV4: harassed you while you were in a public place
in a way that made you feel unsafe
SV5: kissed you in a sexual way?

- How many times did [perpetrator] . . . you
didn’t want it to happen?
SV6: fondled or grabbed your sexual body parts
How many times did [perpetrator] . . . when you
were drunk, high, drugged, or passed out and un-
able to consent?
SV7: had vaginal sex with you
SV9: made you receive anal sex
SV10: made you perform oral sex
SV11: made you receive oral sex

- How many times did [perpetrator] used
physical force or threats to physically harm
you to make you . . . ?
SV12: have vaginal sex
SV15: perform oral sex
SV16: receive oral sex
SV18a: (if male) try to make you have vaginal sex
with them, but sex did not happen
SV18b: try to have (if female, vaginal) oral, or anal
sex with you, but sex did not happen

- How many people have you had vaginal,
oral, or anal sex with after they pressured
you by . . . ?
SV19: doing things like telling you lies, making
promises about the future they knew were untrue,
threatening to end your relationship, or threaten-
ing to spread rumors about you
SV20: wearing you down by repeatedly asking for
sex, or showing they were unhappy
SV21: using their influence or authority over you,
for example, your boss or your teacher
SV22: forced you to engage in sexual activity

on occurrence patterns, we also separate one item in the PA group as a separate violence type.
Namely, we observe that the item “called you names like ugly, fat, crazy, or stupid” appears too
frequently and lies as an outlier in the principal component space (Figure 2(b)). To facilitate
thorough analysis of this frequent item with its own occurrence pattern, we separate this item
as fourth violence type termed micro-aggression (MA), This results in the following number
of items per violence type: 10 items for PV, 23 items for SV, 5 items for PA, and 1 item for
MA. In addition, the dataset includes 16 items measuring health problems (including asthma,
diabetes, irritable bowel syndrome, high blood pressure, frequent headaches, chronic pain,
difficulty sleeping, stress, perceived physical and mental health) as well as items measuring
trauma symptoms (including concern for safety, fear, having nightmares, and desire to avoid
remembering).

Filtering the survivors. Since the study is performed on randomly selected households, most
of the participants did not report any IPV. We also exclude instances where the perpetrator
is not an intimate partner. Among the 16, 507 participants who completed the survey, 873 of
them reported at least one incidence of IPV in the past year (i.e., responded 1-4 to at least
one of the 39 items in the survey). We focus on these 873 survivors in this study.

Data matrix and the computation of scores for violence types. Filtering results in a
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873×39 data matrix R of survivors vs. items, where R(i, j) ∈ {0, 1, 2, 3, 4} represents the response
of survivor i to item j. We systematically analyze this data matrix from the perspective of
survivors, as well as items. For this purpose, we call each row of this matrix a survivor profile
and each column of this matrix an item profile. To assess the intensity of violence for each
type, for each survivor, we compute an aggregate score averaging the responses of all items in
the respective subscale. These scores, denoted sPV (i), sPA(i), sSV (i), and sMA(i) for survivor
i, provide a summary statistic of the intensity of a particular violence type for the survivor.

2.2. Co-Occurrence of Violence Types

Here, we aim to assess whether violence types have a strong association with each other. For
this purpose, for each violence type (PA, PV, SV, and MA), we identify the set of survivors
who report a “high” level of violence in that category. To identify “high” levels of violence in a
category, we use the population mean of sT as a threshold. Namely, if sT (i) > s̄T for participant
i, we consider that participant i reports high violence in category T , where s̄T =

∑n
i=1 s(i)/n.

We denote the number of participants who report “high” levels of violence in type T according
to this threshold as nH(T ) = |{i : sT (i) > s̄T }|. While we report results according to population
mean as the threshold, the results we obtain with different thresholds (including a threshold
of zero, i.e., existence of violence or one or two standard deviation(s) above mean) are similar.

We assess the pairwise co-occurrence between two violence type T and T ′ as nHH(T, T ′) =
|{i : sT (i) > s̄T and s′T (i) > s̄′T }|, i.e., the number of survivors who report both T and T ′ above
population mean. To provide a baseline for expected co-occurrence, we compute the expected
number of overlaps based on the assumption that the two violence types are independent,
i.e., E[NHH(T, T ′)] = nH(T )nH(T ′)/n, where NHH(T, T ′) denotes the random variable that
represents the co-occurrence of T and T ′ (with observed value nHH(T, T ′)).

To quantify the magnitude of the co-occurrence between T and T ′, we use odds ratios:14

OR(T, T ′) =
nHH(T, T ′)nLL(T, T ′)

nHL(T, T ′)nLH(T, T ′)
. (1)

Here, nLL(T, T ′) = |{i : sT (i) ≤ s̄T and s′T (i) ≤ s̄′T }| denotes the number of survivors who report
“low” violence for both types T and T ′. nHL(T, T ′) and nHL(T, T ′) are defined similarly as
respectively“high T”/“low T” and “low T”/“high T”. To assess the statistical significance of
the odds ratios, we compute 95% confidence intervals as follows:

SE(T, T ′) =

(
1

nHH(T, T ′)
+

1

nLL(T, T ′)
+

1

nHL(T, T ′)
+

1

nLH(T, T ′)

)1/2

ORmax(T, T ′) =OR(T, T ′)eSE(T,T ′), ORmin(T, T ′) = OR(T, T ′)/eSE(T,T ′).

(2)

2.3. Co-Occurrence Network of Individual Violence Items

To obtain the co-occurrence network between individual violence items, we first compute
their Pearson correlation between the item profiles in a pairwise manner. We then construct
a network by putting an edge between two items if they exhibit positive correlation greater
than a given threshold (we use 0.2 in the results presented Section 3).

2.4. Radial Visualization

To investigate the relationship between violence types, we apply principal component analysis
(PCA) to map survivors to the 2-dimensional PCA space as shown in Figure 1. In the top panel
of this figure, the survivors are colored according to each violence type separately. To color
the survivors according to violence type scores, we first use rank normalization to normalize
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the scores into the [0, 1] range. For this purpose, separately for each violence type T , we sort
the survivors according to their sT scores. Then, for each survivor i, we take the percentile of
that survivor according to this ranking as their rank normalized score rT (i).

Fig. 1: Using radial projection to visualize survivors
in the three-dimensional space of violence types.
(Top) Distribution of physical violence (PV), psychological
aggression (PA), sexual violence (SV) scores in the plane
of first two principal components. Coloring indicates the in-
tensity of the corresponding violence type (PV, PA or SV).
(Bottom Left) Distribution of PV, PA and SV scores in the
plane of the first two principal components. Coloring is done
according to PV, PA and SV scores: Red component: PV.
Green component: PA, Blue Component: SV. As it can be
seen, the first two principal components reflect the violence
intensity as well as the violence type. (Bottom Right) Pro-
jection of the survivors to the radial space of violence type
vs. violence intensity.

The brightness of the R/G/B
channel for each survivor indicates
is set to be proportional to this
rank-normalized score for respec-
tively PV, PA, and SV. As seen in
the figure, survivors with high PV
score are typically clustered on the
bottom side of the PCA plane and
the survivors with high PA score
are typically clustered on top right
side of the PCA plane. Survivors
with high SV scores do not appear
to be clustered. This is not surpris-
ing since SV items are given little
weight by the principal components
(Figure 2a) due to the relative rar-
ity of SV.

When we integrate the RGB
values to visualize all violence types
at once, we obtain the plot in the
bottom left panel of Figure 1, lead-
ing to two interesting observations:
(i) The intensity of the violence (as
well as the brightness of the color)
typically increases as the distance
from the center in the PCA plane
(middle left corner) increase, and
(ii) The type of the violence (as well
as the hue of the color) changes de-
pending on the angle of the surrounding arc. This means that the principal component analysis
essentially captures these two inherent properties in the population.

Motivated by this observation, we develop a novel radial visualization scheme where the
survivors are placed onto a two-dimensional plane with respect to their violence intensity
and/or types. The objective of our approach is to present the interplay between the physical,
psychological, and sexual components of violence in a visually accessible and comprehensible
manner.

In order to visualize the survivors on a two-dimensional plane of violence type and intensity,
we utilize a transformation scheme that is originally proposed for transforming the color space.
This transformation (known as HSL) aims to represent a color on a three dimensional space
having hue, saturation and luminance as axes instead of the usual red-green-blue (RGB) axes.
In this space, hue indicates the color type (e.g., measures the difference between red and
yellow colors), saturation indicates the color homogeneity (e.g., measures how much the color
is different from gray), and the luminance indicates the brightness of the color (e.g., measures
the difference between black and white).

In our case, when we consider that each of the three violence types corresponds to a different
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color (red, green and blue), the hue and luminance components of the HSL transformation
essentially indicate the violence type and the intensity respectively. From a given set of rank
normalized scores rPV (i), rPA(i), and rSV (i) for survivor i, we compute the HSL components
as follows:15

Imax(i) = max{rPV (i), rPA(i), rSV (i)}, Imin(i) = min{rPV (i), rPA(i), rSV (i)},
Intensity(i) = (Imax(i) + Imin(i))/2.

(3)

Now letting M(i) denote the violence type with maximum rank-normalized score for sur-
vivor i and setting ∆(i) = Imax(i)− Imin(i), we quantify the Type of violence for survivor i as
follows:

H ′(i) =


undefined, if ∆(i) = 0,

((rPA(i)− rSV (i))/∆(i)) mod 6 if M(i) = PV ,

((rSV (i)− rPV (i))/∆(i)) + 2 if M(i) = PA,

((rPV (i)− rPA(i))∆(i)) + 4 if M(i) = SV .

Type(i) = H ′(i)× π/6

(4)

Note that Type indicates an angle, thus, it is defined in radians.
Using Intensity (corresponding to violence intensity) and Type (corresponding to violence

type), we compute the location of survivor i in the two-dimensional plane as:

x(i) = Intensity(i)× cos(Type(i)), y(i) = Intensity(i)× sin(Type(i)) (5)

The visualization of the survivors in this violence type vs. intensity space is shown in Figure 1,
bottom right panel. As seen in the figure, in this space, the distance from the center ([0, 0])
indicates the intensity of violence, and the arc angle indicates the type of violence.

2.5. Clustering of Survivors and Identification of Subgroups

We apply clustering to identify subgroups of survivors based on their responses to the 39 items
in the violence questionairre. For this purpose, we cluster the survivor profiles using K-means
clustering with Euclidean distance by employing kmeans function in MATLAB Statistics and
Machine Learning Toolbox.16 In order to find more reliable clusters, we run K-means 100 times
and select the clustering with the minimum total within-cluster distance (sums of point-to-
centroid distances). We use different values of K to optimize the number of clusters using
Calinski Harabasz Evaluation.17

2.6. Health Problems and Trauma Symptoms

To investigate the relationship of reported violence with health problems and trauma symp-
toms, we compute category scores for health problems and trauma symptoms subscale as
previously described for the violence subscales. Subsequently, we bin survivors according to
their location in the violence intensity vs. violence type space and compute the average scores
for health problems and trauma symptoms in each bin. We use radial visualization to visu-
alize this results. This visualization allows the investigation of health problems and trauma
symptoms with respect to violence type and intensities.

3. Results

Individual item frequencies and assignment of items to violence types. We first
investigate the overall reporting frequency of individual items in the IPV questionnaire. The
results of this analysis are shown in Figure 2. The bar plot in Figure 2(a) shows the frequencies
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Fig. 2: Response rate and principal component analysis of the items in the questionnaire.
a) Reporting frequencies of the questionnaire items among the 873 survey survivors who report
an incidence of intimate partner violence. Items are grouped and colored according to their scales:
Physical Violence (PV), Psychological Aggression (PA), and Sexual Violence (SV). b) The projection
of items projected on the space induced by the first two principal components. Each item is colored
according to their scales. The items that were moved to another scale are marked.

of all 39 items, grouped by subscales (violence types). As seen in the figure, items that belong
to the Psychological Aggression (PA) subscale are most frequently reported by survivors of
violence, while items in the Sexual Violence (SV) subscale are reported least frequently.

The projection of the items to the two-dimensional principal component space is shown in
Figure 2(b). As seen in the figure, items that belong to the same subscale are clustered in this
reduced dimensional space. If we consider these two principal components as “eigensurvivors”,
it is clear that these eigen-survivors tend to report similarly on all items (i.e., the items lie on
a linear line with a positive slope), with the exception of PA3 (“called you names like ugly, fat,
crazy, or stupid?”). This item lies as an outlier in the principal component space. Since this
item is the most frequently reported item in the questionnaire and has a substantial influence
on the PCA analysis, we decided to investigate it separately and labeled it as microaggression
(MA). We also observe that PV1(“made threats to physically harm you?”) can be considered
psychological aggression and lies close to psychological violence in the principal component
space. Similarly, PV8 (“forced you to engage in sexual activity?”) involves sexual violence and
lies close to SV items in this space. For these reasons, we move these items to the respective
subscales.

Co-occurrence of violence types. Once the assignment of items to violence types is final-
ized, we investigate the co-occurrence of violence types. The results of this analysis are shown
in Figure 3. We observe significant co-occurrence of physical violence and psychological aggres-
sion, with an odds ratio of 3.62 (95% confidence interval: [2.60, 5.06]) and a linear correlation
of 0.449 (P<0.001). While the co occurrence between physical violence and micro-aggression
is weaker (OR=1.52, correlation=0.218, P<0.001), we observe that micro-aggression and psy-
chological aggression occur frequently together (OR=2.97, correlation: 0.385, P<0.001). Inter-
estingly, sexual violence tends to exhibit significantly less co-occurrence with all other types
of violence, with an odds ratio below 1.0 and near zero (below 0.1) correlation for all other vi-
olence types (correlations: PV-SV=0.015, PA-SV=0.08, MA-SV=0.007). The 95% confidence
intervals for the odds ratios fall completely below 1.0 for SV vs. PA and for SV vs. MA.

Co-occurrence of individual items. To assess the co-occurrence patterns of IPV at a
higher resolution, we also investigate the co-occurrence at the level of individual items. For
this purpose, we assess the correlation between all pairs of the 39 items, and construct a
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Fig. 3: Co-occurrence of different types of intimate partner violence. The sets represent
Physical Violence (PV, red), Psychological Aggression (PA, green), sexual violence (SV, blue), or
Micro Aggression (MA, yellow). The first number in each set shows the number of survivors who
report that type of violence above population mean. For the 4-way Venn-diagram, the numbers in
parentheses show the percentage of survivors (over all survivors) in the respective set. The 2-way Venn
diagrams assess the significance of the overlap between pairs of violence types, where the number
in parenthesis shows the expected value of the intersection given the frequencies of each type. The
resulting odds ratios (and 95% confidence intervals for the ORs) are shown below the Venn diagrams.

Fig. 4: Itemwise co-occurrence network of intimate partner violence. The nodes represent
violence items and the edges indicate the existence of positive correlation (> 0.2) between survivors’
responses to the corresponding pair of items. The widths of edges show the strength of correla-
tion. The nodes (items) are colored according to their corresponding subscale: Yellow for Physical
Violence (PV), red for Psychological Aggression (PA), green for Sexual Violence (SV), blue for
Micro-Aggression (MA). The top five nodes with highest degree and highest cross-degree (with other
violence types) are shown on the right.

network by retaining all pairs with correlation > +0.2. As seen in Figure 4, the network has
two large connected components connected by a single weak edge.

One of these components represents Sexual Violence (SV), while Physical Violence (PV),
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Fig. 5: Clustering of survivors and the identification of subgroups. a) Size (number of
survivors, log-scaled) vs. heterogeneity (measured by mean pairwise distance between survivors) of
the five clusters of survivors identified using K-means. The black line and the grey area show the
mean/95% confidence interval for the heterogeneity of random groups of survivors as a function of
size (100 permutations). (b, c) Visualization of clusters in the two-dimensional principal component
space/radial projection. Each survivor is colored according to their cluster/subgroup. Colored squares
show the centers of respective subgroups. (d) Distribution of the scores for four different violence
types in the identified subgroups.

Psychological Aggression (PA), and Micro-Aggression (MA) are together represented by a
single component. We observe that the correlations among items within PV are stronger, with
PV7 (“slammed you against something”) being the central node in the PV-PA cluster. The
central item for the SV component, on the other hand, is SV12 (“used physical force or threats
to physically harm you to make you have vaginal sex”). Interestingly, PV11 (“burned you on
purpose ”) is also connected to SV12, although it is not connected to any other PV item.

Clustering of survivors to identify violence subgroups. To understand whether the
survivors induce coherent subgroups in their reporting of violence and whether these sub-
groups are aligned with reported violence types, we use K-means to cluster the survivors.
Using Calinski-Harabasz evaluation,17 we determine that K = 5 provides a reasonable balance
between model fit and complexity. The resulting subgroups are shown in Figure 5.

We observe that subgroups with more survivors tend to be more homogeneous, where
the smallest subgroup (#3) is significantly more heterogeneous than would be expected for
a random group of survivors (Figure 5(a)). Visualization of the survivors in the subgroups
in the two-dimensional principal component axes (Figure 5(b)) and radial axes (Figure 5(c))
shows that subgroups #2 and #5 are well-separated from other subgroups and this separation
is reflective of the intensity of violence. In contrast, subgroups #1, #3, and #4 are separated
from each other mostly based on the type of violence. Based on the distribution of the scores
of violence types in each subgroup (Figure 5(d)), we annotate these subgroups as follows:

• Subgroup #1: Very low intensity of sexual violence, low/moderate intensity of other vio-
lence types.

• Subgroup #2: Very high intensity of micro-aggression, low intensity of psychological ag-
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Fig. 6: Relationship between IPV types/subgroups and health problems/trauma symp-
toms. (a)/(b) Radial visualization of trauma symptoms/health problems reported by the survivors.
survivors are binned into small groups (shown as circles) based on their violence type and inten-
sity. Distance from the center indicates the intensity of the violence, the angle indicates the type
of violence. The size of the circle indicates the number of survivors in the corresponding group.
The intensity of red indicates the prevalence of trauma symptoms/health problems reported by the
survivors in that group. (c)/(d) The distribution of the prevalence of trauma symptoms and health
problems reported by the survivors in each subgroup identified by clustering (see Figure 5).

gression, low/moderate intensity of other violence types.
• Subgroup #3: Very high intensity of all violence types.
• Subgroup #4: Variable intensity of sexual violence, low intensity of other violence types,

particularly very low intensity of micro-aggression.
• Subgroup #5: Very high intensity of psychological aggression and micro-aggression, low

intensity of physical violence and sexual violence.

Health problems and trauma symptoms reported by survivors. In addition to the
violence variables, NISVS also screens survivors for trauma symptoms and health problems. To
understand how these health problems and trauma symptoms correlate with violence types
and subgroups, we assess the distribution of survivors’ responses to these questions in the
radial axis of PV-PA-SV, and in the subgroups we identify via clustering. The results of these
analyses are shown in Figure 6. As seen in Figure 6(a), trauma symptoms are most commonly
reported at the presence of intense psychological aggression and this effect is more pronounced
when physical violence is also present. We also observe a similar pattern for health problems in
Figure 6(b); however, health problems are also amplified with the presence of sexual violence.
The distributions of these two variables in the five subgroups (Figure 6(c)/(d)) also show
that trauma symptoms and health problem are most frequently reported in Subgroup #3, the
subgroup that is associated with most intense psychological aggression and physical violence.
The other subgroup that reports trauma symptoms and health problems above the population
mean is Subgroup #5, which is associated with very high intensity of psychological aggression
and micro-aggression, despite having lower levels of physical violence. We also observe that
Subgroups #2 and #4 have long tails for trauma symptoms, while the long tail of the entire
population for health problems is carried by Subgroup #4, indicating that very high intensity
of sexual violence can be associated with significant health problems.

4. Discussion

Severity and type of violence perpetrated in the relationships have been increasingly utilized to
understand patterns of IPV. In this study, we aimed to identify these patterns. Our results in-
dicated that physical violence occurs frequently with psychological agression, its co-occurrence
with micro-aggression is weaker (Figure 3). We also found that sexual violence tends to overlap
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less with all other types of violence. We also observed that individual items for sexual violence
formed a single connected component in the co-occurrence network of individual items. This
is one of the important findings of this study. It is important to note that the sexual violence
in our analysis only includes acts of sexual violence perpetrated by intimate partners, as we
restricted our analysis to instances in which the survivor is in an intimate relationship with
the perpetrator.

Our network analysis indicated that the co-occurrence of physical violence items is more
common compared to other types of violence (Figure 4). Slamming the partner against some-
thing exhibited strong co-occurrence with other physical violence items, as well as psycho-
logical aggression items. Other physical violence items with “high degree” included beating
and hitting with a fist or something hard. Interestingly, these items were not as frequent as
the most frequent physical violence items, such as slapping, pushing, and showing (Figure 2).
Thus the presence of these moderate-frequency high-co-occurrence items may be indicative of
more systemic physical violence. Making threats to harm the partner was more frequent, and
also exhibited strong co-occurrence with many physical violence and psychological aggression
items. Acting very angry toward the partner in a way that seemed dangerous almost exclu-
sively co-occured with physical violence. The observation that the violence items that tend to
co-occur with other items are not necessarily more prevalent suggests that these co-occurrence
patterns can be useful in dissecting the etiology of violence in a relationship.

The sexual violence item that most frequently co-occured with other sexual violence items
was “used physical force or threats to physically harm you to make you have vaginal sex”.
The physical violence item “burned you on purpose” was also connected to sexual violence,
although it was not connected to any other physical violence item.

Our data driven definition of micro-aggression is conceptually consistent with the widely
used definition of micro-aggression. Although micro-agression is a relatively new construct
and is still in the process of refinement, it draws considerable attention by researchers. Our
findings can help application of this concept in relationships.

With cluster analysis, we identified five subgroups of intimate partner violence (Figure 5).
These subgroups were mostly aligned with violence types, with micro-aggression claiming
its own subgroup. The distribution of sexual violence in the subgroups was variable and
seemed to exclude micro-aggression. An important outcome of cluster analysis was that severe
psychological abuse seems to underlie two different forms of severe violence; one with intense
micro-aggression and another with severe physical violence.

A longitudinal study investigating the mental health trajectories of IPV victims indicated
that women who were exposed to psychological abuse were less likely to recover overtime
from mental health issues such as depression, anxiety and PTSD.18 Past research also showed
higher levels of mental health deterioration when both psychological and physical violence
were co-occurring.19 Another study investigating court-involved battered women’s exposure
to different types of IPV and the traumatic responses such as depression, acute stress and
PTSD, demonstrated that they are associated while psychological abuse explained higher
variance as compared to physical abuse.20 Intensity of the psychological, physical and sexual
violence as well as the context and presence of one or more types of victimization is critical
for our understanding to develop effective treatments.

In summary, it is crucial to understand the nature of the violence and develop strategies to
effectively deliver treatments and support for the victims. Based on nationally representative
data, we identified co-occurence patterns and subgroups of IPV. These results can be useful
to develop screening tools as well as targeted and integrative treatment strategies.
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AI for infectious disease modelling and therapeutics is an emerging area that leverages new              
computational approaches and data in this area. Genomics, proteomics, biomedical literature,           
social media, and other resources are proving to be critical tools to help understand and solve                
complicated issues ranging from understanding the process of infection, diagnosis and           
discovery of the precise molecular details, to developing possible interventions and safety            
profiling of possible treatments. 
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1.  Background 

Back in the 19th century, physicians and scientists used to think “bad air” was the source of                 
infection and disease. This miasma theory was ultimately replaced by the germ theory with the               
advance of the microscope and the discovery of microorganisms. This switch dramatically            
changed our understanding of infectious disease and started the new era of public health. This year                
again, the outbreak of novel coronavirus 2019-nCoV has turned people’s attention to the             
importance of surveillance, prevention, diagnosis and treatment of infectious disease. 
  
Besides harmful viruses like the coronavirus (e.g. 2019-nCoV, SARS, MERS), HIV, Zika, Ebola             
virus, some bacteria (1%) cause diseases in people such as tuberculosis (Mycobacterium            
tuberculosis ) and pertussis (Bordetella pertussis ). While most antibiotic drugs were developed for            
bacteria-based infection, antibiotic resistance has become a growing challenge because of           
antibiotic misuse and poor stewardship. On the other hand, adopting new microbiome-based            
therapeutics is another potential risk delivering antimicrobial resistance genes to the human body             
and intestinal microtome via mobile genetic elements (or the other way around). For example, an               
important safety alert has been issued for use of a recent successful FDA-approved             
microbiome-based intervention, fecal microbiota transplantation (FMT) due to transmission of          
multi-drug resistant organisms. Disordered protein modelling is playing an important role in            
understanding microorganism structure and function as well. 

2.  Introduction 

New computational approaches are leading to new possibilities for AI for infectious disease             
modelling and therapeutics, leveraging new resources such as the 2019-nCoV-released          
genomic sequences along with protein-protein interactions, among others. The large number of            
bacteria, viruses, fungi, and other microorganism genomes that are available along with            
clinical implications of observed mutations, make these particularly amenable to development           
of novel computational methods. By combining information at multiple scales, new insights            
have arisen via the tools, pipelines, and associated algorithm development as well. This             
session has a number of areas that integrated AI for infectious disease modelling and              
therapeutics in the proceedings: 

3.  Social Media and COVID-19  

In “Characterization of Anonymous Physician Perspectives on COVID-19 Using Social Media           
Data” by K. J. Sullivan, et. al. [1] explored using Twitter to characterize different perspectives on                
COVID-19. Specifically, physician direct messages were compared to general public tweaks.           
The work analyzed over 513 million tweets in the process. Sentiment and n-gram analysis              
revealed patterns within physician vs public discourse regarding COVID-191. 

4.  Biomedical literature and COVID-19 plus neglected tropical diseases 

Work by B. Dinakar, et. al. [2] explored the biomedical literature using an algorithm to find novel                 
directions in disease research, with focus on COVID-19 and also neglected tropical diseases. The              
paper “Semantic Changepoint Detection for Finding Potentially Novel Research Publications”          
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analyzed publications over time to find patterns where there are significant changes in direction              
such that a semantic changepoint can be defined by the algorithm. The software is also released                
via link in the paper. 

5.   Genomics and HCV 

S. Sledzieski, et. al. [3] describe a new method for reconstructing transmission phylogenies that              
increases accuracy while maintaining scalability. The paper “TreeFix-TP: Phylogenetic         
Error-Correction for Infectious Disease Transmission Network Inference” applied the method to           
HCV outbreaks.  It also released the software via link in the paper. 

6.   Protein intrinsically disordered regions and SARS-CoV-2 

A. Mudide, et. al. [4] analyzed SARS-CoV-2 for certain protein regions, known intrinsically             
disordered regions, that have additional flexibility, that may be targets for drug candidates. The              
paper, “SARS-CoV-2 Drug Discovery Based On Intrinsically Disordered Regions,” also leveraged           
different docking approaches to model this flexibility and prioritize potential drug candidates,            
analyzing over 290 thousand compounds. 

  
G. Goh, et. al. [5] analyzed the shell disorder of SARS-CoV-2 and other viruses to establish shell                 
disorder as a proxy for vaccine development feasibility. It characterized SARS-CoV-2 as having             
an exceptionally hard outer shell, suggesting that vaccine development for SARS-CoV-2 is likely             
feasible and may be easier than for several other viruses such as HIV, HSV and HCV. The work in                   
the paper “Feasibility study of vaccine development for SARS-CoV-2 and other viruses using             
shell disorder analysis” also presented several ideas on how shell disorder can be leveraged to               
characterize virulence, immune system evasion, and potential animal hosts.  

7.  Protein-protein interactions and SARS-CoV-2 

M. Kshirsagar, et. al. [6] examined protein-protein interactions between viruses and their host. By              
comparing SARS-CoV-2 and host interactions with other virus-host interactions a number of            
motifs and themes emerged. The paper, entitled, “Functional comparison of virus-host pathogen            
communication using sequence-feature based SARS-CoV-2 protein interaction prediction” also         
specifically created SARS-CoV-2-human protein-protein interaction predictor based on sequence         
information and validated it with an independent dataset. 
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Physicians’ beliefs and attitudes about COVID-19 are important to ascertain because of their central 

role in providing care to patients during the pandemic. Identifying topics and sentiments discussed 

by physicians and other healthcare workers can lead to identification of gaps relating to the COVID-19 

pandemic response within the healthcare system. To better understand physicians’ perspectives on 

the COVID-19 response, we extracted Twitter data from a specific user group that allows physicians 

to stay anonymous while expressing their perspectives about the COVID-19 pandemic. All tweets 

were in English. We measured most frequent bigrams and trigrams, compared sentiment analysis 

methods, and compared our findings to a larger Twitter dataset containing general COVID-19 related 

discourse. We found significant differences between the two datasets for specific topical phrases. No 

statistically significant difference was found in sentiments between the two datasets, and both trended 

slightly more positive than negative. Upon comparison to manual sentiment analysis, it was 

determined that these sentiment analysis methods should be improved to accurately capture 

sentiments of anonymous physician data. Anonymous physician social media data is a unique source 

of information that provides important insights into COVID-19 perspectives. 
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1. Introduction 

Physicians treating COVID-19 patients have unique insights into the current pandemic response, 

some of which may identify opportunities for immediate improvements as well as improved 

responses to possible future pandemics. Their insights and perspectives during this difficult time are 

unique in understanding the impact that COVID-19 has had on frontline healthcare workers, 

patients, and perhaps even the public as a whole.1 Understanding these physicians’ attitudes and 

beliefs can improve health outcomes and drive successful health policies, particularly as patient 

safety and organizations’ safety culture have been shown to be deeply affected by healthcare worker 

beliefs .2–4
 

Social media platforms, such as Twitter, are rich resources for opinionated data with respect to 

a myriad of topics, and can lead to a deeper understanding of ideas, opinions, and perspectives about 

a specific topic of interest, including COVID-19, and do so in real-time.5 Twitter data is publicly 

available and relatively accessible for download; it is an exceptional resource for evaluating public 

discourse and sentiments given that it is the third most popular social media platform with 

approximately 330 million active users per month.6 Unfortunately, in the midst of the COVID-19 

pandemic, many physicians are hesitant to publicly discuss topics such as lack of sufficient personal 

protective equipment, testing equipment, and other issues they are facing in their workplace for fear 

of being reprimanded or even fired from their jobs.7 For this reason, social media data posted 

specifically by physicians about COVID-19 is less likely to be an honest representation of their 

beliefs and attitudes regarding the pandemic response.8 

In light of these concerns, a user handle on Twitter was set up where administrators collected 

direct messages (DMs) from physicians in the United States, and posted them anonymously under 

that handle, giving physicians some anonymity and a platform to express their perspective as it 

relates to the pandemic. In this study, we analyze the topics and sentiments of anonymous COVID-

19 physician tweets and compare them to a broad baseline of public comments about the disease. 

2. Methods 

2.1. Data Collection 

We extracted all tweets from the specific Twitter user account, @Covid19Docs, wherein the 

administrators collected direct messages (DMs) from physicians, and posted them to the page on 

behalf of those physicians, giving them some anonymity and a platform to express their perspective 

as it relates to the COVID-19 pandemic. Our extracted anonymous physician COVID-19 tweets are 

in English and span from March 16-July 17, 2020, with 875 total tweets. To prepare the tweets for 

analysis, punctuation, special characters, URLs, and stop words were removed from tweets, and 

words lemmatized. A dataset containing the tweet identifiers and other relevant datasets have been 

deposited at http://doi.org/10.5281/zenodo.4060340.  

In order to put the specific Twitter account dataset within a larger scope of Twitter COVID-19 

discourse, we compared our findings against a dataset of 513 million tweets gathered from the public 

Twitter streaming API 9, which contains a sampled set of 1 percent of all Tweets generated in real 

time. The dataset which is publicly available, is the result of an international collaboration and is 

maintained by researchers at Georgia State University.9 It contains the top 1000 bigrams and 
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trigrams we used for direct comparison of frequency in our smaller dataset. Note that to extract the 

mentions of our terms of interest, we removed all retweets, all tweets not in the English language, and 

tweets from accounts that are determined to be bots. Bot accounts are identified as accounts that are 

very recently created, and tweet more than 1000 times per day or are described on the account as a 

bot. 

2.2. N-gram Frequency Measures 

In order to understand the subject matter of the tweets, we counted frequencies of the most common 

lemmatized bigrams and trigrams in the anonymous physician tweets, and compared those to the 

more general COVID-19 dataset. This allowed us to qualitatively assess the topics discussed among 

physicians versus the general public with regard to COVID-19. 

In addition, an experienced hospitalist physician helped us to identify four specific topics to 

assess within the anonymous physician data and the general COVID-19 data. These specific topics 

were identified because they were recognized to be of importance within the public discourse, and 

particularly within the physician discourse, during the COVID-19 pandemic. These topics were 

personal protective equipment (PPE), unemployment, telemedicine, and racial injustice. We 

measured the frequency of the topics and sentiments of tweets about these topics. 

2.3. Sentiment Analysis 

Sentiment analysis is a tool used to analyze and understand the opinions, emotions, and sentiments 

of language.8 It is often used in marketing to understand opinions of certain brands, for prediction 

of political candidates’ likelihood to win an election, and crowd opinions about events or policies.10 

The advent of social media has created a rich data source filled with sentiments and opinions about 

a myriad of topics, and is increasingly being used in the healthcare arena.11 There are different 

sentiment analysis approaches, which all have their own strengths and weaknesses. 

We wished to evaluate the sentiments of the anonymous physician data, and garner insight about 

whether these approaches accurately assess the sentiments of anonymous physician tweets. To do 

this, we began by conducting two popular sentiment analysis methods on the anonymous physician 

data. The first was the National Research Council (NRC) Word-Emotion Association Lexicon, 

which contains 10,170 English words and their associations with eight emotions (anger, anticipation, 

disgust, fear, joy, sadness, surprise, and trust) and two sentiments (negative and positive), making 

this a lexicon-based sentiment analysis.12 The NRC method is unique in that it measures eight 

emotions, taken from the psychologist, Robert Pluchik’s theory that people have eight basic 

emotions.13 We used the Natural Language Toolkit (NLTK) in Python 3 and the NRC-Sentiment-

Emotion-Lexicons to conduct this NRC sentiment analysis.12,14
 

We then used the VADER (Valence Aware Dictionary and sEntiment Reasoner) sentiment 

analysis approach, which is specifically designed for analyzing social media data using a lexicon 

and rule-based approach to assess sentiments (negative, neutral, and positive).15 VADER has the 

benefit of providing a normalized, weighted composite score of each tweet by summing valence 

scores of each word in its lexicon, adjusting them according to grammatical and syntactical rules, 

and then normalizing them to give a compound score between -1 and +1.16 We used the Natural 

Language Toolkit (NLTK) for VADER (nltk.sentiment.vader) in Python 3 to carry out this 
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analysis.17 We then compared the sentiments from the VADER sentiment analysis approach, which 

is thought to be more accurate for capturing sentiments of social media data, to the general COVID-

19 dataset.15 

Manual classification of all 875 tweets in the anonymous physician tweets was done by one of 

the authors. Tweets for which the sentiment was unclear in the first round of annotations were then 

annotated by two co-authors to determine the sentiment for those tweets. Each tweet was given an 

overall ranking of -1 (negative), 0 (neutral), or +1 (positive). To determine whether VADER 

accurately captured the sentiments of these tweets compared to the manual classification of tweets, 

precision, recall, and F1 scores were calculated. Data collection and analyses for this project were 

done using Python (3.7.0), R (3.6.0), SAS (9.4), and Microsoft Excel (2016). 

3. Results 

3.1. Frequency of terms and n-grams 

We measured the most frequent bigrams and trigrams that occurred in the anonymous physician 

tweets and compared them to the general COVID-19 tweets (Figure 1). The top two phrases in the 

anonymous physician tweets might be expected, “health care” and “covid patients;” others point  to 

concerns that might be more specific to physicians and other frontline healthcare workers, such as 

“need ppe,” “elective cases,” and “surgical masks.” 

Top phrases in the more general COVID-19 dataset look a bit different. The top two phrases are 

perhaps obvious, “covid 19” and “coronavirus cases,” with frequency of “covid 19” far exceeding 

the other phrases. This general Twitter dataset captures public COVID-19 chatter specifically, so 

the very high frequency of the phrase “covid 19” is reasonable. The more general COVID-19 tweets 

also have a number of phrases associated with the political sphere of COVID-19 that the physician 

tweets do not have, such as, “white house,” “trump administration,” and “dr fauci.” These phrases 

give a qualitative understanding of what physicians are talking about compared to the general public 

with regard to the COVID-19 pandemic. 

Taking a step further, we identified specific topics of interest that are of importance within public 

discourse, and particularly within the physician discourse, given the emergence of the COVID-19 

pandemic (Table 1). By doing this, we can further our understanding of physicians’ perspectives 

regarding these topics. We measured and compared the frequency of tweets containing the specific 

topical phrases in the anonymous physician tweets and the general COVID-19 tweets. Using a chi-

square test, we found significant differences between proportions of tweets containing all of the four 

phrases of interest, with a larger proportion of topics discussed among the anonymous physician 

tweets, except for phrases surrounding “racial injustice,” which had a slightly higher proportion in 

the general COVID-19 tweets. 
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Fig. 1. Top 25 Most Frequent Bigrams and Trigrams in Anonymous Physician COVID-19 Tweets and in 

General COVID-19 Tweets 

 
Table 1. Frequency of Topics in Anonymous Physician Tweets and General COVID Tweets 

 Anonymous physician COVID-19 
Tweets 

General COVID-19 Tweets  

 Frequency 
(ntotal=875) 

Percent of Total 
Tweets 

Frequency 
(ntotal=73,377,056) 

Percent of Total 
Tweets 

p-value 

Personal Protective 
Equipment 

118 13.49% 22,155 0.03% < .00001 

Unemployment 15 1.60% 138,965 0.19% < .00001 

Telemedicine 12 1.37% 50,308 0.07% < .00001 

Racial Injustice 2 0.23% 198,906 0.27% 0.01 

Specific terms used to capture phrases: “PPE,” “personal protective equipment,” “N95,” “face shield”; 

“telemedicine,” “telehealth”; “furlough,” “unemployed,” “pay cut”; “racial injustice,” “racial discrimination,” 
“racism,” “racial inequality” 

3.2. Sentiment analysis 

We did two sentiment analyses in order to learn which sentiments these methods associated with 

the anonymous physician tweets, and also to determine if sentiment analysis could accurately 

capture sentiments of anonymous physician tweets compared to a manual assessment. We also did a 

sentiment analysis on the general COVID-19 Twitter data for comparison. 

Figure 2 shows the number of tweets that contain each sentiment-emotion pair. Assessment of 

emotions is unique to the NRC method; most other methods only capture negative and positive 
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sentiments. The most frequent emotion identified by NRC was “trust” in the anonymous physician 

tweets, and there were more positive words among the tweets than negative. 
 

Fig. 2. NRC Word-Emotion Association Lexicon Sentiment Analysis of Anonymous Physician COVID-19 Tweets 

 

Figure 3 shows negative, positive, and neutral sentiments over time for the anonymous physician 

data and general COVID-19 data using the VADER sentiment analysis method. We compared the 

VADER sentiments of the anonymous physician data to that of the general COVID- 19 tweets to 

discern if sentiments differed between the two datasets. We used VADER for this comparison 

because it is tailored toward sentiment analysis of social media data. 

Over time, there was usually a slightly higher proportion of positive tweets compared to negative 

tweets in the general COVID-19 tweets. The anonymous physician tweet sentiments show less of a 

distinction among the sentiments compared to the general COVID-19 assessment. 

During the week of June 1, 2020, there was a spike in positive tweets in the anonymous physician 

data (Figure 3). During this particular week many physicians describe the work they are doing for 

patients during the COVID-19 pandemic, which might explain the positive spike. Tweets from this 

week contain the following words and phrases: “take care of,” “boost,” “help save our community,” 

“promise to do better,” “beautiful children,” “stand tall,” “best medical care possible,” “hold the 

hands,” “equanimity and grace,” “cheerfully,” and “with a smile.” 

It is possible that with more tweets and over a longer period of time, the sentiments of the 

anonymous physician tweets would result in a comparable pattern over time to that of the general 

COVID-19 tweets. It is also possible that VADER sentiment analysis has trouble discerning 

sentiments from the anonymous physician tweets compared to the more general COVID-19 tweets, 

perhaps due to its more specialized clinical vocabulary. While this method is considered suitable for 

social media data, this may not be true for anonymous physician social media data specifically; we 

further elaborate on this point in the discussion section by comparing these results to a manual review 

of the tweets. 
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Fig. 3. Proportion of Positive, Negative, and Neutral Tweets Over Time for Anonymous Physician 

COVID-19 Tweets (left) and General Covid-19 Tweets (right) using VADER Sentiment Analysis 

 

There was not a statistically significant difference in the average overall sentiments between the 

anonymous physician and general COVID-19 tweets, according to VADER sentiment analysis (p-

value= 0.76). A majority of tweets were assessed as being positive for both datasets (Positive 

Anonymous Physician = 34.4 percent; PositiveGeneral COVID-19 = 36.25 percent). There were 31.7 percent and 

34.6 percent of tweets that were negative for the anonymous physician data and general COVID-19 

data, respectively. 

3.3. Sentiments of tweets containing specific terms 

We also assessed the sentiments associated with tweets that contained specific topical phrases, which 

were captured using the same terms described in Table 1. The small size of the anonymous physician 

dataset prevented us from assessing topic-specific sentiments over time, so we measured frequencies 

and proportions instead (Table 2). The sentiments over time for tweets containing these phrases in 

the general COVID-19 tweet dataset can be seen in Figure 4. 

 
Table 2. Frequency of Sentiments for Tweets Containing Specific Topics in Anonymous Physician Tweets According 
to VADER Sentiment Analysis 
 Positive  Negative  Neutral  

 

Topic 
 

Frequency (n) 
 

Percent (%) 
 

Frequency (n) 
Percent 
(%) 

 

Frequency (n) 
 

Percent (%) 

Personal Protective 
Equipment (n=118) 

45 38.14% 42 35.59% 3 26.27% 

Unemployment (n=14) 4 28.57% 9 64.29% 1 7.14% 

Telemedicine (n=12) 5 41.67% 3 25.00% 4 33.33% 

Racial Injustice(n=2) 0 0.00% 2 100.00% 0 0.00% 

Percent calculated from tweets containing the specific topic of interest as denominator   

 

There were more positive than negative tweets about telemedicine in the anonymous physician 

data. The general COVID-19 dataset presented a larger proportion of tweets that trended positive 

with regard to telemedicine too. In both datasets, the proportion of tweets about personal protective 

equipment were more positive, while the proportion of tweets about unemployment were more 
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negative. There were few tweets about racial injustice captured in the anonymous physician data, 

but both presented as having negative sentiments. The larger COVID-19 dataset showed a much 

larger proportion of negative sentiments than positive sentiments over time with respect to social 

injustice phrases. 
 
 

 
Fig. 4 Proportion of Sentiments for Tweets Containing Phrases about PPE, Unemployment, Telemedicine, 

and Racial Injustice for General COVID-19 Tweets 

4. Discussion and Conclusion 

Top phrases in the anonymous physician data, such as “help us,” and “need ppe,” paint a poignant 

picture of physician perspectives during COVID-19. This research shows how Twitter data can be 

used to qualitatively assess physician attitudes, beliefs, and perspectives as they relate to the 

COVID-19 pandemic. We showed that the discourse of anonymous physician tweets is different 

from the discourse of more general tweets with regard to COVID-19. The anonymous physician 

tweets are more clinically oriented with phrases such as “health care”, “elective cases”, and “covid 

patients.” 

Our analysis also showed that current lexicon and rule-based sentiment analysis methods should 

be improved in the future to be specifically targeted for clinically oriented social media data. As 

social media data is being used more often in the health arena, and healthcare professionals face 

stricter regulations from employers with regard to posting on social media, it would be of interest 

to create sentiment analysis methods that more aptly capture this specific type of data. 

The uniqueness of anonymity of the physician tweets is important. Koohikamali and Gerhart 

(2018) found that anonymous social media data is in fact different from more general discourse of 

social media data, particularly during a social crisis.8 They report that because anonymity lowers 

inhibitions, it often results in posting more honest opinions due to less risk of repercussion, such as 

job loss or unpaid suspension, which some frontline healthcare workers are currently facing.8 This 
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can lead to valuable insights that would otherwise not be captured in more public discourse, and 

paints a truer picture necessary for implementing more impactful change during the COVID- 19 

pandemic, and in the future. For this reason, it will be beneficial in future work to improve sentiment 

analysis tools so they are capable of assessing anonymous physician social media data. 

That being said, sentiment analysis is difficult because human language is complex; this is 

particularly apparent for social media data, where contextual understanding of the language is very 

meaningful to the overall sentiments.18 For example, while VADER is tailored toward social media 

data, a manual assessment of the anonymous physician tweets found far more negative tweets than 

positive. Upon manual analysis of the anonymous physician tweets, the F1 score was 0.52 (precision 

= 0.63, recall = 0.56), indicating that sentiment analysis using this method might need to be 

improved in order to more accurately capture sentiments of anonymous physician tweets. Manual 

assessment of these tweets resulted in 67 percent of tweets having a negative sentiment (22 percent 

neutral and eleven percent positive), while VADER resulted in only 32 percent of tweets having a 

negative sentiment (Table 2). 

The NRC method captured more positive than negative words among the tweets, but after 

manual review, the overall sentiments of the tweets leaned far more negatively. Additionally, the 

most frequent emotion NRC identified among the tweets was “trust.” Upon reading the tweets, 

“trust” did not fit the overall emotional sentiment of these tweets. For example, “trust” was the most 

frequent emotion identified in the following, and “positive” was the resulting sentiment: “Top 

academic institution cut MD Salaries; includes frontline hospitalists and intensive care no offer of 

hazard pay, pay for extra shifts, and no promise of back pay.” It is possible that this lexicon-based 

method does not capture the negations within the text. Table 4 shows some examples of how the 

lexicon and rule-based methods failed to capture the overall sentiment of the anonymous physician 

tweets compared to the manual analysis. 
 
 

Table 4. Examples of Misinterpreted Paraphrased Tweets by Sentiment Analysis Compared to Manual Assessment 
of Tweets 

Tweet Sentiment 

Analysis 

Manual 

Assessment 

How is it fair for admin to silence doctors asking for help? Positive Negative 

Physicians are afraid of losing jobs. Positive Negative 

When faced with PPE shortages, the program director sourced 3D printers 

to make face shields! 

Negative Positive 

Please help! No PPE!! Please help! Positive Negative 

We are doctors and have NO PPE. Please donate if able-stop hoarding 
please! We need it to care for patients. 

Positive Negative 
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While we found some interesting and important results, there were some limitations in our 

study we wish to address. The first is that the tweets from the anonymous physician data were likely 

just a small sample of tweets representing this type of data. Anonymous physician social media data 

is unique, and as frontline healthcare workers in the U.S. face pressures from their administration to 

stay off of social media platforms, pages that allow them to share their thoughts with a more 

anonymous approach are an important, perhaps overlooked source of information to better 

understand healthcare workers’ perspectives. It is certainly possible that our small sample did not 

represent this type of data in full; further evaluation of how well our sample represents this 

population is warranted.  

Also, while there was some amount of anonymity to the physician tweets, administrators of the 

user page likely knew the user name of the physicians through the DMs. This means the tweets were 

unknown to only those who were not administrators of the page. Still, understanding that their name 

would not be attached to the posted tweet provided some amount of anonymity to the physicians. 

Having a sense of anonymity may also encourage physicians to post tweets that lean more negatively 

in sentiment, but further assessment should be done to understand if anonymity leads to a negative 

bias. 

Another limitation is with regard to selection of the four specific topical phrases that we chose to 

explore. We used a small number of exact terms to capture these phrases, and they could probably 

be expanded to capture tweets about each of these phrases. For example, we captured very few 

anonymous physician tweets about the topic, “racial injustice,” and it is possible that expanding the 

list of exact phrases would improve detection of this topic and others. There are also, of course, 

other topical phrases that might be of interest to assess that we did not assess in our analysis. Future 

studies should widen the scope of topical phrases of interest. 

A final limitation is simply that social media data can be difficult to work with in many ways. It 

contains many informal, idiomatic phrases, special characters, emoticons, grammatical mistakes, 

misspellings, and abbreviations that make it challenging for text analysis methods.18 Despite this, 

valuable insights and perspectives can be obtained through this rich source of data, particularly 

sentiments and opinions that might have impactful meaning for healthcare workers, patients, and 

the general public health. There are many future avenues that this body of work might take. The 

development of a lexicon for sentiment analysis that is specific to anonymous social media data, 

physician or other healthcare professional social media data, or even more specifically, anonymous 

physician social media data might be very useful for future sentiment analysis studies of this type 

of data. It would also be of interest to mine the public discourse for more general healthcare 

professional social media data for comparison to anonymous data, as there might be large 

differences in topics and sentiments discussed. 

This study has identified interesting underlying topics and sentiments from anonymous 

physician data with regard to the COVID-19 pandemic. We found these topics and sentiments are 

usually different from the overall COVID-19 discourse on Twitter. It is likely that anonymous social 

media data from physicians and other frontline healthcare workers will become more popular as 

they continue to experience the effects of the COVID-19 pandemic. This is especially true as they 

are hesitant to post publicly their perspectives on social media about the current state of affairs in 

their working environment for fear of being reprimanded or fired.7 Frontline healthcare workers have 
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an important impact on patients’ lives, and this is especially true during times of exceptional 

difficulty or social crisis, both of which are relevant to today’s current atmosphere. Understanding 

frontline healthcare workers’ perspectives, needs, and opinions may help improve patients’ 

experience and health outcomes, and perhaps even guide improvements to public health strategies 

in the future. 
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How has the focus of research papers on a given disease changed over time? Identifying the papers 
at the cusps of change can help highlight the emergence of a new topic or a change in the direction 
of research. We present a generally applicable unsupervised approach to this question based on 
semantic changepoints within a given collection of research papers. We illustrate the approach by a 
range of examples based on a nascent corpus of literature on COVID-19 as well as subsets of papers 
from PubMed on the World Health Organization list of neglected tropical diseases. The software is 
freely available at: https://github.com/pdddinakar/SemanticChangepointDetection. 
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1.  Introduction 

There are several possible motivations behind a literature search. These range from finding the 
answer to a highly specific question to writing a general review of a topic. One of the motivations 
for a literature review might be to select a topic for research, where one may choose to perform 
research in a well-established area, pick an emerging area or aspire to be a pioneer in uncharted 
territory. Another possible motivation might be for a funding agency to keep track of emerging areas 
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of research that might merit funding in the near future. Yet another motivation might be to keep 
track of new insights or technologies that address an acute health need such as a pandemic or 
diseases that are hard to treat effectively. 

What if it were possible to identify papers that strayed from the mainstream? While many of 
these might end up as blind alleys, a subset of these might turn out to be harbingers of innovative, 
influential, or impactful directions in research. A few of the potential approaches to identify outliers, 
first-to-report, or first-in-field papers are topic modeling1, clustering2, trend analysis3,4, citation 
network analysis5, and machine learning approaches for predicting high impact papers. We present 
a set of strategies from changepoint analysis and text embedding to address two questions. Which 
are the papers in a research area that are substantially different from previous work? Which papers 
are part of a related cluster that is substantially different from previous work? We use infectious 
diseases from two different time scales to illustrate the approach - COVID-196 over a temporal 
resolution of weeks, and leprosy7, considered a neglected tropical disease by the World Health 
Organization. We begin with a description of the methods used, followed by results and discussion, 
and end with an acknowledgment of the limitations and future work to address them. 

2.  Methods 

The overall summary of the methodology is shown in Fig. 1. Briefly, titles or abstracts from a 
collection are either embedded as a vector or represented in terms of word frequency distributions. 
Temporal changes in these representations of titles or abstracts are detected by approaches described 
below. Papers or terms corresponding to the temporal changes are marked as potentially novel for 
the corresponding time period. 
 

 

Figure 1.  Overview of semantic changepoint analysis using word 
frequency-based and embedding space-based strategies (T1, T2, Y1, Y2). 
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2.1.  Data collection and general procedures 

COVID papers were downloaded from the COVID-19 SARS-CoV-2 Preprints available from 
bioRxiv in JSON format on 7/31/2020.8 The title, upload date, and abstract were retrieved for each 
paper published in 2020, yielding a total of 7151 analyzed papers. 

Leprosy papers were retrieved from the National Center for Biotechnology Information E-
Utilities API. A list of UIDs for papers where the term “leprosy” appears in the title were retrieved 
using the ESearch method, and the title, abstract, and publication date for each UID were retrieved 
with the EFetch method. We only analyzed papers for which the title, abstract, and publication date 
were available. We also only considered papers published between 1980 and 2019 due to the low 
number of annual papers (less than 50 per year) published before 1980, yielding a total of 5068 
analyzed papers. Plots were generated using the matplotlib package9. 

2.2.  Title and abstract entropies 

We used the scikit-learn10 CountVectorizer tool to convert each title to a Bag-of-Words 
representation. We calculated the probability of each word in a year using Eq. (1). 
 
 𝑝!"#$,&'(# =

)#'*+',-&	")	!"#$	/,	&'(#
0"0(1	)#'*+',-&	")	(11	!"#$2	/,	&'(#

 (1) 
 
The yearly entropy of word proportions in titles (or alternatively, in abstracts) was calculated by 
Shannon entropy, which is a popular measure of information content or variability of a distribution. 
 𝑆&'(# = −∑ 𝑝!"#$,&'(#!"#$ log3(𝑝!"#$,&'(#) (2) 
 

2.3.  Bayesian changepoint analysis 

Changepoint detection aims to identify the point at which the probability distribution of a sequential 
variable changes. Changepoint analysis was conducting using the bayesian-changepoint-detection 
(bcp) Python package.11–13 The advantage of the bcp method is that it also provides a probability of 
there being a changepoint at a given time point. We performed changepoint detection for each word 
in the Bag-of-Words model of paper titles to analyze the word frequency per title vs time (year for 
Leprosy, 2020 week number for COVID). Abstract changepoints were calculated in the same 
manner, except using abstracts as input to the Bag-of-Words model instead of titles. 

2.4.  Differential word clouds 

Differential word clouds are visual depictions of changes in research paper titles between two years, 
denoted Year A and Year B. Two groups are selected from the paper titles: Group A contains the 
titles of all papers published in or before Year A, and Group B contains the titles of all papers 
published in Year B. The Bag-of-Words model is applied to each group to determine the frequency 
per title of each word, and stop-words appearing in the NLTK stop-words set are removed.14 Word 
clouds were created using the Wordcloud Python package,15 with weights for each word 
corresponding to the difference in frequency per title between Group B and Group A. Positive 
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differences (increases in word frequency) are colored black, and negative differences (decreases in 
word frequency) are colored red. 

2.5.  Title and abstract embeddings 

Titles were first pre-processed by converting all words to lowercase and removing punctuation and 
stop-words found in the NLTK punctuation and stop-word sets. The processed titles were then 
converted into 700-dimensional vectors using the BioSentVec model16. Abstracts were embedded 
in the same manner, except using the abstract as the input instead of the title. The embeddings were 
visualized using Principal Component Analysis as implemented by Scikit-Learn. 

2.6.  Semantic novelty 

We use the following approaches to detect potentially novel papers or subtopics in one temporal 
window (or subcollection) with respect to another. For instance, one may compare papers in 2020 
with all preceding years (novel compared to entire research legacy). Alternatively, one may compare 
papers published in 2020 with those published in 2019 (a change in direction of research compared 
to recent past). We employ 4 different strategies: T1, T2, Y1 and Y2 (see Fig. 1). 

2.6.1.  Strategy T1: Novel paper detection based on semantic distance 

We first analyzed the distribution of the pair-wise distance between all titles in embedded space for 
the COVID corpus and examined pairs sorted by distance to determine suitable thresholds for 
relatedness S-rel and, conversely, S-unrel for being semantically unrelated with high probability. 
There is a grey area in between the two thresholds where pairs of titles at the same distance from 
each other are sometimes related, and sometimes not. We confirmed the consistency of the 
thresholds by repeating the calibration check with the leprosy dataset. To determine if a title T is 
novel relative to a comparator collection C (typically in a preceding time window), we first 
determine the minimum Euclidean distance E-min between T and all titles in C. All titles T with E-
min values higher than S-rel are potentially novel (e.g., the green square in Fig. 1 labeled as T1). 

2.6.2.  Strategy T2: Detection of novel papers that may constitute a trend 

This builds on strategy T1 by requiring that papers not only be distant from an ‘old’ neighborhood 
(subcollection or time window) but also be part of a ‘trendy’ neighborhood. In other words, a title 
T is considered to be part of a trend if it lies in a location that corresponds to low-density in the old 
neighborhood (blue dots) and high-density in the new neighborhood (green squares). This is 
quantified by requiring that a novel title T that is part of a trend be closer to k papers in the new 
neighborhood (e.g., green squares labeled T2 in Fig. 1) than k papers in the old neighborhood. The 
default value of k is set to 3 to correspond to an emerging trend but may be set higher if desired. 

2.6.3.  Strategy Y1: Detection of a group of novel papers based on their mean vector 

Strategy Y1 tracks the location of the mean vector of papers in each time window. Long hops in 
embedded space may imply a substantial difference in the direction of research (e.g., see Y1 in Fig. 
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1). The underlying signal may be uncovered by word frequency analysis or titles in high density 
areas close to the mean. 

2.6.4.  Strategy Y2: Proportion of novel papers  

The premise is that the novelty of a time window (or subcollection of papers) may be gauged by 
estimating what proportion of papers in that window are at least distance S-rel from all papers in the 
past. When examining successive time windows, large upward oscillations of this proportion may 
signal the presence of a new trend. 

3.  Results and Discussion 

We use two different approaches to detect changes over time in the focus of research papers on a 
particular topic. The first approach consists of using changepoint analysis to detect changes in the 
frequency of words within titles or abstracts. The second approach consists of embedding titles in 
vector space and using the distance between titles as an approximation of the corresponding 
semantic difference. To illustrate these approaches, we have chosen to focus on a pair of contrasting 
infectious diseases, COVID-19 and leprosy. COVID-19 has a short history as a pandemic affecting 
millions of people, while leprosy is one of the oldest human diseases. While much progress has been 
made, and effective treatment is available when diagnosed early, around 200,000 new cases continue 
to be reported each year.17  
 

 
Figure 2. A) Entropy of titles on leprosy. B) Frequency of words in titles on leprosy. 
C) Entropy of titles on COVID-19. D) Frequency of words in titles on COVID-19. 
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Fig. 2 shows the increasing complexity of the information content of titles over time, 
corresponding to the diversity of terms shown on the right. Though the entropy of titles on leprosy 
has risen over a longer period of time than for COVID, it is interesting that both show a maximum 
value of just over 8 bits. This suggests that titles of research papers on diseases might have a similar 
complexity, and by extension share properties of similarity in the embedding space. The most 
frequent terms occurring within the titles of papers (Fig. 2B and 2D) are used for subsequent 
changepoint analysis. 

Fig. 3 shows the temporal frequencies of some of the most frequent terms occurring within the 
titles of research papers. The corresponding changepoint analysis highlights points in time when 
there is a high probability of a significant change in the probability of the occurrence of a term in a 
title. The following inferences can be made from this figure. First, despite the fluctuations shown in 
panels A and B, changepoint analysis finds identical changepoints for “MDT” and “Therapy,” 
indicating a surge of literature mentioning multidrug therapy for the treatment of leprosy. In fact, 
this corresponds to the period of excitement when  (dapsone+rifampin+clofazimine) was 
recommended by WHO in the 1980s as curative treatment, resulting in the elimination of leprosy as 
a global public health problem (defined as an incidence of less than 1 in 10000) by the year 2000.17 
Fig. 4 shows the relative rise and relative fall in the frequency of words spanning a period suggested 
by the location of changepoints for the terms in Fig. 3. As expected, terms such as the following 
show an increase in frequency: (multidrug, therapy, treated, patients, paucibacillary, multibacillary) 
- presumably indicating the advent of successful multidrug therapy. In contrast, terms such as 
(lepromatous, nerve, cases, granulomatous) show a decrease, presumably corresponding to a 
decrease in the incidence and morbidity of the disease. 

 

 
Figure 3. Examples of changepoint analysis of the frequency of the words “MDT” and “Therapy” in titles containing 
the word “leprosy.” A) Temporal frequency of “MDT.” B) Temporal frequency of “Therapy.” C) Changepoint peaks 
mark the beginning and end of a period of relatively high frequency of “MDT.” D) Changepoint peaks mark the 
beginning and end of a period of relatively high frequency of “Therapy.” 
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Figure 4. Differential cloud of terms within titles containing the word “leprosy” between the years 1980 and 1990, 
corresponding to the first changepoint in Fig. 3. Note “multidrug” and “therapy” in lower left corner in similar font 
size. Black = increase in frequency, Red = decrease in frequency. 
 
The use of term frequencies as the basis of finding temporal changes in the focus of research papers 
has the following limitations:  

1. While considering terms independently might work well for categories such as drug names, 
it has limited ability to exploit the meaning of the entire title. 

2. Focusing only on the higher frequency terms may miss the true harbingers of change; the 
long tail of low frequency terms makes it harder to find the significant ones. 

Ideally, we would like to project the key focus of research papers into a shared semantic space, 
without having to count frequencies first. This would make it possible to highlight newly populated 
regions of the space as containing papers representing new directions. Several models have been 
published for projecting words into vector spaces18,19,20. More recently, it has been shown that 
models that directly embed a sentence are more accurate than taking the average of the constituent 
word vectors. Titles of papers typically encode more meaning than a set of words but often fail to 
form a well-formed sentence. In order to confirm if title embeddings retain inter-title similarity in 
the same manner as inter-sentence similarity21, we used BioSentVec16 to embed the titles from the 
bioRxiv COVID dataset and sorted pairs of titles by increasing Euclidean distance between the 
corresponding vectors. Representative pairs of related titles are shown in Table 1. Titles may be 
addressing the same objective except for minor differences in methodology or disease population. 
As hoped for, the embedded vectors also capture similarity based on implicit meaning. For example, 
associations are captured between heart injury and raised blood levels of BNP, and between kidney 
injury and hypertension (supplementary information). Table 2 shows a sample of titles that are 
unrelated, and further apart in vector space. An empirical threshold of 2.3 corresponds to an FDR 
of less than 1% for semantic relatedness, and distances above 4 are very unlikely to indicate 
relatedness (supplementary information for full table).  
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Table 1. Examples of related titles within the bioRxiv set of papers on COVID. 
Title 1 Title 2 (Related) L2 

distance 
Predicting the number of reported and 
unreported cases for the COVID-19 epidemics 
in China, South Korea, Italy, France, Germany 
and United Kingdom 

 Predicting the number of reported and unreported 
cases for the COVID-19 epidemic in South Korea, 
Italy, France and Germany 

1.429 

The impact of current and future control 
measures on the spread of COVID-19 in 
Germany  

A first study on the impact of current and future 
control measures on the spread of COVID-19 in 
Germany 

1.844 

Characterization of a novel, low-cost, scalable 
ozone gas system for sterilization of N95 
respirators and other COVID-19  use cases  

Characterization of a novel, low-cost, scalable 
vaporized hydrogen peroxide system for sterilization 
of N95 respirators and other COVID-19  personal 
protective equipment 

2.135 

A 5-min RNA preparation method for COVID-
19 detection with RT-qPCR  

A simple RNA preparation method for SARS-CoV-
2 detection by RT-qPCR, 

2.229 

Clinical features and outcomes of 2019 novel 
coronavirus-infected patients with high plasma 
BNP levels  

Clinical features and outcomes of 2019 novel 
coronavirus-infected patients with cardiac injury 

2.241 

Clinical characteristics of Coronavirus Disease 
2019 (COVID-19) patients in Kuwait  

Clinical and epidemiological characteristics of 
Coronavirus Disease 2019 (COVID-19) patients 

2.318 

   
 

Table 2. Examples of unrelated titles within the bioRxiv set of papers on COVID. 
Title 1 Title 2 (Unrelated) L2 

distance 
Early Prediction of Disease Progression in 2019 
Novel Coronavirus Pneumonia Patients Outside 
Wuhan with CT and Clinical Characteristics 

Epidemiological and Clinical Characteristics of 17 
Hospitalized Patients with 2019 Novel Coronavirus 
Infections Outside Wuhan, China 

2.337 

Preliminary epidemiological analysis on children 
and adolescents with novel coronavirus disease 
2019 outside Hubei Province in China: an 
observational study utilizing crowdsourced data  

Evolving epidemiology of novel coronavirus 
diseases 2019 and possible interruption of local 
transmission outside Hubei Province in China: a 
descriptive and modeling study 

2.351 

Clinical course and potential predicting factors 
of pneumonia of adult patients with coronavirus 
disease 2019 (COVID-19): A retrospective 
observational analysis of 193 confirmed cases in 
Thailand  

History of Coronary Heart Disease Increases the 
Mortality Rate of Coronavirus Disease 2019 
(COVID-19) Patients: A Nested Case-Control 
Study Based on Publicly Reported Confirmed Cases 
in Mainland China 

2.419 

The First Consecutive 5000 Patients with Corona
virus Disease 2019 from Qatar; a Nation-wide C
ohort Study  

Knowledge and perceptions of coronavirus disease 
2019 among the general public in the United States 
and the United Kingdom: A cross-sectional online s
urvey 

3.294 

Analysis of hospitalized COVID-19 patients in t
he Mount Sinai Health System using electronic 
medical records (EMR) reveals important progno
stic factors for improved clinical outcomes  

Core warming of coronavirus disease 2019 (COVID
-19) patients undergoing mechanical ventilation: pr
otocol for a randomized controlled pilot study 

3.663 

 
Based on the embedded space of titles, we used the following ways to identify titles that might 

be novel compared to the past: 
T1. Find titles that are furthest away from any title in the past (Table 3). 
T2. Find titles whose location corresponds to a low density area of the set of past titles but 
high density area in the current time period. 
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Strategy T1 is aimed at the identification of one of the earliest papers in a possibly new area. 
Each row in Table 3 lists the paper whose title was the most dissimilar to all previous titles (note 
the large distances in the right column from the closest title among prior papers). Most of the titles 
are compatible with being one of the first papers on the topic, with the embedding also highlighting 
subtle novelties like different types of phylogenetic research. Note that “COVID-19 spreading: a 
model” could be considered similar to “Spatio-temporal propagation of COVID-19 pandemics,” 
even though there is minimal lexical overlap. Strategy T2 is aimed at the identification of a 
burgeoning area compared to the past since it is meant to detect several new titles that are related; it 
also minimizes the chance of false positives that might confound the results of strategy T1. 
Examples of titles yielded by strategy T2 are a surge of publications on multidrug therapy in the 
period 1988-1991 compared to the period until 1987 (3-neighborhood ratio of old:new of 1.35). 
Examples are:  

Leprosy control through multidrug therapy (MDT).   
Experience with WHO-recommended multidrug therapy (MDT) for multibacillary (MB) leprosy patients in the 
leprosy control program of the All Africa Leprosy and Rehabilitation Training Center in Ethiopia: appraisal of the 
recommended duration of MDT for MB patients. 
Bacillaemia in leprosy and effect of multidrug therapy. 

A search of PubMed confirms this trend in that the first hit for the query “leprosy AND MDT” 
is only in 1985. 

Table 3. Most novel paper each week compared to all previous weeks, as predicted by strategy T1 
Week 
(2020) 

Title (farthest from all prior titles on COVID in bioRxiv dataset) Distance 

4  From SARS-CoV to Wuhan 2019-nCoV: Will History Repeat Itself?   6.399 
5  Nucleotide Analogues as Inhibitors of Viral Polymerases  7.016 
6  Phylogenomic analysis of the 2019-nCoV coronavirus  6.938 
7  Transmission Dynamics of 2019-nCoV in Malaysia  7.127 
8  Fractal kinetics of COVID-19 pandemic  8.479 
9  Application and optimization of RT-PCR in diagnosis of SARS-CoV-2 infection  5.473 
10  Mutations, Recombination and Insertion in the Evolution of 2019-nCoV  7.150 
11  The architecture of SARS-CoV-2 transcriptome  9.577 
12  Routes for COVID-19 importation in Brazil  7.624 
13  Spatio-temporal propagation of COVID-19 pandemics  7.462 
14  Presence of SARS-Coronavirus-2 in sewage  10.080 
15  Work-related Covid-19 transmission  9.856 
16  COVID-19 is an emergent disease of aging  6.918 
17  Identification of super-transmitters of SARS-CoV-2  16.268 
18  *COVID-19 spreading: a model  8.260 
19  AI334 and AQ806 antibodies recognize the spike S protein from SARS-CoV-2 by ELISA  9.338 
20  Placental pathology in COVID-19  8.308 
21  Metamorphosis of COVID-19 Pandemic  11.073 
22  Are we #stayinghome to Flatten the Curve?   8.388 
23  Cytokine biomarkers of COVID-19  9.935 
24  Stability of SARS-CoV-2 Phylogenies  12.348 
25  Hypokalemia in Patients with COVID-19  8.513 
26  Surveillance testing of SARS-CoV-2  8.335 
27  From predictions to prescriptions: A data-driven response to COVID-19  10.656 
28  Are men dying more than women by COVID-19?   7.455 
29  Cold sensitivity of the SARS-CoV-2 spike ectodomain  11.843 
30  Phylogeny of the COVID-19 Virus SARS-CoV-2 by Compression  7.128 
31  CAR Macrophages for SARS-CoV-2 Immunotherapy  8.481 

*False positive 
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Based on the embedded space of titles, we used the following ways to identify years that might 
be novel compared to the past: 

Strategy Y1. Find the mean title vector for each year, and trace the path from year to year. The 
longer paths may represent a significant change between adjacent years.  

 
Figure 5. Depiction of strategy Y1: PCA projection of the mean embedded vector from papers on 

leprosy. Left: embedded titles; Right: embedded abstracts. 
 
Strategy Y2. Estimate the proportion of titles in a given year that are located far away from any 
title in the preceding time period. A large change in the proportion of such titles in a given year 
may suggest a new and growing area of research.  

 

 
Figure 6. Top: Strategy Y2 depicts the proportion of ‘novel’ papers each year compared to all past publications. 
Bottom: Differential word clouds of terms within titles containing the word “leprosy” at times detected by Y2. 
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 A low-dimensional projection of strategy Y1 is shown in Figure 5. The long path between 1987 
and 1988 is in alignment with previous results (changepoint analysis, Strategy T2) in this paper 
regarding the literature on multidrug therapy in leprosy. Based on strategy Y2, Fig. 6 shows the 
proportion of potentially novel titles at each time-point, and corresponding differential word clouds 
to indicate terms possibly indicative of new areas. 

While the title might be the most succinct ‘sentence’ representation of the topic of a paper, a 
rhetorical or terse title may fail to convey the essence of a paper. We therefore attempted to embed 
entire abstracts as an alternative version of strategy Y1. While this shows a possibly less noisy path 
from year to year, the variance (range of values on axes) decreases so that the semantic ‘hops’ from 
year to year become smaller (Fig. 5). Results from strategies such as Figure 5 and 6 could be used 
to calibrate and determine the thresholds for measures of novelty (projected path lengths or 
significant proportion of novel papers) to be indicative of novelty in the recent past. 

4.  Conclusions 

We have presented and illustrated approaches to the detection of semantic changepoints within a set 
of research publications. Admittedly, a novel paper is not synonymous with a high impact paper. 
Nor is it synonymous with a novel conclusion. False negatives are also possible. For instance, 
analogous sentences differing in only one term (e.g., a highly effective new therapeutic intervention 
instead of an older marginally effective one) may have similar embeddings, especially within long 
titles. More specialized embedding schemes that are domain and problem specific may be necessary. 
Changepoint analysis is based on acute differences, and therefore less able to detect steady growth 
in a new area over a longer time period. As proof of concept, we have focused on a subset of the 
publications for each disease. For detection of truly novel papers, multiple databases will need to be 
considered together with sophisticated ontology and machine-based querying to maximize recall 
without sacrificing precision. The approach can be potentially enhanced by using named entity 
recognition approaches for more insightful analysis of the underlying reasons for an observed 
changepoint. A more detailed modeling of content based on incorporating topic modeling and/or the 
analysis of full text journal papers can help provide more granular changepoints and corresponding 
interpretations. Ultimately, the approach presented in this paper could potentially be incorporated 
into a real time system for the detection of novel information as it appears. Clinicians could 
potentially use it to find new vistas in their specific disciplines, especially in the context of hitherto 
incurable diseases. Researchers could find nascent topics worth expanding into. 

5.  Supplementary Information 

Software to carry out the analysis on a given set of papers, and a larger set of detailed results for 
several of the infectious diseases on the WHO list of neglected tropical diseases are available at: 
https://github.com/pdddinakar/SemanticChangepointDetection. 
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Many existing methods for estimation of infectious disease transmission networks use a
phylogeny of the infecting strains as the basis for transmission network inference, and accu-
rate network inference relies on accuracy of this underlying evolutionary history. However,
phylogenetic reconstruction can be highly error prone and more sophisticated methods can
fail to scale to larger outbreaks, negatively impacting downstream transmission network
inference.

We introduce a new method, TreeFix-TP, for accurate and scalable reconstruction of
transmission phylogenies based on an error-correction framework. Our method uses intra-
host strain diversity and host information to balance a parsimonious evaluation of the
implied transmission network with statistical hypothesis testing on sequence data likelihood.
The reconstructed tree minimizes the number of required disease transmissions while being
as well supported by sequence data as the maximum likelihood phylogeny. Using a simulation
framework for viral transmission and evolution and real data from ten HCV outbreaks, we
demonstrate that error-correction with TreeFix-TP improves phylogenetic accuracy and
outbreak source detection. Our results show that using TreeFix-TP can lead to significant
improvement in transmission phylogeny inference and that its performance is robust to
variations in transmission and evolutionary parameters. TreeFix-TP is freely available open-
source from https://compbio.engr.uconn.edu/software/treefix-tp/.

Keywords: phylogeny reconstruction, transmission network inference, infectious disease,
computational epidemiology

1. Background

The study of infectious disease has benefited greatly from advances in computational molecu-
lar epidemiology. The efficacy of public health efforts to combat the spread of these pathogens
has rapidly expanded as technology improves – most notably, the onset of powerful high
throughput or next-generation sequencing (NGS) methods has provided molecular epidemi-
ologists with the ability to quickly and cheaply sequence the genomes of the infecting strains
(viral or bacterial)1 which in turn has opened the door for computational analysis of these
sequences and of disease transmission. By understanding disease transmission, those investi-
gating a disease can more effectively combat its spread. Computational methods for molecular

c© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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epidemiology have had a positive impact on public health in a number of cases,2,3 and continue
to be widely used for the study of infectious disease transmission,4 including for the ongoing
COVID-19 pandemic (e.g., through the popular https://nextstrain.org/ncov/global web
portal).

Transmission network inference is a challenging computational problem, which has been re-
flected in the number of new methods developed for understanding disease transmission, espe-
cially that of rapidly-evolving RNA viruses.5–10 A key challenge with studying the transmission
of rapidly evolving RNA and retroviruses11 is that they exist in the host as “clouds” of closely
related sequences. These strain variants are referred to as quasispecies by virologists,12–16 and
the resulting genetic diversity of the strains circulating within a host has important impli-
cations for efficiency of virus transmission, virulence, disease progression, drug/vaccine resis-
tance, etc..17–21 The advent of next-generation sequencing technologies, has revolutionized the
study of quasispecies, but most existing transmission network inference methods are unable
to make use of the ability to sequence multiple distinct strain sequences per host. However,
methods that explicitly consider multiple strain sequence per host have recently started to be
developed; such methods include Phyloscanner,7 SharpTNI,22 and TNet.23

Fig. 1. Phylogeny-based transmission net-
work inference: In this figure, internal nodes of
the phylogenetic tree on the left are labeled by one
of hosts a, b, c, or d, represented here by the differ-
ent colors. This labeling of internal nodes causes
some of the edges in the tree to have different la-
bels at their two end points, and such edges rep-
resent transmission edges in the final transmission
network. In the figure we see transitions from a
to b, a to d, and b to c, yielding the transmission
network shown on the right.

Some of the most powerful and widely
used techniques for transmission net-
work inference, including Phyloscanner,7

SharpTNI,22 and TNet,23 are based on
computing and using phylogenies of the
infecting strains.5–8,24 We refer to these
strain phylogenies as transmission phyloge-
nies. These phylogeny-based methods in-
fer transmission networks through a host
assignment for each node of the transmis-
sion phylogeny, where this phylogeny is
either first constructed independently or
is co-estimated along with the host as-
signment. Leaves of the transmission phy-
logeny are labeled corresponding to the
host from which they are sampled, and an
ancestral host assignment is then inferred
for each node/edge of the phylogeny. This
ancestral host assignment defines a trans-
mission network, where transmission is in-
ferred along any edge connecting two nodes
labeled with different hosts. In the case of a
rooted phylogeny, this coloring also confers
direction of transmission, where the host
for the ancestral sequence along a trans-

mission edge is considered to be the source of the transmission, and the host of the child
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sequence is considered to be the recipient. This is illustrated in Figure 1.
Two of the most widely-used methods for inference of transmission phylogenies are

BEAST25 and RAxML.26 For instance, among existing transmission inference methods,
TransPhylo6 uses BEAST to infer a transmission phylogeny, while Phyloscanner7 uses RAxML.
BEAST uses Markov Chain Monte Carlo (MCMC) to estimate phylogenies and evolutionary
parameters for several sophisticated models of evolution. Because the models implemented are
highly complex, BEAST is prohibitively slow for use on anything other than small data sets.
As a result, more scalable, but slightly less accurate, maximum likelihood based methods, such
as the state-of-the-art RAxML method,26 are often used in practice for inferring transmission
phylogenies. There are also several methods which address transmission phylogeny reconstruc-
tion specifically from a transmission perspective, and use transmission information to inform
phylogenetic inference. These methods often perform co-estimation of both the transmission
phylogeny and network, and often model within-host evolution. BEASTlier5 and Phybreak8

both use Bayesian inference for co-estimation of transmission phylogeny and network, and so
run into the same scalability issues as BEAST. Thus, even though accurate reconstruction of
the transmission phylogeny has a direct impact on transmission network inference, all exist-
ing phylogenetic inference methods for transmission phylogenies are either prohibitively slow
and unscalable or suffer from poor inference accuracy. Furthermore, none of these existing
phylogenetic inference methods can take advantage of the information provided by multiple
sequences from each infected host.

In this work, we introduce TreeFix-TP, a new method for reconstructing transmission
phylogenies that is as scalable as RAxML but significantly more accurate. TreeFix-TP im-
proves the accuracy of infectious disease transmission phylogenies using an error-correction
approach. Specifically, TreeFix-TP leverages both sequence and host information to recon-
struct more accurate phylogenies than maximum likelihood on its own by minimizing the
number of inter-host transmissions while maintaining statistical support. Similar error cor-
rection approaches have been successfully used for reconstruction of gene trees;27,28 however,
these previous methods are based on leveraging a known species phylogeny to error-correct and
improve gene trees, and they are therefore inapplicable to the current setting where the goal
is to reconstruct the strain tree itself (analogous to the species tree). We address this problem
by leveraging intra-host strain diversity and defining a fitness function based on minimizing
the number of inter-host transmissions implied by the underlying phylogeny.

In this study, we compare the phylogenetic reconstruction accuracy of Treefix-TP to
RAxML.26 We show that TreeFix-TP reconstructs significantly more accurate transmission
phylogenies than RAxML, and is robust to variations in transmission model, sequence length,
rate of evolution, and number of viruses. Furthermore, we demonstrate the use of TreeFix-TP
for improving source detection in 10 real-world HCV outbreaks.

2. Methods

2.1. Minimizing inter-host transmissions

The availability of multiple strain sequences from each host provides valuable additional in-
formation that can be used to improve the inference of transmission phylogenies. Consider an
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ideal evolutionary scenario with a complete transmission bottleneck and no re-infection. In
such a scenario, all sequences sampled from the same host should form a single monophyletic
clade. For N hosts, this ideal case would result in a coloring with N single-color sub-graphs
and would imply N − 1 transmissions. Deviations from this ideal would be reflected in the
transmission phylogeny and imply a few additional transmissions. Thus, when multiple strain
sequences are available from each host, a biologically meaningful criterion for estimating the
“correctness” of a transmission phylogeny is to minimize the number of implied inter-host
transmissions. Note that the problem of computing the minimum number of implied inter-
host transmissions on a given transmission phylogeny is equivalent to the well-known small
parsimony problem in phylogenetics and can be solved very efficiently.29 By minimizing the
number of inter-host transmissions implied by a candidate phylogeny, and carefully avoiding
over-fitting, we can improve the accuracy of a given phylogeny.

2.2. Description of TreeFix-TP

The input for TreeFix-TP is a multiple sequence alignment of infectious disease sequences, a
maximum likelihood phylogeny constructed on the infectious disease sequences, and a map-
ping from all sequences to known hosts. TreeFix-TP aims to find the transmission phylogeny
which is well supported by sequence data and has the minimum transmission cost. Using
the maximum likelihood phylogeny as a starting point, we perform iterative local searches
and evaluate each candidate tree using a statistical likelihood test and an evaluation of the
transmission cost. Candidate phylogenies which are statistically equivalent to the maximum
likelihood phylogeny, and with a lower transmission cost, are accepted and set as the starting
point for the next local search iteration.

TreeFix-TP uses the Shimodaira-Hasegawa (SH) statistical likelihood test30 to determine
sequence support for a given phylogeny. This test considers two trees, in our case the maximum
likelihood phylogeny and a candidate phylogeny, with the null hypothesis that the two trees
are equally supported by the sequence data. The null hypothesis is rejected at a significance
level α which can be defined by the user. If the null hypothesis fails to be rejected, the two
trees are considered to be statistically equivalent

The transmission cost for a candidate phylogeny is calculated by solving an instance of the
small parsimony problem using Fitch’s algorithm.29 The states at the leaves of a candidate
phylogeny are the hosts from which each sequence is known to be sampled. Fitch’s algorithm,
then, calculates the minimum number of state changes required to generate the given phy-
logeny, which corresponds to minimizing the number of inter-host transmissions. In this case,
we are concerned only with the cost of a candidate and not the internal assignments of hosts,
so only the upward pass of Fitch’s algorithm is performed. Full details of the algorithm and
efficient implementation can be found in Section S1 in the Supplementary Material.
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2.3. Evaluation using simulated data sets

2.3.1. Data set generation

Fig. 2. TreeFix-TP Testing Pipeline: To eval-
uate TreeFix-TP, we first used FAVITES to gener-
ate a transmission network (a) and ground truth
viral phylogeny (b). Maximum-likelihood phyloge-
nies were then reconstructed from sequences us-
ing RAxML (c), and were error corrected with
TreeFix-TP (d). The RAxML and TreeFix-TP
phylogenies were compared using RF distance, as
described in Section 2.3.2 (e).

To evaluate the performance of TreeFix-
TP, we generated a number of simulated
data sets across a variety of parameters
and developed a testing pipeline to com-
pare TreeFix-TP with RAxML (see Figure
2). Our simulated viral data sets were gen-
erated using FAVITES,31 a recently devel-
oped framework for simultaneous simula-
tion of viral transmission networks, phylo-
genetic trees, and sequences.

A contact network was generated us-
ing the Barabasi-Albert model32 with
1000 individuals each with 100 outgo-
ing edges preferentially attached to high-
degree nodes. One host was randomly
selected to be the source of the in-
fection. Transmission was simulated for
a predefined amount of time, or un-
til all hosts were recovered under one
of two different compartmental mod-
els, either Susceptible-Exposed-Infected-
Recovered (SEIR) or Susceptible-Infected-
Recovered (SIR).33 These models are pa-
rameterized by transition rates β, λ, and δ,
where β is the rate of transition from sus-
ceptible to exposed in the SEIR model or
susceptible to infected in the SIR model, λ is the rate of transition from exposed to infected
(only in the SEIR model), and δ is the rate of recovery for infected individuals. In our simu-
lation, we had four categories of data sets with variations on infection rate β to explore the
effect of transmission model on reconstruction accuracy. λ and δ were set according to the
infection rate. These parameters can be found in Supplementary Table S2.

Due to the simulation of latent periods, data sets generated under the SEIR model tend to
exhibit an outbreak structure, where one high-degree individual infects several of its neighbors,
followed by a period of low infection. When one of the newly-infected neighbors becomes
infectious, another outbreak occurs. This is contrary to the SIR model, which tends to have a
more periodic pattern of disease transmission. In addition to varying the transmission model,
we simulated data sets with different rates of infection and recovery. This resulted in four
categories of simulation with infection rates of 0.015, 0.003, 0.01, and 0.01 respectively. We
group SEIR (0.015) and SEIR (0.01) together, and group SIR (0.003) and SIR (0.01) together
since there was no significant difference between the transmission model parameter settings.
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These transmission network parameter settings were generally based on the defaults suggested
by FAVITES, with some adjustments as necessary for preventing the occurrence of long edges
separating sequences from different hosts.

Internal evolution of the virus in infected hosts was simulated under a logistic-growth
coalescent model. Each internal phylogeny was connected according to transmission to form
a full transmission phylogeny. The branch lengths of this phylogeny were scaled to simulate
different rates of sequence evolution. Sequences were simulated using the GTR + Γ model
starting with a real HCV viral sequence from HCV outbreak data at the root (discussed in
more detail in Section 3.2). The GTR rate matrix and gamma parameter were determined by
applying RAxML to estimate parameters and construct a phylogeny for real sequences from
an HCV outbreak. Thus, the simulated sequences are designed to reflect real rapidly-evolving
RNA viral sequences.

By default, we simulated sequences of length 1000 nucleotides and sampled 10 sequences
per infected host. We scaled the branch lengths of the phylogeny by 0.25 on data sets where
the SEIR and SIR (0.003) models were used, and by 1.5 on data sets where the SIR (0.01)
model was used. These scale factors were chosen so that the height of the tree would be
approximately ten expected mutations per-site. We varied the sequence length, number of
sequences per host, and mutation rate to quantify the robustness of TreeFix-TP to variance
in sequence evolution. The list of all transmission and evolution simulation parameters can
be found in Supplementary Table S2. For each of the four categories, we tested the effects of
varying sequence length, number of samples per host, and scale factor, varying one of these
parameters at a time from the default setting. Specifically, we simulated sequences of length
250, 500, and 1000, sampled 5, 10, and 20 sequences, and scaled the tree by double or half
the default. Including the default setting, this resulted in 7 distinct parameterizations per
category, or 28 total. Full specifications of parameters for each variation can also be found in
Supplementary Table S2.

For each set of simulation parameters, we simulated 20 different data sets for a total of
560 simulated data sets. RAxML and TreeFix-TP were limited to 8GB of memory and 10
days, and due to these limitations we were able to reconstruct phylogenies using TreeFix-TP
for 486 of these data sets. Of the 74 runs which did not complete, the simulated trees had
an average of 733.43 leaves. For the 486 simulated data sets on which we obtained results, we
had between 35 and 630 sequences, with an average of 223.41 leaves. The average number of
transmissions was 22, and 95% of data sets had between 7 and 49 transmissions. Of the data
sets for which we obtained results, only 6 had more than 60 transmissions.

2.3.2. Evaluating reconstruction accuracy

The accuracy of the reconstructed phylogeny was evaluated by calculating the Robinson-
Foulds distance34 between the true evolutionary history from the simulated data and both the
maximum likelihood tree reconstructed by RAxML and the error-corrected tree reconstructed
by TreeFix-TP. We calculated the average RF distances, normalized by the maximum possible
RF distance (number of internal edges). We calculated the RF percent decrease as follows:
Given simulated tree S, maximum likelihood tree R, and TreeFix-TP tree T , RF percent
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decrease is given by 100 × (RF (S,R) − RF (S, T ))/RF (S,R). We calculated p-values using the
one-tailed Wilcoxon Signed-Rank test implemented in Scipy 1.3.1. Additionally, we looked at
the minimum transmission cost implied by the RAxML and TreeFix-TP trees. The cost of
the TreeFix-TP tree is guaranteed to be no greater than that of the RAxML tree, but it is
valuable to see by how much the transmission cost is decreased and the relationship between
transmission cost and Robinson-Foulds distance. Note that we did not compare reconstruction
accuracy against BEAST25 since it is not scalable to data set sizes used in this study.

3. Results

3.1. Phylogenetic error correction results

For baseline evaluation, we compared the phylogenies reconstructed by TreeFix-TP and
RAxML on 35 data sets corresponding to the SEIR transmission model, sequence length
1000, 10 sequences per host, and a mutation rate of 0.25. Among these trials, 48.6% of the
data sets showed a decrease in RF distance with TreeFix-TP, while 42.86% saw no improve-
ment and 8.57% saw an increase. The average RF percent decrease for trees which improved
was 14.6%, and as high as 46.154%, while the average RF percent increase for those trees
that got worse was only 3.644%. In every run where there was no improvement, the maximum
likelihood tree generated with RAxML implied exactly as many or only one more transmission
than the true number of transmissions, so the ability for TreeFix-TP to correct errors by min-
imizing transmission was limited. Across all 35 data sets, the average normalized RF distance
of trees reconstructed with RAxML was 0.152, while trees reconstructed with TreeFix-TP had
an average normalized RF distance of 0.137 (p = 0.0003, Wilcoxon Signed-Rank). The overall
average RF percent decrease was 9.99%.

We also evaluated 32 data sets corresponding to the SIR transmission model, sequence
length 1000, 10 sequences per host, and a mutation rate of either 1.5 or 0.25 (aggregated over
both transmission rate categories). The average normalized RF distance of trees constructed
with RAxML was 0.103, while trees reconstructed with TreeFix-TP had an average normalized
RF distance 0.098 (p = 0.006, Wilcoxon Signed-Rank). The magnitude of improvement is
impacted by the large number of no-change error corrections. Specifically, under the SIR
model of transmission, 68.75% of runs had no-change, while 28.13% showed a decrease in
RF distance, and the remaining 3.13% showed an increase. The overall average RF percent
decrease was 4.36%, but those which improved had an average RF percent decrease of 14.116%,
and as high as 28.57%. For those which got worse, the average RF percent increase was 9.8%.
A comparison of these results across the SEIR and SIR transmission models suggests that
error correction might be more effective under a model of transmission that includes a latent
period, which results in transmissions patterns which more closely reflect outbreaks.

Impact of varying sequence length To evaluate the robustness of TreeFix-TP to the
amount of sequence information available, we varied sequence length from the base 1000
nucleotides to 250 and 500 nucleotides (Figure 3a). Under the SEIR model, we found that
TreeFix-TP continued to improve the accuracy of phylogenetic reconstruction with shorter
sequence lengths, and that sequence length didn’t seem to have a large effect on the ability
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Fig. 3. Robustness of phylogeny reconstruction to different parameters: Normalized
Robinson-Foulds (RF) distance from the simulated phylogeny for reconstructions with both RAxML
and TreeFix-TP under a variety of settings. TreeFix-TP reconstructs the most accurate trees across
all data sets. (a) RF distance for varied sequence lengths. Trees are in general more accurate with
longer sequences, and TreeFix-TP improves upon RAxML to a greater extent with shorter sequences.
(b) RF distance for varied numbers of viruses sampled from each host. TreeFix-TP has the largest
improvement when fewer viruses are sampled. (c) RF distance across multiple different scale factors.
TreeFix-TP reconstructed the most accurate phylogenies with all scale factors.

of error correction to improved the accuracy of the phylogeny. At sequence length 1000, the
average normalized RF distance decreased by 9.99% from 0.152 to 0.137 after error correction
(p = 0.0003, Wilcoxon Signed-Rank). At length 500, this was a decrease of 11.03% from 0.264
to 0.235 (p = 1e−5, Wilcoxon Signed-Rank). At sequence length 250, the average RF distance
decreased by an average of 5.68% from 0.403 to 0.380 (p = 6e − 5, Wilcoxon Signed-Rank).
As expected, the absolute error rate increases sharply, for both RAxML and TreeFix-TP, as
sequence length decreases.

Under the SIR model, we found the error correction continued to have an impact at all
sequence lengths, and that error correction was more effective at shorter sequence lengths.
With sequence length of 1000, the average RF distance decreased by 4.36% (0.103 to 0.099
normalized RF, p = 0.006, Wilcoxon Signed-Rank). At length 500, there was a 7.65% decrease
(0.187 to 0.172 normalized RF, p = 0.0001, Wilcoxon Signed-Rank), and at length 250 there
was a 7.59% decrease (0.357 to 0.330 normalized RF, (p = 9e − 5, Wilcoxon Signed-Rank).
Under this model, error correction seems to be more effective with shorter sequences, likely
because longer sequences contain more information which allows maximum likelihood methods
to reconstruct a relatively accurate tree before any error correction occurs.

Impact of varying number of viruses We observed the effect of sampling different num-
bers of viruses from each infected host, from the default of 10 to 5 and 20 viral sequence
samples (Figure 3b). TreeFix-TP reconstructed more accurate phylogenies in each case, with
the largest overall improvement occurring for trees with 5 sequences from each host. Under
the SEIR model, with 20 viruses, there was an average RF distance decrease of 2.78% (0.152
to 0.148 normalized RF, p = 0.018, Wilcoxon Signed-Rank). With 10 and 5 viruses, there were
larger decreases of 9.99% and 10.18% respectively (0.152 to 0.137 and 0.183 to 0.164 normal-
ized RF, p = 0.0003, p = 8e−5 Wilcoxon Signed-Rank). Under the SIR model, with 20 viruses,
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there was an decrease in average RF distance of only 1.56% (0.108 to 0.106 normalized RF,
p = 0.072, Wilcoxon Signed-Rank). This decrease was 4.36% with 10 viruses and 6.52% with
5 viruses (0.103 to 0.099 and 0.096 to 0.089 normalized RF, p = 0.006, p = 0.013 Wilcoxon
Signed-Rank). Error correction seems to be more effective with fewer viruses, which matches
the intuition about sequence length - that more sequence data leads to originally accurate
phylogenies, and less potential for error correction.

Impact of varying scale factor We found that TreeFix-TP is also robust to various rates of
sequence evolution (Figure 3c). Under the SEIR model of evolution, scale factors of 0.125, 0.25,
and 0.5 resulted in a decrease in average RF distance by 6.64%, 9.99%, and 9.76% respectively
(0.151 to 0.141, 0.152 to 0.137, 0.168 to 0.152 normalized RF, p = 0.004, 0.0003, 0.0006 Wilcoxon
Signed-Rank). Under the SIR model, we used two different sets of scale factors dependent
on the disease transmission parameters. Aggregated across SIR (0.003) and SIR (0.01), we
tested scale factors of 0.25, 0.5, 0.75, 1, 1.5, and 3. These scale factors had average RF
percent decreases of 3.05%, 2.87%, 2.02%, 0.07%, 5.97%, and 1.20% (0.111 to 0.108, 0.095
to 0.093, 0.111 to 0.109, 0.1043 to 0.1042, 0.113 to 0.106, and 0.095 to 0.094 normalized RF,
p = 0.045, 0.054, 0.034, 0.327, 0.021, 0.250). As expected, the overall RF distances tended to be
larger for very small and very large scale factors, which indicates that a reasonable rate of
evolution is important to overall phylogenetic reconstruction accuracy, but plays less of an
impact on error correction.

3.2. Source recovery in HCV outbreaks

We also evaluated the impact of using TreeFix-TP on real data sets of HCV outbreaks made
available by the CDC.9 In total, there are 10 different data sets, each representing a separate
HCV outbreak. Each of these outbreak data sets contains between 2 and 19 infected hosts
and a few dozen to a few hundred strain sequences. For each of these 10 outbreaks, the source
host of the outbreak is known (through the CDC’s epidemiological efforts). We used a simple
phylogenetic pipeline to infer a source for each of these 10 data sets as follows: We constructed
phylogenetic trees using RAxML and TreeFix-TP and rooted them using two of the most
widely used rooting methods, balanced rooting (implemented in RAxML26) and midpoint
rooting.35,36 We then used Sankoff’s algorithm for the small parsimony problem37 to label the
internal nodes of these phylogenies with hosts and report the host assignment at the root as the
inferred source of that outbreak. (Note that Phyloscanner also uses Sankoff’s algorithm to label
internal nodes of the phylogeny, but we chose not to use Phyloscanner directly because it is
very conservative in its host assignments and often leaves nodes unlabeled.) Using the RAxML
trees, the source was correctly identified in 6 (balanced rooting) and 7 (midpoint rooting) of
the 10 outbreaks. In contrast, the trees reconstructed by TreeFix-TP correctly identified the
source in 8 out of the 10 outbreaks with both rooting strategies. Furthermore, the outbreaks
correctly identified by RAxML were a strict subset of those identified by TreeFix-TP.
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3.3. Running time and scalability

Using its default number of iterations (5000) TreeFix-TP required an average of approximately
37 hours for each run, but this running time varied depending on the number of tips and length
of sequence. TreeFix-TP took less than an hour and a half for trees of 50-60 tips, but upwards
of 200 hours for trees with more than 500 tips and 1000 nucleotide-length sequences. On
average, runs took fewer than 9 minutes per tip, and scaled linearly in tree size, number of
hosts, and sequence length.

4. Discussion and Conclusions

In this paper, we have introduced a new method, TreeFix-TP, for more accurate and scalable
reconstruction of infectious disease transmission phylogenies when multiple strain sequences
are sampled from each infected host, and demonstrated its impact on phylogenetic infer-
ence and outbreak source detection. TreeFix-TP uses an error-correction approach where it
seeks to improve a given maximum-likelihood phylogeny of the infecting strains by using ad-
ditional information about which host each strain was sampled from and balancing it with
sequence-only likelihood using a statistical hypothesis testing framework. As our experimental
results show, TreeFix-TP consistently reconstructs more accurate phylogenies than the state-
of-the-art maximum-likelihood phylogeny inference method RAxML. We also demonstrate
how TreeFix-TP can be used to augment existing phylogeny-based pipelines for transmis-
sion network inference by error correcting the phylogenies before they are used for network
inference or outbreak source detection.

Going forward, it would be worthwhile to develop even more advanced, yet scalable, meth-
ods for construction of transmission phylogenies. As our experimental results show, even
though the absolute error rate of TreeFix-TP phylogenies is often significantly lower than
that of RAxML trees, this absolute error rate still remains quite high overall even after error
correction. This is partly because the ability of TreeFix-TP to error-correct depends on the
number of different hosts represented in the phylogeny, rather than on the size of the tree
itself. In the future, it may be possible to use additional information about within-host strain
evolution to further improve transmission phylogeny inference.
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a close relative of SARS-CoV-1, 

causes coronavirus disease 2019 (COVID-19), which, at the time of writing, has spread to over 19.9 

million people worldwide. In this work, we aim to discover drugs capable of inhibiting SARS-CoV-

2 through interaction modeling and statistical methods. Currently, many drug discovery approaches 

follow the typical protein structure-function paradigm, designing drugs to bind to fixed three-

dimensional structures. However, in recent years such approaches have failed to address drug 

resistance and limit the set of possible drug targets and candidates. For these reasons we instead focus 

on targeting protein regions that lack a stable structure, known as intrinsically disordered regions 

(IDRs). Such regions are essential to numerous biological pathways that contribute to the virulence 

of various viruses. In this work, we discover eleven new SARS-CoV-2 drug candidates targeting 

IDRs and provide further evidence for the involvement of IDRs in viral processes such as enzymatic 

peptide cleavage while demonstrating the efficacy of our unique docking approach. 

 

1.  Introduction 

IDRs lack a fixed three-dimensional structure, and instead fold dynamically into a set of continuous 

conformations based on surrounding conditions [1]. This allows IDRs to have a wide range of 

binding partners, and as a result, serve significant roles in critical biological processes such as cell 

signaling and transcription [2-3]. Moreover, certain short IDRs known as molecular recognition 

features (MoRFs) are essential for initiating protein-protein interactions (PPIs) [4]. For over a 

decade now, it has been clear that IDRs are functionally important to and incredibly abundant in 

proteins implicated across the disease spectrum [5]. 

While IDRs are not incredibly common in the SARS-CoV-2 proteome, the IDRs that do exist 

contribute greatly to the functioning and overall virulence of the pathogen [6-7]. In fact, nearly all 

SARS-CoV-2 proteins are predicted to have MoRFs, highly suggestive of the importance of IDRs 

in PPI networks [7]. SARS-CoV-2 IDRs therefore serve as promising drug targets for antiviral drug 

discovery. 

Of the 27 mature viral proteins within the SARS-CoV-2 proteome, the majority of current drug 

discovery research is largely focused on three main targets: the RNA polymerase, the Papain-like 
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protease, and the 3C-like protease (3CLpro) [8-9]. The 3CLpro’s main role is to cleave the 

polyproteins into functional parts [10]. While all three targets are disordered [7], in this study we 

focus on the CoV-2 3CLpro since it is highly similar (96% sequence identity) to its CoV-1 relative, 

for which an abundance of bioassay data is available [10]. In particular, we concentrate our efforts 

on the N-terminally short IDR (residues 1-6; see footnote ‘b’) predicted to be a MoRF in both CoV-

1 and CoV-2 [7]. A drug capable of binding to this IDR could thereby inhibit PPIs within the virus. 

Our approach to drug discovery consists of two major steps. First, we compute binding affinities 

between the CoV-2 3CLpro IDR and over 1400 ligands from the NCI Diversity Set III through a 

unique docking procedure. While older docking procedures focus on targeting structured protein 

pockets [11], in this study we account for the wide range of IDR conformations through the 

allowance of residue side chain rotation as well as through ensemble docking. High binding 

affinities are a key first indicator of drug potential since they imply a great attractive force toward 

the receptor and demonstrate that the binding energy can be used to alter the receptor structure. We 

discovered over 60 ligands with binding affinities of -8.0 kcal/mol or better. However, drug 

discovery approaches relying solely on docking often fail to produce seriously meaningful results, 

and expert opinion suggests the cross-verification of results using distinct techniques [12-13]. Thus, 

in the second step of our approach, we validate and filter our results using a statistical model. The 

results of bioassay AID 1706, which screens over 290,000 compounds for inhibition of CoV-1 

3CLpro-mediated peptide cleavage [14], are used to train a message passing neural network 

(MPNN) to distinguish between positive (3CLpro inhibiting) and negative (non-inhibiting) 

compounds. Due to the high similarity between the two CoV 3CLpros, such a model is likely to 

make meaningful predictions relevant to CoV-2 3CLpro inhibition [10, 15] . This model is then 

used to predict activity scores for each of the previously docked ligands. We show a correlation 

between activity scores and binding affinity, suggesting the efficacy of our docking approach. 

Moreover, we combine the results of our steps to determine 11 new CoV-2 drug candidates, many 

of which show antibiotic or antiviral properties. Figure 1 summarizes the process. 

 

 
Fig. 1.  Drug discovery flowchart. 
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2.  Methods 

2.1.  Molecular dockinga 

2.1.1.  Data collection 

The three-dimensional structures of all 27 mature viral proteins were predicted by the Oak Ridge 

National Laboratory (ORNL) with a workflow consisting of X-ray crystallography results, 

homology modeling, and disorder prediction among other techniques. In particular, the structure of 

the monomeric form of 3CLpro was obtained directly from ORNL’s COVID-19 site.b 

In this study, we use the National Cancer Institute (NCI) Diversity Set III as our ligand dataset. 

Diversity sets are constrained such that no two ligands can be overly similar to one another, resulting 

in heterogeneity. A single SDF file was retrieved from NCI’s websitec describing the structures of 

each of the ligands in the set. 

2.1.2.  Data preprocessing 

AutoDockTools was used to prepare and preprocess the PDB file for the 3CLpro before docking. 

Water molecules were removed, polar hydrogen atoms were added, and Kollman charges were 

added to the entire structure. The structure was then saved as a PDBQT file. 

The ligands were extracted from the SDF file into individual PDB files. Then, the prepare_ligand 

function from the AutoDock Flexible Receptor (ADFR) suited was used to preprocess each of these 

ligand files, generating PDBQT files ready for docking. 

2.1.3.  Target file generation 

The protein-ligand docking software used in this study is AutoDock Flexible Receptor (ADFR). 

ADFR requires at least two parameters to be passed: the protein receptor, specified by a target file, 

and the ligand, specified by a PDBQT file. Target files specify the docking box size and position, 

calculated binding pockets, residue side chains to be made flexible, affinity maps, as well as other 

meta-data. AutoGridFR was used to generate such a target file for the 3CLpro. In particular, the 

docking box was specified to enclose residues 1-9, and residues within the IDR (1-6) were specified 

as having flexible side chains. Additionally, AutoSite 1.0 was used to generate ligand binding 

pockets through a clustering algorithm that groups high affinity points into disjoint “fills.” Fills with 

high scores in close proximity to the disordered region were chosen to be targeted during docking. 

Figure 2 graphically summarizes the parameters chosen for target file generation. 

a Our code, data and results are available at https://github.com/Biomedical-Cybernetics-Lab2/IDR-SARS-CoV-2. 
b https://compsysbio.ornl.gov/covid-19/covid-19-structome/. 
c https://wiki.nci.nih.gov/display/NCIDTPdata/Compound+Sets. 
d https://ccsb.scripps.edu/adfr/. 

Pacific Symposium on Biocomputing 2021

133

https://github.com/Biomedical-Cybernetics-Lab2/IDR-SARS-CoV-2
https://compsysbio.ornl.gov/covid-19/covid-19-structome/
https://wiki.nci.nih.gov/display/NCIDTPdata/Compound+Sets
https://ccsb.scripps.edu/adfr/


 
 

Fig. 2. Orange residues are part of the IDR and specified as flexible. The docking box is shown in white. Fills chosen 

are shown in purple, light blue, green and orange. 

2.1.4.  Flexible docking 

ADFR is unique from other protein-ligand docking software in that it can handle both ligand and 

receptor flexibility. As a result, ADFR is of incredible use when performing IDR-related docking. 

ADFR employs a genetic algorithm (GA) to find the best docked position of a given ligand. For 

each protein-ligand pair, the GA is run several times in case the GA converges to local rather than 

global optima. Moreover, the user can specify both how many runs are executed as well as an upper 

bound for the number of times the scoring function is called per run. This allows us to drastically 

cut down on compute time by potentially terminating searches before they converge. The default 

values for the number of GA runs and the maximum number of score evaluations are 50 and 2.5 

million respectively; in this study, at least initially, we modify these parameters to 7 runs with at 

most 28,000 evaluations each. Docking is performed with these parameters for 1405 distinct ligands 

from the NCI Diversity Set III, and results are compiled. 

2.1.5.  Ensemble docking 

In our pursuit of simulating the conformational flexibility of the IDR for accurate drug discovery, 

we also utilize ensemble docking. In this approach, we generate many possible conformations of the 

IDR, and dock each ligand onto each possible conformation. In this study, we generate 

conformations by treating the IDR as a loop of the protein. Loop modelling implemented by 

MODELLERe is then used to generate five likely IDR conformations. We then repeat the processes 

outlined in the above sections: we preprocess each newly generated PDB file, generate a target file 

for each, and perform docking on each conformation-ligand pair using ADFR. Figure 3 illustrates 

how the five different conformations of the IDR compare to each other. After docking is complete, 

results are compiled. 

e https://salilab.org/modeller/. 
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Fig. 3. Five conformations of the 3CLpro IDR superimposed onto the original structure. 

 

2.2.  Statistical model 

2.2.1.  Chemprop 

Chempropf is a freely available implementation of a message passing neural network. Such models 

are designed to predict properties of graph-based inputs. In the case of molecular property 

prediction, molecules are transformed to graphs by treating atoms as nodes and the bonds between 

atoms as edges. Using this representation, a feature vector is generated through a learned algorithm 

that aggregates chemical features within the graph. This vector is then passed to a typical feed-

forward neural network [16]. For our purposes, this neural network outputs a real value between 0 

and 1 representing the model’s confidence that a certain molecule has a desired binary property. 

2.2.2.  Data and training 

Our aim was to train a MPNN model to predict whether a molecule can inhibit the CoV-2 3CLpro 

in vitro to further validate and filter our results from molecular docking. We make use of the results 

from bioassay AID 1706, which screens over 290,000 compounds for inhibition of CoV-1 3CLpro 

peptide cleavage, to train such a model. Concretely, the bioassay screens for cleavage inhibition by 

attaching a fluorescent compound and a quencher to opposite sides of a 3CLpro substrate. A 

compound can then be classified as active or inactive since fluorescence increases if and only if 

cleavage occurs [14]. Due to the high similarity between the two CoV 3CLpros, a model trained on 

CoV-1 data is likely to make meaningful predictions relevant to CoV-2 3CLpro inhibition. Each 

training example in the datasetg consists of one feature (the SMILES string of the compound) and 

one label (a binary output; 1 for inhibition, 0 for no inhibition). Just 405 of the compounds are 

classified as positive (label = 1), whereas the other 290,321 compounds are negative (label = 0). To 

f https://github.com/chemprop/chemprop. 
g Retrieved from https://github.com/yangkevin2/coronavirus_data. 
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account for this imbalance between positive and negative data points in the training set, an equal 

number of positives and negatives are used in each batch during training. Furthermore, additional 

features generated by RDKit are appended to the feature vector generated before being passed into 

the neural network during training and predicting. Once trained, the model achieves a test ROC 

AUC of .739. We then apply the model to predict activity scores for each of the previously docked 

ligands. 

3.  Results 

3.1.  Interaction modelling 

The binding affinities of over 1400 ligands with the proposed IDR target were analyzed in silico 

using molecular docking. We first simulated IDR conformational flexibility by allowing IDR 

residue side chains to rotate while searching for the optimal ligand pose. With this docking 

procedure, 57 ligands were found to have binding affinities of -8.0 kcal/mol or better. Considering 

that we terminated the docking searches before convergence by bounding the maximum number of 

score evaluations, their true binding affinities are likely to exceed -8.0 kcal/mol. Therefore, we 

deemed all 57 ligands as ideal drug candidates. Table 1 summarizes these results of this first docking 

procedure. 

With a binding affinity of -9.8 kcal/mol, the top molecule found is NSC-70931, also known as 

the triterpenoid named celastrol. Celastrol displays antiviral properties against influenza A virus as 

well as dengue virus in mice [17-18]. In fact, celastrol has already been suggested as an anti-

inflammatory therapeutic for the lethal pneumonia stage of COVID-19 [19]. These results indicate 

the potential of our first docking method.  

When we reran the docking of celastrol onto the 3CLpro IDR with the default parameters 

mentioned above, the search converged and found a pose with an improved docking score of -11.4 

kcal/mol (shown in Figure 4). This further solidifies our claim that the binding affinities presented 

in this study are likely sub-optimal. 

Table 1. Binding affinity results from flexible docking (abridged) 

Molecule (NSC) Binding Affinity (kcal/mol) 

70931 -9.8 

177862 -9.7 

16437 -9.3 

96541 -9.1 

117987 -8.8 

45527 -8.8 

… … 
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Fig. 4.  Docked pose of celastrol (-11.4 kcal/mol) after search converged. 

 

We then simulated IDR conformational flexibility using a different approach known as ensemble 

docking. Concretely, each ligand was docked onto five distinct conformations of the IDR generated 

by loop modelling techniques. These five binding affinities were retrieved, but only the highest of 

the five was used to compare ligands with each other. With this docking procedure, 49 ligands were 

found to have highest binding affinities of -8.0 kcal/mol or better. Table 2 summarizes the results 

of this second docking procedure. 

 

The top molecule found is NSC-166259, a close relative of succinic acid found to have a highest 

binding affinity of -9.3 kcal/mol with conformation 2 of the IDR. NSC-166259 displays anticancer 

properties, showing activity in human tumor cell bioassays. Upon closer inspection of NSC-

166259’s docked pose, it becomes apparent that NSC-166259 interacts with the receptor at two sites: 

residue 126 as well as residue 3, which is within the IDR (see Figure 5). This confirms the notion 

that our docking approach can find ligand poses that interact directly with the IDR.  

Finally, given the current need for efficient drug discovery through repurposing, a set of well-

known compounds such as danazol, genistein and estramustine found to perform well in both 

docking procedures are listed along with their modern uses in Table 3. 

Table 2. Binding affinity results from ensemble docking (abridged) 

Molecule (NSC) Best Binding Affinity (kcal/mol) 

166259 -9.3 

37641 -9.1 

121868 -9.1 

727038 -9.1 

117987 -8.7 

70931 -8.6 

… … 
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Fig. 5. NSC-166259 interacting with IDR. 

3.2.  Activity prediction 

The goal of this work is to find CoV-2 3CLpro inhibitors by concentrating our efforts on the 

IDR/MoRF present at the N-terminus. The first step in this effort using molecular docking yielded 

promising results; however, in general, docking approaches need to be cross verified by a different 

method. Thus, our next goal was to create a statistical model capable of predicting in vitro inhibition 

of our protein target to filter and provide further evidence for our docking results. Such a model 

would be capable of making predictions many orders of magnitude faster than standard bioassays. 

Here, we train a model to predict whether a compound can inhibit 3CLpro-mediated peptide 

cleavage. 

Due to the scarcity of CoV-2 data, we train our model using CoV-1 3CLpro peptide cleavage 

inhibition data from bioassay AID 1706. The model structure chosen is a MPNN implemented by 

Chemprop. Our model achieves a test ROC AUC of .739 (80% train, 10% validation, 10% test). 

We then apply the trained model to predict activity scores for each of the previously docked 

ligands. A total of 11 ligands (see Table 4) are identified as having both high affinity (absolute 

affinity ≥ 7.9 kcal/mol) as well as high activity (≥ 0.8). These ligands have high probabilities of 

binding to the IDR, having enough binding energy to deform the 3CLpro, and inhibiting peptide 

cleavage. Therefore, we deem these 11 ligands promising drug candidates. Furthermore, known use 

Table 3. Drug repurposing candidates with their uses and additional information. 

Drug Pharmacological Use Additional Information 

Celastrol Inflammation, cancer (lung, prostate) Suppresses NF-kB signaling 

Danazol Fibrocystic breast disease, endometriosis Targets estrogen receptor alpha 

Estramustine Cancer (prostate) Targets estrogen receptor alpha/beta 

Camptothecin Cancer Targets topoisomerase 

Genistein Cardiovascular risk, cancer Targets estrogen receptor alpha/beta 

Benzbromarone Heart failure, chronic kidney disease Targets cytochrome P450 2C9 
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cases for these 11 ligands include orthopoxviruses, foot-and-mouth disease virus, human tumors, 

and malaria. We are currently investigating a potential collaboration to validate the efficacy of these 

11 new drug candidates in vitro. 

 

We also investigate the possible link between 3CLpro cleavage inhibition and IDR binding 

affinity. A scatter plot of the binding affinities and activity scores for each of the 1405 docked 

ligands is shown in Figure 6. The correlation coefficient r measuring the strength and direction of 

the linear relationship between the two variables is computed to be 0.38, suggesting a weak to 

slightly moderate correlation. This means that higher binding affinities to the IDR of the CoV-2 

3CLpro weakly/moderately correlate with higher rates of cleavage inhibition. This suggests that the 

IDR/MoRF of the CoV-2 3CLpro is involved in the peptide cleavage process. As a matter of fact, it 

is well known that the dimerization of 3CLpro that develops its active site involves our targeted IDR 

[7]. Therefore, since our method realizes this relationship, it suggests that targeting the IDR in the 

monomeric form is an effective way of finding 3CLpro peptide cleavage inhibitors. This also could 

suggest that our approach of cross verifying docking results with statistical models could be used to 

hypothesize other biological relationships key to drug discovery in the future. In Figure 7, we show 

the distribution of the IDR binding affinities of known CoV-1 3CLpro inhibitors from bioassay AID 

1706, and in Figure 8 we show the same distribution for the NCI Diversity Set III. We find the 

average binding affinity of CoV-1 3CLpro inhibitors to be -6.74 kcal/mol, which is above the typical 

threshold for choosing possible drug candidates, whereas the average for the NCI Diversity Set III, 

which we assume to be a representation of the drug-like ligand space, is just -5.93 kcal/mol. 

Consequently, the distributions indicate that the average 3CLpro inhibitor falls within the top 23.5% 

of all ligands in terms of binding affinity to the IDR of 3CLpro, further supporting our previous 

claims. Furthermore, it is possible that the correlation between the IDR and cleavage inhibition is 

higher than mentioned above but is dampened in our data since the MPNN was trained on in vitro 

results, but high binding affinities do not always correspond to in vitro binding. 

Table 4. Top 11 drug candidates in terms of affinity and activity. 

Molecule (NSC) Activity Affinity Active Bioassays 

16437 .859 -9.3 Foot-and-mouth disease (FMD) virus  

117987 .872 -8.8  

601359 .855 -8.4 Melanoma cell line, Malaria 

13294 .825 -8.4  

127133 .908 -8.3  

61610 .823 -8.2 Malaria 

107582 .877 -8.1  

128606 .920 -8.0  

211490 .808 -8.0 Hepatitis C virus, Human cytomegalovirus 

679525 .894 -8.0 Orthopoxviruses, FMD virus 

204232 .800 -7.9 DNA Polymerase Beta 
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Fig. 6.  Affinity versus activity 

 

 
 

Fig. 7. Distribution of 3CLpro inhibitor binding affinities. 
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Fig. 8. Distribution of NCI Diversity Set III binding affinities. 

4.  Conclusion 

Currently, there are no widely approved CoV-2 antivirals or vaccines available. Given the infectious 

and fatal nature of COVID-19, there exists a dire need for immediate drug discovery research. In 

this work, we make advancements by specifically focusing on targeting disordered protein regions. 

We demonstrate how these IDRs can be targeted through molecular docking and illustrate how 

results can be verified in a multi-faceted approach. Ultimately, we identify 11 new drug candidates 

with high binding and activity scores, along with known antiviral properties. In the future we would 

like to validate our results in vitro as well as further explore the IDR interactions within the SARS-

CoV-2 proteome through MoRF mimicry. 
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Several related viral shell disorder (disorder of shell proteins of viruses) models were built using a disorder 
predictor via AI. The parent model detected the presence of high levels of disorder at the outer shell in 
viruses, for which vaccines are not available. Another model found correlations between inner shell 
disorder and viral virulence. A third model was able to positively correlate the levels of respiratory 
transmission of coronaviruses (CoVs). These models are linked together by the fact that they have 
uncovered two novel immune evading strategies employed by the various viruses. The first involve the use 
of highly disordered “shape-shifting” outer shell to prevent antibodies from binding tightly to the virus   
thus leading to vaccine failure. The second usually involves a more disordered inner shell that provides for 
more efficient binding in the rapid replication of viral particles before any host immune response. This 
“Trojan horse” immune evasion often backfires on the virus, when the viral load becomes too great at a 
vital organ, which leads to death of the host. Just as such virulence entails the viral load to exceed at a vital 
organ, a minimal viral load in the saliva/mucus is necessary for respiratory transmission to be feasible. As 
for the SARS-CoV-2, no high levels of disorder can be detected at the outer shell membrane (M) protein, 
but some evidence of correlation between virulence and inner shell (nucleocapsid, N) disorder has been 
observed. This suggests that not only the development of vaccine for SARS-CoV-2, unlike HIV, HSV and 
HCV, is feasible but its attenuated vaccine strain can either be found in nature or generated by genetically 
modifying N.

Keywords: SARS; COVID; disorder; Coronavirus; HIV; vaccine; virulence; viral shell. 

1. Introduction

1.1. SARS-COV-2 Vaccine

Since its outbreak in December 2019, a dangerous coronavirus (CoV), severe acute respiratory 
syndrome CoV-2 (SARS-CoV2), causing Coronavirus Disease (COVID-19) has spread rampantly 
with the dire consequences including large numbers of deaths and morbidities [1]. The SARS-
CoV-2 spread has been so severe that many believe that it could only be kept in check with the 
discovery and availability of effective vaccines. While the successes in the discovery of vaccines 
for a large variety of viruses, including classical viruses, such as smallpox and rabies viruses, 

© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.
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provide grounds for greater hope, optimism and inspiration toward the discovery of COVID-19 
vaccines, there are also nightmare scenarios, in cases, such as HIV (human immunodeficiency 
virus, HCV (hepatitis C virus), and HSV (herpes simplex virus), for which no vaccine has been 
found despite searches that span close to 40, 30, and 100 years, respectively. The polio vaccine 
development itself took 30-40 years, but those years were before the era of powerful modern 
molecular technology. It would therefore be unfair to make such comparison [3,5].  A question is 
then: Will the search for a SARS-CoV-2 vaccine be a nightmare as seen in HIV, or will it be a 
spectacular success, as in the case of rabies and smallpox? We shall see that the shell disorder 
analysis has much to say in this regard.  

1.2. Shell disorder analysis of HIV and other viruses 

In 2008, we reported that the use of artificial intelligence (AI) found some strange features in the 
outer shell (matrix) of the HIV-1, which was found to be very disordered [6]. We were not able to 
detect this feature in any other virus, despite a search among of a somewhat wide variety of 
unrelated viruses, such as influenza virus, rabies virus and the HIV's cousin, EIAV (equine 
infectious anemia virus) [6]. In subsequent years, similar levels of disorder can be found in very 
few other viruses, including HSV and HCV [2]. Both viruses are associated with sexual 
transmission, and no effective vaccine has been found for both. These cannot be explained by 
current the standard textbook paradigm [2].

In these and similar studies, the levels of protein intrinsic disorder [7-12] were measured for 
proteins constituting shell of each analyzed virus using a neural network-based predictor PONDR® 
VLXT [13,14]. This algorithm predicts the intrinsic disorder predisposition of each residue in a 
protein. A convenient yardstick to measure the level of disorder in a protein is PID (percentage of 
disorder). In the case of HIV-1, the matrix PID reaches the high level of 70% [2].

1.3. Spinoff projects including coronaviruses: Shell disorder and modes of transmission

Following the success of the HIV shell project, several spinoff projects based on the similar 
ideology were initiated. One of these spinoffs was the coronavirus project. Before the MERS-CoV
outbreak in  2012, a shell disorder model was built to predict the mode of transmission of this 
virus based mostly on the levels of intrinsic disorder in its inner shell (N, Nucleocapsid) but also 
partly taking into account the disorder status of the outer shell (membrane, M) [15]. When the 
PIDs of M and N were measured for the variety of CoVs, the viruses were clustered into three 
groups mainly based on their N PID values. Those with the highest PIDs are those with higher 
respiratory but lower fecal-oral transmission potentials. Those with intermediate levels of N PIDs 
are the CoVs predicted to have intermediate levels of both respiratory and fecal-oral transmission 
potentials. The model was developed using knowledge of the behaviors of animal CoVs, 
particularly porcine CoVs from the veterinary community [3] and was later further validated using
multivariate analysis [3,15,16].

In this model, SARS-CoV was placed in group B that contains CoVs with intermediate  
respiratory and fecal-oral transmission potential and the results of the model were published in 
2012 [15]. Upon the MERS-CoV (Middle Eastern respiratory syndrome CoV) outbreak, the 
characterization and classification of MERS-CoV had to wait until the time when the genome or 
proteome sequences of this virus became available. However, as soon as this information was 
released, it was used to analyze MERS-CoV. This analysis revealed that MERS-CoV belongs to 
the group C that contains CoVs with higher fecal-oral but lower respiratory transmission potentials
[16]. The results further validate the reliability of the model as clinical data of MERS-CoV do 
show that it is not easily transmissible among humans via respiratory routes and is associated with 
camels, which are often farmed and thus allow for greater fecal-oral transmission [17]. 
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Yet another opportunity to validate the shell disorder model came with the COVID-19 
outbreak. Again, the model was consistent with existing datae and placed SARS-CoV-2 in the 
same category as SARS-CoV; i.e., CoVs with the intermediate levels of both respiratory and fecal-
oral transmission potentials [18]. There was, however, something noticeably odd about this virus. 
Analysis showed that with the exception for HCoV-HKU1, SARS-CoV-2 had the hardest outer 
shell (lowest MPID) in our fairly wide variety of CoVs analyzed then. This means that SARS-CoV-
2 is likely to resist the anti-microbial enzymes found in the saliva and mucus of the host and is 
also likely to survive longer in non-physiological environments [19,20]. Further search has found 
that such hardness is associated with burrowing animals, such as rabbits and pangolins that are in 
contact with buried fecal materials [21,22]. Furthermore, clinical studies have shown that COVID-
19 patients shed large amounts of SARS-CoV-2 viral particles, which are far exceeding levels of 
viral particles shed by infected with SARS-CoV [23]. The hardness of the outer shell and the 
ability of the virus to resist the anti-microbial enzymes in body fluids could account for these 
observations

1.4. Yet another spinoff: Correlations between the inner shell disorder and virulence

Yet another spinoff from the parent HIV vaccine mystery project is the discovery of a correlations 
between the inner shell disorder and virulence in fairly diverse set of related and unrelated viruses 
including Nipah virus (NiV), flaviviruses, Dengue virus (DENV), and Ebola virus (EBOV) [24-
28]. In this paper, we will address the feasibility of SARS-CoV-2 vaccine development based on 
the shell disorder models and discuss the evolutionary aspects of SARS-CoV-2 and other viruses.

Figure 1. Virion Physiology A) HIV B) Coronavirus (CoV).  (Figures reproduced with the permission of Gerard K. 
M. Goh 2017)

2. Results

2.1. Clustering of CoV based mainly on NPID

As already mentioned, the CoV shell disordered model clustered CoVs into three statistically 
identifiable groups (ANOVA p < 0.01, Table 1), which correlated positively with the levels of 
respiratory transmission but negatively with the levels of fecal-oral transmission potentials. While 
the main contributing independent variable is the NPID (r2=0.77, p < 0.01), a slight increase in the 
correlation coefficient can be seen when both MPID and NPID are used as independent variables 
(r2=0.80, p < 0.01). This implies that MPID does contribute to the model even if slightly. Figure 1 
provides schematic virion physiology, with HIV and CoV as examples[3,4]. The inner and outer 
shells of CoV is the N and M proteins, respectively, as seen in Figure 1B. 
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Table 1. Categorization of coronaviruses by mainly N PID to predict levels of respiratory and fecal-oral 
transmission potentials ( p< 0.001,  r2 = 0.8) . 

Shell
Disorder 
Group

Coronavirus Accession Code
(M Proteins)a

Accession Code
(N Proteins)a

M
PID

NPID Remarks

A HCoV-229E
IBV(Avian)

P15422(U)
P69606(U)

P15130(U)
Q8JMI6(U)

23
10

56
56

Higher levels of 
respiratory 
transmission
lower levels of 
fecal-oral 
transmission 

B Bovine
Rabbit
PEDV (Porcine)
Canine (Resp.)
HCoV-OC43
SARS-CoV
HCoV-NL63
SARS-Cov-2
Batsb

P69704(U)
H9AA37(U)
P59771(U)
A3E2F6(U)
Q4VID2(U)
P59596(U)
Q6Q1R9(U)
P0DTC5(U)
A3EXD6(U)

Q8V432(U)
H9AA59(U)
Q07499(U)
A3E2F7(U)
P33469(U)
P59595(U)
Q6Q1R8(U)
P0DTC9(U)
Q3LZX4(U)

7.8
5.7
8
7
7
8.6
11
5.9
11.2+5.3

53.1
52.2
51
50.5
51
50.2
49
48.2
47.7+0.9

Intermediate 
levels of 
respiratory and 
fecal-oral
transmission

C MHV(Murine)
Pangolin-CoVc

MERS-CoV
TGEV(Porcine)
Canine (Ent.)
HCoV-HKU1

Q9JEB4(U)
QIA428617(G)
K0BU37(U)
P09175(U)
B8RIR2(U)
Q14EA7(U)

P03416(U)
QIA48630(G)
K0BVN3(U)
P04134(U)
Q04700(U)
Q0ZME3(U)

8
5.6+0.9
9.1
14
8
4.5

46.8
46.6+1.6
44.3
43
40
37.4

Lower levels of 
respiratory 
transmission
higher levels of 
fecal-oral 
transmission 

aUniProt(U): https://www.uniProt.org; Genbank-NCBI(G): https://www.ncbi.nlm.nih.gov/protein
b3 out of 4 bat-CoVs are in group B. Note: Large standard deviation can be seen for NPID as denoted by “+”
c2 out of 3 pangolin-CoVs are in group C. One is almost identical to SARS-CoV-2 in N PID. All samples were 
found to have high sequence similarities to the corresponding proteins found in SARS-CoV-2

2.2 Outer shell disorder is an indicator for the presence or absence of effective vaccines

While disorder at the inner shell is correlated with the mode of transmission, high outer shell 
disorder is associated with difficulties in finding effective vaccines. We shall see later that 
disorder at the inner shell (and sometimes at the outer shell as well) correlates with virulence. 
Tables 2-3 summarize the disorder of the different shells of a variety of related and non-related 
viruses. There are no effective vaccines for HIV, HCV and HSV, which have abnormally high 
outer shell disorder. Conversely, viruses for which effective vaccines are available have ordered 
outer shells. These include rabies, yellow fever virus, smallpox virus and rotavirus [2-4,29]. The 
poliovirus has a capsid that is made up of a complex of several proteins, which are all relatively 
ordered. As aforementioned, the effective vaccines for polio have been available since the 1950s 
[4,5].

Table 2. Viruses and their descriptions. UniProt (http://www.uniprot.org  ) accession codes for shell proteins
are given. 

Virus Virus Type, 
Tansmission

Outer Shell, Proteins
(UniProt Accession)*

Intermediate
Shell

Inner Shell

EIAVa Retroviridae (RNA) 
Insect 

Matrix, p15 (P69732) Capsid, p26
(P69732)

Nucleocapsid, 
p11(P69732)

FIVb Retroviridae, Fights, 
Blood contacts

Matrix, p15 (P16087) Capsid, p24 
(P16087)

Nucleocapsid.
p13 (P16087)

HIV-1 Retroviridae
Sexual

Matrix, p17
(P03348)

Capsid, p24
(P03348)

Nucleocapsid, 
p7(p17)
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HIV-2 Retroviridae
Sexual, Bite

Matrix, p17
(P04584)

Capsid, p24 
(P04584)

Nucleocapsid,
p7(P04584)

Variola/
Smallpoxc

Poxviridae (DNA) 
Inhalation

Membrane,  C9L(Q76U97), 
A14(P33839), F5(P33865)

Core, 
VP8(Q0N570),
4A(Q0N532), 
4B(Q0N539)

Rabies Rhabdopviridae
(RNA) Bites

Matrix, M(P25224) Nucleocapsid,
N(P151979)

Poliovirus Picornaviridae
(RNA) Fecal-Oral

Capsid, VP1-4 
(P03302)

Yellow
Fever (YFV)

Flaviviridae (RNA) 
Insect

Membrane, M
(P03314)

Capsid, C
(P03314)

Rotavirus Reoviridae (RNA) 
Fecal-oral

Outer Capsid , VP7
(P21285)

Capsid, VP6
(P03530)

Capsid,  VP2
(P12472)

SARS-CoV-2 Coronavirus 
(RNA)Respiratory, 
Fecal-oral

Membrane
(A3EXD6)

Nucleocapsid
(Q3LXZ4)

Hepatitis C (HCV) Flaviviridae
(RNA) Sexual

Core, p19, p21
(P26663)

Herpes 
Simplex
Virus-2 
(HSV-2)c

Tegument, VP22-UL49 (A74K33), 
VP1/2-UL36 (I1UYK0), VP13/14-
UL47 (A7LK25), VP16-UL48 
(P68335), US3 (P13287)

Capsid, VP5 
(p89442)

aEquine Infectious Anemia Virus (EIAV) 
bFeline Immunodeficiency Virus (FIV)
cOnly major shell proteins are considered

2.3. A disordered outer shell provides an immune evasion tactic: Viral shapeshifting

Evidently, as seen in Tables 2-3, some viruses like HIV evade the immune system via their 
disordered outer shell. The question is then: How do viruses do it? Figure 2 summarizes the 
mechanism of immune evasion as seen in the case of HIV and its disordered matrix. The 
disordered matrix allows for motions that increase the movements of the surface glycoproteins 
such that the antibodies are not able to bind firmly to the virus. In the case of HIV, HIV antibodies
can easily be found but neutralizing antibodies are difficult to find [2,3]. There are obviously 
various degrees of vaccine failures that depends on the level of outer shell disorder as we shall see 
in the case of FIV. 
Table 3.  Disorder levels (PID) of shell proteins. PIDs are arranged according proteins as stated in Table 2. 
Effective vaccines have been discovered for EIAV, rabies, polio, smallpox and rotavirus.
Virus PID of

Outer Shell
PID of Intermediate
Shell

PID of 
Inner Shell

EIAV 13+0.1 29+0.1 26+0.1
FIV 53.3+2 38.8+2.7 64.5+11.8
HIV-1, SIVcpz 56.5+10.8 44.5+2.6 39.5+3.0
HIV-2, SIVmac 51.5+2.5 26.6+2.9 46.5+0.1

Smallpox+ 13+0.1 8+0.1 
15+0.1

19+0.1
4+0.1 12+0.1

Rabies 25.8+1.4 21.5+0.8
Poliovirus+ 34+3.8 15.12+6.1 

31.3+3.6 27+0.1
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Yellow Fever (YFV) 35.2+0.9 74.3+0.9
Rotavirus 12.9+1 9.8+1.4 19+1.7
SARS-CoV-2 5.9+0.1 48.2+0.9

HCV+ 52.5+0.5 48.5+0.5
HSV-2 61+2 

50+0.1
38+1 
39+0.6 
37+0.1

18+0.1 

*The standard error is denoted by  “+”

Figure 2. Viral “shape-shifting” immune evasion. Highly disordered matrix allows for greater motions at the 
glycoprotein that will prevent the antibodies from binding tightly to the virus. (Figure reproduced with the permission 
of Gerard K. M. Goh 2017)

2.4.  SARS-CoV-2: Exceptionally hard shell (low MPID) associated with burrowing animals and 
buried feces

While Table 2 shows that it is difficult to find vaccines for viruses with extremely high levels of 
disorder in outer shell, Figure 3A reiterates that even though virtually all CoVs have relatively 
hard outer shell (for them, the fecal-oral transmission is generally an important route) SARS-CoV-
2 has an exceptionally hard outer shell ie low MPID. As a matter of fact, it has one of the hardest 
outer shells (among all the CoVs). A later search for CoVs with harder (low disorder) M protein 
came up with rabbit-CoV and pangolin-CoVs (see Table 1) [21,22]. There were obvious 
associations with burrowing animals that are likely in contact with buried feces. It should also be 
noted that while pangolin-CoVs were found to be closely related to SARS-CoV-2, the rabbit-CoV 
is not. Independent but parallel evolutions with similar evolutionary pressures are implied in the 
case of SARS-CoV-2 pangolin-CoVs, and rabbit-CoV [21,22].
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Figure 3. Quantification of shell disorder in different viruses. A) PIDs of M by CoV. SARS-CoV-2 has among the
hardest M ie lowest MPID. B) Shell disorder of selected retroviruses. C) Comparative shell disorder. SARS-CoV-2
(SARS2). 2003 SARS-CoV (SAR1). D) Inner shell disorder vs. virulence. Flavivirus capsid, C (inner shell. Case-

fatality rate (CFR)

2.5.  Behavior of the animal hosts matters in the evolutions of the viruses: EIAV vs. HIV

          While it has been seen that higher outer shell disorder and the absence of effective vaccines are 
not just seen in retroviruses but also in other viruses, such as HCV and HSV as shown in Table 2, 
Figure 3B illustrates that not all retroviruses have high matrix disorder or lack effective vaccines, 
EIAV has ordered shells at all levels, and an effective vaccine for this virus was discovered in 
1973 or before [30]. It should also be noted that HIV is predominantly sexually transmitted, 
whereas EIAV is transmitted by blood sucking horseflies, which hold its blood meal in their 
mouthpiece where the virus is exposed to the insect's saliva [2]. Unlike HIV, the EIAV needs the 
hard (low disorder) shells to protect itself against destructive effects arising from the anti-
microbial enzymes found in the saliva. The “viral shape-shifting” immune evasive characteristic 
found in HIV is therefore absence in viruses, such as EIAV and rabies viruses. Experimental 
observations of outer shell disorder and the resulting  immune evasion have been  made [31-34].

          2.6. Feasibility of developing attenuated vaccine strains for SARS-CoV-2

We have seen that SARS-CoV-2 looks nothing like the viruses, for which the effective vaccines 
are unavailable. Furthermore, it has one of the hardest outer shells among CoVs (Figure 3A). 
Figure 3D suggests that the attenuated vaccine strains can be obtained by lowering the disorder 
levels in its inner shell; i.e., NPID. Flaviviruses are used here only as an example of the evidence of 
correlation [24.26]. While only correlations between flavivirus inner shell disorder and virulence 
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are shown, a variety of other viruses have been found to have such characteristics. These include 
NiV, EBOV and DENVs [24-28]. SARS-CoV-2 and the 2003 SARS-CoV do also provide hints of
such correlation by having respective NPID of 48% and 50%, while also having CFR of 2-6% and 
9-10%, as seen in Figure 3C. The HIV and other viral shape-shifters exhibit a unique immune 
evading tactic as seen in Figure 2, SARS-CoV1/2, NiV, EBOV, and flavivirus use a different 
tactic, “Trojan Horse”, where the virus would replicate rapidly upon infection before the host 
immune system even recognizes its presence [3].

3. Discussion

3.1. Links between respiratory transmission, N (Inner shell) disorder, and virulence: Viral load 
in body fluids vs. vital organs

A puzzle arises when we inspect the data shown in Table 1 and Figure 3D.  In fact, Table 1 tells 
us that there is a strong positive correlation between the inner shell disorder and respiratory 
transmission potentials of CoV, whereas Figure 3D reports positive correlations between inner 
shell disorder and virulence. What is then the connection between these two types of correlation? 
They are connected, because they are related to viral loads at different parts of the body. In order 
for respiratory transmission to be feasible, a minimal level of viral load in the saliva or mucus has 
to be attained. Similarly, death often occurs when the viral load in a specific vital organ exceeds a 
minimal threshold. What could then account for the discrepancy between viral loads in body fluids
and vital organs? One answer is related to the ability of the virus to resist the anti-microbial 
enzymes found in saliva and mucus. Given this and the anti-microbial resistant hard (low disorder)
outer shell of SARS-CoV-2, the significance of the observation that SARS-CoV-2 sheds high 
amount of viral particles without increase in virulence, when compared with SARS-CoV is 
reiterated. 

3.2. Greater disorder in the inner shell proteins provide means for the more efficient replication
of viral particles

It has to be kept in mind that inner shell proteins have varied but similar functions across virus 
species [4]. This accounts for the observation of correlations between inner shell disorder and 
virulence across virus species. For instance, N proteins of CoVs are involved in assembly of 
various viral proteins near or at the endoplasmic reticulum (ER) and Golgi apparatus in 
preparation for packaging [35,36]]. Similarly, the C protein precursors of flaviviruses move 
towards the ER and bind to its membrane, where interactions of other viral proteins take place in 
the assembling of viral particles [4]. In the case of EBOV, the NP (nucleoprotein) helps forming a 
tube-like structure that assists in the transportation of viral proteins to the ER [37].  As for the 
NiV, the N protein binds to both L and P proteins to form the RNA polymerase [38], which is 
responsible for the viral RNA replication. The inner shell proteins therefore play important roles in
the rapid replication of the viral particles. As we can see, instances of protein-protein/DNA/RNA 
interactions taking place are aplenty. The greater the disorder, the more efficient the inner shell 
protein is able to play its role in the replication of the virus as disorder provides for more effective 
protein-protein/DNA/RNA binding [7,18,39].   

3.3 Two modes of immune evasion: “Trojan Horse” (inner shell disorder) and “viral shape-
shifting” (outer shell disorder)

We have just described “Trojan Horse” immune evading strategy, where the virus replicates 
rapidly via inner shell disorder, before the host immune system could even recognize it. 
Oftentimes, such strategy backfires on the virus especially when the viral load overwhelms viral 
organs and thus killing the host.  We have also described the other immune evading strategy, 
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“viral shape-shifting” in HIV as manifested in the outer shell disorder (Figure 2), there is 
evidence that HIV actually employs both strategies. This is complicated by the fact that the matrix 
(outer shell) assumes many of the roles that inner shell proteins of other viruses would normally 
have. These roles include embedding the proteins into the host membrane and assembling the viral
proteins [4]. Evidence of HIV's adoption of such strategy can be seen by the fact over 90% 
patients infected by HIV-1 dies within two years of infection but the onset of symptoms (AIDS) 
for HIV-2 and FIV may take may years if at all [6,40,41]. Unsurprisingly, the maximal matrix 
PIDs of HIV-1, HIV-2 and FIV are 70%, 55% and 55% respectively (Figure 3B).

3.4. FIV, HIV-1 and HIV-2: Similarities and differences

As it was already mentioned, the “viral shape-shifting” immune evading strategy requires high 
outer shell disorder, as seen in HIV, HSV and HCV.  This, too, presents an enigma, as HIV-1, 
HIV-2, and FIV have different degrees of outer shell disorder (70%, 55%, 55%, see Figure 3B). 
HIV-1 is spread globally via sexual transmission. While HIV-2 is also predominantly sexually 
transmitted, it is mainly found in parts of Africa near its rainforest reservoir of the monkey, sooty 
mungabey, which replenishes the virus by bites and other human interactions [41]. Similarly, FIV 
is predominantly spread through fights and subsequent blood contacts [40]. These could explain 
the discrepancies in levels of matrix disorder between HIV-1 and FIV/HIV-2.    

 3.5. FIV vaccine enigma: Questionable efficacy 

While there are apparent differences in evolution and matrix disorder of EIAV, HIV-1, and FIV, 
there are also differences in the successes with respect to the search for their vaccines. The search 
for an HIV vaccine has been ongoing for nearly 40 years with abysmal failures, but an effective 
vaccine for its horse cousin, EIAV, was discovered in 1973 or before [30]. It was tested on 60 
million horses and was able to deflect an oncoming pandemic. Needless to say, the matrix PID of 
EIAV is 13%, compared to the HIV-1 MPID of 70%.  A more enigmatic story can be found in the 
case of FIV. A ray of hope came in 2002, when a FIV vaccine became commercially available. It 
initially boasted of 82% efficacy against the FIV subtype A, but was later shown to be totally 
ineffective against strains from countries, such as United Kingdom. It was shown to provide only 
58% protection for cats in Australia [42]. Finally, the vaccine was later withdrawn from the 
market in USA and Canada partly because of its questionable efficacy [40]. This is consistent with
our data showing that FIV (matrix PID = 55%), like HIV-2, has more moderate matrix disorder 
than HIV-1.

4. Conclusions

4.1. Development of the SARS-CoV-2 vaccine is feasible and vaccine strains can be found in
nature

The nightmare scenario in the frantic search for the SARS-CoV-2 vaccine would be that it all ends up 
like the search for the HIV vaccine or, even worse, FIV vaccine. However, we can all have a sigh of 
relief as  the shell disorder models are unable to detect any similarities between SARS-CoV-2, HIV-1 
and FIV in terms of the outer shell disorder or peculiarities of evolution with respect to their modes of
transmission. The outer shell disorder of SARS-CoV-2 and SARS-CoV resembles more viruses, like 
rotavirus, for which there are effective vaccines. Unlike rotavirus that is solely reliant on fecal-oral 
routes, SARS-CoV-2 has a somewhat disordered inner shell. The presence of such feature is necessary
for most viruses with respiratory transmission potentials, because, as already explained, a minimal 
viral load in the mucus or saliva is required for transmission.  The higher inner shell disorder also 
provides means for the “Trojan horse” immune evasion. Because of this, strategies involving 
attenuation of the SARS-CoV-2 by creating N with greater order levels can be contrived. In fact, a 
previous study has suggested that a SARS-CoV-2 precursor could have entered the human population 
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via pangolins in 2017 or before as an attenuated mild virus as a result of the peculiarities of the 
behaviors of pangolins [21,22]. Therefore, the disorder analysis not only suggests that vaccine 
development for SARS-CoV-2 is viable but also points out that the attenuated vaccine strains can 
already exist in nature.

5. Materials and Methods

As already mentioned, protein intrinsic disorder is an important concept that can be used for various 
analyses of proteins. It basically refers to the protein regions or entire proteins that have no unique 3D
structures. Disorder in proteins plays an array of significant roles, such as the recognition of binding 
sites [7-12]. AI has been successfully employed to recognize disordered regions. For instance, 
PONDR® VLXT (www.pondr.com) [11,12,43] deploys neural networks to recognize such regions, as 
it was trained using known disordered and ordered sequences.  PONDR® VLXT has been successfully
used in the study of  structural proteins of a variety of viruses including HIV, HSV, HCV, NiV, 
EBOV, 1918 HIN1 influenza A virus, CoVs, DENV, and several flaviviruses, e.g., Yellow fever virus
(YFV), and Zika virus (ZIKV) [1-3,6,15,16,21,22,24-28,44]]. The reason that PONDR® VLXT is 
highly suitable for the studies of structural proteins of viruses has to do with its sensitivity in detecting
local sites for potential protein-protein/DNA/RNA/lipid interactions [45].  A useful ratio used in this 
study is PID (Percentage of Intrinsic Disorder), which is defined as the number of residues predicted 
to be disordered divided by the total number of residues in the protein and multiplied by 100%.   The 
value of this parameter provides an estimate of the extent of disorder in the protein of interest. A 
relational database was built using MYSQL, JDBC and JAVA. A JAVA program imports the 
sequence and disorder information into the database [44]. Sequence information are obtained from 
UniProt (http://www.uniProt.org) Multivariate analyses were done using R-statistical package [46].
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Viruses such as the novel coronavirus, SARS-CoV-2, that is wreaking havoc on the world,
depend on interactions of its own proteins with those of the human host cells. Relatively
small changes in sequence such as between SARS-CoV and SARS-CoV-2 can dramatically
change clinical phenotypes of the virus, including transmission rates and severity of the dis-
ease. On the other hand, highly dissimilar virus families such as Coronaviridae, Ebola, and
HIV have overlap in functions. In this work we aim to analyze the role of protein sequence
in the binding of SARS-CoV-2 virus proteins towards human proteins and compare it to
that of the above other viruses. We build supervised machine learning models, using Gener-
alized Additive Models to predict interactions based on sequence features and find that our
models perform well with an AUC-PR of 0.65 in a class-skew of 1:10. Analysis of the novel
predictions using an independent dataset showed statistically significant enrichment. We
further map the importance of specific amino-acid sequence features in predicting binding
and summarize what combinations of sequences from the virus and the host is correlated
with an interaction. By analyzing the sequence-based embeddings of the interactomes from
different viruses and clustering them together we find some functionally similar proteins
from different viruses. For example, vif protein from HIV-1, vp24 from Ebola and orf3b

from SARS-CoV all function as interferon antagonists. Furthermore, we can differentiate
the functions of similar viruses, for example orf3a’s interactions are more diverged than
orf7b interactions when comparing SARS-CoV and SARS-CoV-2.

Keywords: protein interaction prediction; SARS-CoV-2; SARS-CoV; generalized additive
models ; protein sequence

1. Introduction

Disease-causing pathogens such as viruses introduce their proteins into the host cells where
they interact with the host’s proteins enabling the virus to replicate inside the host. These
interactions between pathogen and host proteins are key to understanding infectious diseases.
The experimental discovery of protein-protein interactions (PPI) in general, and including
those between host and pathogen, involves biochemical and biophysical methods, most fre-
quently on a large scale using yeast two-hybrid (Y2H) assays and co-immunoprecipitation
(co-IP) usually combined with mass spectrometry, but also many others usually applied at

c© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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smaller scales such as co-crystallization or surface plasmon resonance. Computational tech-
niques complement laboratory-based methods by predicting highly probable PPIs. Supervised
machine learning based methods use the known interactions as training data and formulate
the interaction prediction problem in a classification setting.1–3

For a newly emerged virus such as SARS-CoV-2, the type of information that is most
easily obtained is genome sequence information. Within the first few weeks of its discovery,
thousands of DNA sequences had been deposited. The much more complex task of discovering
the interactome took a few months of the pandemic and the first global interactome study was
published in Gordon et al.4 A sequence based PPI prediction approach, which can use protein
sequences derived from the viral DNA sequence, can thus be very informative in the initial
stages of understanding a new virus. The rationale behind a sequence-based approach is that
the amino-acid sequences of proteins determine its structure and consequently its function in
the organism. By using amino-acid sequences of the two proteins of interest as inputs to a
model, we can capture the dependence between their individual structural properties, their
functions and their binding affinities. Towards this, we make the following contributions:

• We present an interpretable model for SARS-CoV-2 − human PPI prediction using
only sequence-based features and evaluate these models on various metrics. We show
that the performance of our interpretable model on SARS-CoV-2 PPI prediction, is
better than that of Random Forests (which have been popular in prior work) and a
deep learning approach that uses a Transformer based architecture for modeling protein
sequences

• We analyze the interactomes from a sequence perspective, within SARS-CoV-2 and in
comparison to other viruses and find interesting observations

• We validate predictions from our model using an additional recently published dataset
from Stukalov et al.5

2. Methods

Given a virus-human protein interaction represented as the tuple: (pv, ph), we model the joint
dependence of both the virus protein pv and human protein ph’s sequences on the output
variable, explicitly in the form of sequence feature level interactions. Towards this, we use a
non-linear model GA2M (Lou et al.6), which extends traditional Generalized Additive Models
(GAMs) by incorporating higher-order feature interactions.

The standard GAM model is a generalized linear model in which the predictor depends
linearly on unknown smooth functions fi of some input covariates xi. It has the following form:
g(E[y]) =

∑
i∈[1,...,d]

fi(xi), where d is the number of features or covariates, y is the output variable

for an input, g is the link function (for instance: log). Here fi is a linear function over the ith

feature of example x.

2.1. Generalized Additive Models with interactions (GA2M)

While GAMs usually model the dependent variable as a sum of univariate terms, GA2M
permits interactions and consists of univariate and a small number of pairwise interaction
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terms between pairs of features:

g(E[y]) =
∑

i fi(xi) +
∑

i,j∈[1,...,d],i6=j

fij(xi, xj)

Here i, j are indices over the set of all features. In Section 3.2 we describe our feature set
in detail. To represent each virus-human PPI example (pv, ph), we concatenate the protein
sequence features of both pv and ph to get a single feature vector of dimension d.

Since GA2M only include one- and two-dimensional components, these components can be
visualized and interpreted which has been difficult with neural networks. Lou et al.6 propose
an algorithm to learn GA2M models that learn non-linear functions (trees) for every univariate
and bivariate term, with pairs of features for the latter being selected by efficiently ranking all
possible pairs of features as candidates and choosing the top k, where k is a hyper-parameter.

3. Gold Standard Interaction Datasets

We consider the following datasets (details in Table 1) in various experimental settings.

(1) a set of human proteins that physically interact with SARS-CoV-2 in human embryonic
kidney cells (HEK293) based on affinity-purification mass spectrometry4

(2) a multi-level proteomics study5 of SARS-CoV and SARS-CoV-2 proteins that also involves
an affinity-purification mass spectrometry-based binding study but carried out in a human
lung epithelial cell line (A549)

(3) Virus-human interactions data for other viruses was downloaded from VirHostNet7a

Unlike the interactions reported in the first mass spectrometry study,4 the data from the
second study5 has homologous PPI within each dataset as well as several interologs between
SARS-CoV and SARS-CoV-2. We downloaded the sequences for Ebola and HIV-1 proteins
from UniprotKB and those for SARS-CoV and SARS-CoV-2 from the respective publications’
supplementary materials.

Table 1. Dataset characteristics

Virus and source Interactions Human proteins Virus proteins

SARS-CoV-2 (Gordon et al.4) 332 332 28
SARS-CoV (Stukalov et al.5) 711 624 24
SARS-CoV-2 (Stukalov et al.5) 1089 882 22
SARS-CoV (VirHostNet)7 141 122 23
Ebola (VirHostNet)7 221 221 7
HIV-1 (VirHostNet)7 618 583 8

ahttp://virhostnet.prabi.fr/
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3.1. Dealing with the lack of negative examples

Due to the way protein interaction studies are designed, it is not possible to identify non-
binding proteins: we cannot rule out interactions between baits and preys that are not co-
purified in an affinity purification experiment, for instance. In order to build supervised ma-
chine learning models from PPI data, negative datasets comprising pairs of proteins that
are unlikely to interact are constructed using heuristics such as (a) randomly selecting pairs
of proteins from the set of all possible protein pairs,8 which has ≈600,000 pairs (b) consid-
ering two proteins that do not co-locate within a cell. An approach using (b) is infeasible
when considering cross-species protein interactions and also has a bias towards functionally
dissimilar proteins. Other negative sets are manually curated in databases like Negatome b,
which are based on known protein domain properties such as hydrophobicity and derived
from observational studies that note specific protein domains’ lack of affinity towards certain
other domains. While this data adjusts the bias mentioned above, it does not contain protein
domains or families of many viruses, in particular none from Coronaviridae.

We found that using the set of 6,532 non-interacting pairs from Negatome resulted in
models that were discriminating virus proteins from other proteins (AUC-PR of 0.98) due to
the lack of virus proteins in the negative class. The negatives generated by approach (a) do
not have this issue or the functional bias discussed above. Hence we randomly sample the
requisite number of negatives from a combination of Negatome and the heuristic in (a).

Choice of class skew: We sample negatives at various positive to negative class-skews:
balanced, 1:5 meaning we sample five times as many negatives as the number of positives, 1:10,
1:20 and 1:50. Using a balanced set of positives and negatives results in a biased model that
has many false positives whereas using a large class-skew (1:50) that represents our prior that
most pairs of proteins are unlikely to interact results in a model that captures the properties of
the random protein pairs rather than the positive class (which is out-numbered). We analyzed
the ranking of positives from the validation data (using the metric Precision @ 10% Recall)
to decide the class-skew, which we treat as a global hyper-parameter. We found 1:10 to be the
optimal setting that lead to the best Precision @ 10% Recall.

3.2. Features

We derived amino acid sequence k-mer features: consisting of the normalized frequency of
1-mers, 2-mers and 3-mers in the protein sequence. In addition to the above, we also derive
conjoint triad features.9 This approach first partitions the twenty amino acids into seven classes
based on their dipoles and the volumes of the side chains. Trimers are represented using the
classes of amino acids; hence trimers with amino acids belonging to the same classes, such as
ART and VKS, are treated identically. There are 73 such tri-mers owing to the 7 classes. The
protrc package was used for generating the conjoint triad features and the fasta2matrixd

bhttp://mips.helmholtz-muenchen.de/proj/ppi/negatome/
chttps://cran.r-project.org/web/packages/protr/vignettes/protr.html#46_conjoint_

triad_descriptors
dhttps://noble.gs.washington.edu/proj/nucsvm/fasta2matrix.py
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utility was used to generate other k-mer features. For each virus-host protein pair, we concate-
nated the feature vectors of the individual proteins. Therefore, each virus-host protein pair
had a feature vector of length 17,526 (20 + 202 + 203 + 73 from each protein).
Feature selection: The implementation of GA2M that we usee does not scale well beyond a
few thousand features because the number of pairs of features to consider is very large and
the computational complexity of the feature-pair ranking algorithm.6 To reduce the number
of feature-pairs to consider, we select the top 2500 tri-mers in a feature selection step that
builds a linear model on other virus-human interactions. This reduces the number of features
in our model to ≈7000 features (20 + 202 + 73 + 2500 features per protein to be precise).

4. Experiments

We train various supervised machine learning models on these datasets to explore the strengths
and weaknesses of each approach and illustrate that our method of choice, namely GA2M
perform well while giving us interpretability. We compare GA2M with Random Forests, which
have been popular in prior work on protein-sequence based prediction and a deep learning
embeddings based approach, TAPE.10

4.1. TAPE: Transformer based model for protein sequences

We use the Unirep modelf from the TAPE repository10 which was pretrained on masked
language modeling of 31 million protein sequences using a Transformer architecture derived
from BERT. This model takes as input, a protein, in the form of its amino acid sequence
x = (x1, . . . xn), where n is the length of the protein sequence and outputs a sequence of
continuous embeddings y = (y1 . . . yn). The architecture comprises 12 encoder layers, each of
which includes multiple attention heads. Intuitively, attention weights define the influence of
every token on the next layer’s representation for the current token.

To derive TAPE-based embeddings, we apply a UniRep babbler-1900 model on all pro-
tein sequences in our dataset, which gives us 1900 dimensional embeddings for each protein
in two modes: pooled and avg where the former incorporates the temporal aspect of the
input sequence and the latter averages over the per-position embeddings. We concatenate
the embeddings from the virus and human proteins to get a 3800 dimensional embedding.
We trained two types of supervised models using these as features: Logistic Regression and
Random Forests. We found no significant difference in the performance from either and show
results from the Logistic Regression based models due to computational efficiency. For the
embeddings, we found the setting avg worked better probably because it captures homology
better. The hyper-parameters of all algorithms were trained using nested cross-validation and
grid-search over various values. For GA2M, the main hyper-parameter is the number of inter-
action terms k for which we tried the following values: 0, 10, 50, 100, 200, 500. We observed that
the performance improved until k = 100 and then got worse with higher k. We choose k = 50

to trade-off computational speed against a small drop in accuracy.

ehttps://github.com/interpretml/interpret
fhttps://github.com/songlab-cal/tape
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5. Results

5.1. Prediction performance and validation of predicted interactions

In Fig 1 we show the predictive performance of all approaches in a 5-fold cross validation
setup, for a class-skew of 1:10, where each experiment was repeated 20 times, each time with
a different set of negative examples. The reported numbers show the mean (horizontal line in
the bar) and standard deviation of the metrics. The GA2M model has an AUC-PR of 0.67
on predicting SARS-CoV-2-human PPI and 0.59 on predicting SARS-CoV-human PPI. The
results from the TAPE embeddings are similar to that of Random Forests on SARS-CoV-2-
human PPI possibly due to the small scale of PPI data.

To evaluate our models further, we score the set of all possible SARS-CoV-2-human
protein-pairs: let us call this set U comprising of 29 x ≈ 21, 000 = 609, 000 for ≈21,000 reviewed

proteins from UniprotKB, and validate these scores using the more recently published PPI
from Stukalov et al.5 Towards this, we first train 100 different models on the gold standard
dataset from Gordon et al.4 by using the 332 positives and sampling a random set of negatives
from the unlabeled protein pairs for each of the 100 runs. Since the predictions from a single
model are likely to have a bias dependent on the exact set of negatives used, we train 100
different models and apply each of them on the set U . The score for each example from U is
averaged over the scores from the 100 different models.

After excluding the gold-standard PPI from the set U , we found that 10,211 examples
crossed the classifier score threshold of 0.5. Suppl. Table S1 shows the 28 predictions from
this list of 10,211 which appear as experimentally determined interactions in.5We performed
Fisher’s exact test to evaluate the statistical significance of this observation (i.e the probability
of seeing 28 of 1089 interactions if 10,211 pairs of proteins are sampled from 609,840 pairs)
and obtained a p-value of 0.014. Since pull-down/mass spectrometry based methods are prone
to false negatives because of technical limitations in the technology, it is likely that additional
pairs within the 10,211 highly ranked predictions are also interacting.

5.2. Enrichment analysis of predicted human binding partners

Our models predicted 113 unique human proteins to have at least one interaction with a SARS-
CoV-2 protein having a score larger than 0.9. We used Fisher’s exact test to determine the
enrichment of Gene Ontology (GO) biological processes and cellular components in this set of
proteins. We considered terms with Benjamini-Hochberg corrected p-value ≤ 0.01. To remove
the redundancy resulting from the parent-child relationships in the GO, we used REVIGO11

to simplify the sets of enriched terms. REVIGO forms groups of highly similar GO terms
using a clustering algorithm (which is similar to hierarchical clustering) and then chooses one
representative for each cluster while ensuring that no two representatives are more similar
than a user-provided cutoff. We used SimRel12 as the semantic similarity measure and 0.7 as
the cutoff. We now discuss some key enriched GO cellular components. The full set of enriched
cellular components and biological processes is available in the supplementary materials.

The GO cellular component “actin cytoskeleton” was significantly enriched (p-value
1.74 × 10−14) in the predicted human binding proteins. Many viruses use and modify the
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Fig. 1. (left) AUC-PR and Precision at 10% Recall averaged over 20 runs for a class skew of
1:10. (center) Sequence features relevant to predicting interactions between SARS-CoV and human
proteins and (right) SARS-CoV-2 and human proteins. Statistics obtained by averaging feature
weight from 20 models. Feature names with no suffix are from the virus protein and the suffix ‘.h’
refers to that feature from the human protein. Pairwise interaction features are shown as: f1 x f2, for
instance: I x GA.h refers to an interaction between feature I from the virus protein and GA from the
human protein. Features with a prefix of VS are conjoint triad features. VS612 represents a trimer
that contains amino-acids from classes 6, 1, and 2. See Fig 3 for the mapping of these classes.

host cell’s actin cytoskeleton at different stages of their life cycle including entry, replication,
egress, and infection of new cells.13 In uninfected host cells, viral particles bind to cellular
receptors associated with actin filaments in order to travel along filopodia and reach entry
sites where endocytosis occurs.13 Filopodial extensions also act as bridges between infected to
uninfected cells to transport virus particles.13 A global phosphoproteomic analysis14 of SARS-
CoV-2 infection in Caco-2 cells found that the virus induced substantial increase in filopodial
protrusions. The authors hypothesized that induction of filopodia might be crucial for egress
of SARS-CoV-2 and/or its spread from one cell to another within epithelial monolayers.

The GO cellular component “kinesin complex” was significantly enriched (p-value 1.28 ×
10−8). Kinesins are a family of motor proteins that play an important role in the replication
and spread of different viruses by mediating their long distance movement in the microtubule
transport system.15 Our predictions suggest that SARS-CoV-2 may also use kinesins for trans-
port within infected host cells.

6. Discussion

6.1. Visualizing the virus-human interactions

Fig. 2(left) shows the embedding of the PPI datasets from Stukalov et al5 in comparison to
HIV, Ebola and SARS. PCA was used for dimensionality reduction from 17,526 features to
100 dimensions, followed by t-SNE to visualize the embedding. The interactive versions of
these figures are available in our repository g, where the user can hover over each entry and

ghttps://github.com/meghana-kshirsagar/sars_ppi/blob/master/allviruses_plot.html
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Fig. 2. Embedding of the SARS-CoV and
SARS-CoV-2 PPI from Stukalov et al5 jointly
with the Ebola and HIV-1 PPI described in Ta-
ble 1. Each dot represents a virus-human PPI,
colored by the virus species (details in Section
6.1). The large cluster of overlapping yellow and
green points at the center shows the interologs
between SARS-CoV and SARS-CoV-2.
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Fig. 3. (top) K-means clustering of the dimen-
sionality reduced data from the left panel. Each
dot is a virus-human PPI coloured by the clus-
ter it was assigned to by the k-means algorithm.
(bottom) The seven amino-acid classes used in
the conjoint triad features; details of the prop-
erties used in their classification can be found in
Shen et al.9

find the protein pair’s identity. One can see that in both graphs, there are obvious clusters
of interactions, some of which involve only proteins from a single type of virus. In contrast,
others show overlap with several viruses.

For further analysis of the PPI clusters, we apply k-means clustering on the 100-
dimensional data obtained from PCA and colour the PPI based on which cluster they were
assigned to. The result of k-means clustering is shown in Fig. 3 (right). There are 8 clusters,
some of which we discuss here. Cluster 0 contains several visually distinct sub-clusters. On the
right, there are mostly SARS N protein interactions, overlapping with SARS-CoV-2 N protein
interactions, while those on the left are mostly M protein interactions. Cluster 1 includes sub-
clusters for HIV-1 rev, SARS nsp6 (a protein with 4 transmembrane helices and a protease
domain), as well as SARS and SARS-CoV-2 E and orf7a proteins. In the vicinity of the E
protein interactions there are several Ebola vp40 interactions as well as a subcluster of HIV-1
vpu interactions. The close proximity of all four viruses implies that there may be commonality
in the functions of these interactions. Indeed, in SARS the M, E, and N proteins are required for
efficient assembly, trafficking, and release of virus-like particles, as evidenced by the need for
co-expression of both E and N proteins with M protein.16 This is remarkably similar to what has
been observed in Ebola, where expression of vp40 alone in mammalian cells induces the pro-
duction of virus particles with a density similar to that of virions but proper particles require
co-expression of vp40 and GP.17 How do the nsp6 and orf7a proteins fit into this process?
While it is known that nsp6 is involved in autophagy (it limits autophagosome diameter), the
proximity to the SARS/SARS-CoV-2 E protein interactions and the Ebola vp40 interactions
suggest that there is a connection to virion formation. Unclear is also the role of the HIV-1
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accessory protein vpu, and this proximity may shed light on its function.
Cluster 2 contains a small subcluster on the left, composed mostly with orf9b SARS, and

a few orf9b SARS-CoV-2 interactions, but the majority of this cluster are orf3 interactions
from SARS-CoV-2, lined with some on the top and the bottom of orf3a from SARS. Cluster
4 contains three subclusters, left: HIV-1 vif interactions, middle: SARS orf3b interactions
and right: Ebola vp24 interactions. The functions of vif are not well understood, but for vp24
and orf3b it is clear that they act as IFN antagonists,18 although the two proteins don’t share
any detectable sequence similarity. Furthermore, the vif protein in another virus, the caprine
arthritis encephalitis virus, appears to be an interferon antagonist as well.19 This cluster is
a particularly strong validation for the concept that the PPI network that a virus protein
engages in defines its functions and provides a novel way to identify functional similarity
where sequence and structure similarity is not detectable.

Cluster 6 is a large cluster that contains only orf7b from SARS and SARS-CoV-2. Clusters
0, 2 and 6 are the ones most unique to the coronaviruses but with different levels of similarity
within. It has been speculated that the differences between orf9b in SARS and SARS-CoV-2
may contribute to the enhanced transmissibility of SARS-CoV-2, possibly due to increased
ability to suppress the interferon response.20 Finally, cluster 7 involves three subclusters, HIV
tat, SARS orf8, and orf8a. tat activates RNA Polymerase II,21 while the functions of orf8/a
are not known.22 Thus, it is tempting to speculate that there may be overlap in these functions
with those of tat in HIV.

6.2. Highly ranked sequence features

Fig. 1 (center) shows the top-ranked features from SARS-CoV-human interactions and (right)
SARS-CoV-2-human interactions. Single letters refer to amino acids in the k-mer, while those
with a prefix VS refer to the conjoint triad feature with amino acid groups shown in Fig. 3
(bottom). An extension .h indicates that the feature refers to the human binding partner.
One can clearly see that the top-ranked features for the two viruses are different in their detail
(which supports that experimental observation that the sequence variations between the two
viruses affect their PPIs5) but follow similar trends. For example, many of the features refer
to hydrophilic amino acid combinations such as QD, PQ, DPQ, QD reflecting the fact that it
is the water-exposed surfaces of proteins that engage in PPI interfaces. Furthermore, it is
well established that the bulky aromatic, yet hydrophilic side-chain Y is often found as anchor
residues in PPI interfaces. Thus, it is encouraging to find PDY, PYD and triad features involving
class 3 amongst the top ranked features.

6.3. Structural analysis

Highly ranked sequence features from the model correspond to amino acid residues that form
cryptic pockets. Cryptic pockets are cavities that form in protein structures due to thermal
fluctuations in vivo, but are not observed in experimentally derived protein structures.23 These
pockets can expose functionally important residues to the surface of a protein and can also
be used as targets for drug development.24 A recent study performed molecular dynamics
simulations on the majority of proteins in the SARS-CoV-2 proteome to sample the ensemble of
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structural poses that each protein adopts,25 using a specialized algorithm to focus on sampling
cryptic pockets.26 The group curated a dataset indicating which residues are part of a cryptic
pocket based on analysis using LIGSITE,27 which performs a grid-based search for pockets, and
exposons,28 which identifies residues that have cooperative changes in their solvent exposure.
Overlaying sequence features from the PPI model onto one of the SARS-CoV-2 proteins,
Nonstructural protein 16 (nsp16), we find that the positions found significant by the model
coincide with the location of 3 out of the 5 pockets. This protein is of particular interest since
it has more pockets than any other protein in the dataset, and is an interesting drug target
since it is known to be involved in evading the host immune response.29

7. Prior Work

Network analysis of SARS-CoV-2 has been carried out since the first SARS-CoV-2 related PPI
dataset was deposited in BioRxiv on March 22, 2020.4 The majority of analyses have focused
on identifying targets for repurposing drugs,30–32 and/or to better understand the molecular
details underlying viral pathogenesis.33,34 These network analysis papers use known human-
human PPI to follow the paths from original human-virus pair into the human interactome.
This network propagation approach has also been extended to include predicted human-human
PPI.35 A few groups have also looked at the prediction of new interactions between virus and
human host proteins: PIPE36 uses sequence-based PPI predictors PIPE4 and SPRINT to
predict interactions for only 14 of the 29 SARS-CoV-2 proteins based on known PPI obtained
from the VirusMentha database37 which currently contains 5 SARS (not SARS-CoV-2) PPIs.

8. Conclusion

We developed a sequence-only based feature prediction model for interactions between SARS-
CoV-2 and human proteins. Validation by an independent dataset showed significant en-
richment of experimentally validated interactions in the highly-ranked predictions, strongly
supporting the approach. The interpretability of our model also allows designing hypotheses
toward disrupting these interactions, a crucial step in exploiting PPI prediction for antiviral
drug discovery.
Supplementary material: Additional plots, tables, predicted PPI and enrichment analysis
are available at: https://github.com/meghana-kshirsagar/sars_ppi
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Continuously decreasing cost, speed and efficiency of DNA and RNA sequencing, coupled with 
advances in real-world sensing, storage of electronic health records, publicly available databases, 
and new data processing techniques enable precision medicine at unprecedented scale. Machine 
learning and artificial intelligence emerge na
supporting clinical decisions with data-driven insights and further unlocking genetically driven 

complex relations in large datasets, they pose new challenges especially because a patient's health 
is at stake. Due to an often black-box nature and high reliance on the training data, these new tools 
are prone to biases and most commonly provide correlational rather than causal insights. Results of 
these analyses have been difficult to validate, interpret, and explain to practitioners, and most 
genetic studies have struggled to encompass the full spectrum of human diversity. In this work, we 

trends in addressing these issues with examples from submissions to the 
“Computational Challenges and Artificial Intelligence in Precision Medicine” session at Pacific 
Symposium on Biocomputing 2021. We observe growing research interest in identifying biases, 
deriving causal and interpretable relations, tuning parameters of models for production, and using 
artificial intelligence for quality control. We expect further upsurge in work on interpretability and 
low-risk applications of advanced computational tools. 

Keywords: artificial intelligence, augmented clinical decision making, bioinformatics, genomics, 
machine learning
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1.  Introduction 

High-volume genetic sequencing and 'omics data collection as well as increasingly accessible data 
streams from electronic health records (EHRs), clinical imaging, biobanks, wearables and more are 
opening up new vistas in biomedical and health data research. To integrate and/or identify 
meaningful insights from these large and typically noisy multi-dimensional data resources, the field 
has developed and applied novel computational tools, including many based on machine learning 
and artificial intelligence. Applied to genetics, these new methods have connected DNA variation 
to molecular functions and cellular perturbations, identified disease or patient subgroups and the 
biological processes driving these differences, suggested new therapeutic targets, and overall, 
dramatically increased our understanding of biomedicine. By integrating these datasets with rich 
clinical data, or developing algorithms to interpret, condense, or transform facets of these data into 
more interpretable modalities, much of the hidden information and patterns can be revealed and 
made useful for the practice of medicine. 

2.  Genomics and multi-omics data for precision medicine 

overrepresentation of European-ancestry participants in large-scale biobanks and omics resources1. 
Tools developed and trained on predominantly European-ancestry datasets have largely performed 

and scientific consequences that include missed insights, widened health disparities, and predictive 
inaccuracies2,3

DNA methylation, transcript expression, and sequence data in order to discover methylation-
adjusted expression quantitative trait loci (eQTL) in cadaveric liver samples derived from donors of 
African American genetic ancestry4. Intersecting these data with cataloged genome-wide 
association study (GWAS) summary results presented several new genetic targets underlying 
GWAS loci in diseases that disproportionately impact African American populations. These targets 
had not been identified as candidates in previous work, and underscore the need for additional 
resources, methods development, and work in this area. 

Along with better capturing the common variation present in humanity by expanding sample 
ascertainment to include historically excluded and currently underrepresented populations, one of 
the most compelling areas of research in precision medicine is to understand the functional impact 
of rare variation, and indeed, which rare variation is functional at all. Multiple tools have been 
generated to predict the functional consequences of protein coding variation, but only a few tools 

problem is challenging due to 
incomplete annotation of functional regions and statistical limitations when considering ultra-rare 
variants that may appear uniquely within a dataset. Dong et al. (2021) have developed the AeQTL 
tool to identify rare heterogeneous variants that impact on levels of gene expression by aggregating 
rare variants according to user-specified regions and combining this genetic information with 
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patient-matched transcriptomic data5. They applied their methods to breast cancer sample data and 
were able to discover associations between aggregated rare germline variants in cis exomic regions 
with the expression of BRCA1 and SLC25A39. 

Moving closer to the clinic, pharmacogenomics has enormous capacity for clinical actionability 
by bringing genotype-data driven guidance to the task of selecting an appropriate maintenance dose 
for individual patients. Rapidly determining the correct dose effectively balances the risk of side 
effects or other adverse outcomes against patient benefit. McInnes and Altman (2021) conducted 

the real-world, observational pharmacy evidence that patient genotype at pre-specified loci may 
influence the maintenance dose of certain drugs prescribed in practice by clinicians6. A significant 
genotype-drug dose relationship was observed across (i) those drugs with Clinical Implementation 
of Pharmacogenomics Consortium (CIPC) guidance7, (ii) drugs with a relationship described in 
DrugBank but no formal practice guideline, and (iii) a discovery set, where six out of 561 tested 

Biobank to identify associations to side-effects including the appearance of new diagnoses. While 
the existence of a genotype-dose relationship is an unsurprising result, it previously had not been 
demonstrated in real prescribing patterns at this scale, and clearly demonstrates how incorporating 
patient genotype can be an important advance to patient safety. 

The fourth paper submitted to this track by Aoki and Ester (2021) presented another new 
computational tool designed to improve causal inference8. Finding relationships between genes and 
outcomes can lead to better understanding of biological pathways and processes. And so, correlating 
outcomes and genes is a natural screening tool. However, in purely observational studies, and 
particularly those with thousands of potential variables, we risk identifying non-causal relations, 
which are of lower importance for biological discovery or intervention. One approach for narrowing 
down research targets is to focus on causal relations rather than correlations. Aoki and colleagues 

a stacking ensemble meta-learner approach 
to combine outcomes of multiple causal discovery methods, exploit partially known causes, and 
predict new ones. They confirmed the efficacy of their approach through simulations and by using 
their analysis over a real-world dataset9 to identify cancer driver genes. 

3.  Artificial intelligence in multi-modal datasets for clinical research and workflows 

Massive amounts of clinical data require new methods for quality control, analysis, processing, 
validation, and deployment of algorithms. Data-
to their black-box nature, and high reliance on the training dataset, resulting in overfitting and biases 
towards certain populations. As opposed to classical hand-crafted algorithms for which the entire 
processing pipeline can be diligently monitored, biases and errors cannot be easily removed from 
data-driven algorithms due to complicated relationships between millions of parameters 
automatically derived from the data. 

Oppor
by the COVID-19 pandemic. COVID-19 disease, caused by a highly infectious SARS-CoV-210, can 
be associated with severe pneumonia resulting in serious complications or death; these poor 
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outcomes are more likely in patients with compromised immune systems due to other underlying 
conditions or age11,12. Rapid upsurge in the number of cases has exposed problems in healthcare 
systems across the globe. Moreover, restrictive measures for limiting the spread of the virus has led 
to the cancellation of face-to-face clinical visits for non-emergency visits. This situation has 
naturally resulted in the upsurge of telemedicine13 and research on reading patient data 
automatically, with the intention of reducing the burden on clinicians. These developments among 
others are reflected in submissions and accepted papers to “Computational Challenges and Artificial 
Intelligence in Precision Medicine” session at Pacific Symposium on Biocomputing 2021. 

Much of recent work in methods for clinical research has been focused on addressing these 
deployment issues, as it is exemplified by submissions and accepted papers to the “Computational 
tools and methods” track of this PSB 2021 session. First, for tuning models to certain populations14, 

-study 

search and random sampling approaches despite prior evidence in literature based on single-study 

different hospitals, but also results in varying behavior depending on demographics15. Third, data 
quality has fundamental importance not only for building medical machine learning tools, but also 
for clinical applications, particularly in telemedicine. Influx of telemedicine data due to COVID-19 
motivated researchers to use deep learning for quality control of data16. 

3.1.  Optimization of genomic classifiers 

Machine learning and artificial intelligence allows researchers to identify relationships between 
patients' gene expression and their outcomes. These techniques can bring clinical benefits, but 
translation of research models into in-hospital deployment requires proper validation frameworks. 
While the research community focuses on accuracy metrics within a single cohort, practitioners 
often fail when attempting to deploy such models in practice. 

Mayhew et al. (2021) addressed this problem by providing a framework for benchmarking 
solutions in the context of real-world deployment14. To that end, they built their models on a 
multi-

 
The authors illustrate an application of their framework on data on acute in-hospital infections 

with data coming from multiple studies. In contrast to previous research, they found that a 

-centered 
benchmarking and validation on multi-study cohorts.  

3.2.  Automatic reading of radiographic images 

Developments in computer vision, particularly in deep convolutional neural networks, have 
enabled a range of applications in medical imaging. Expert-level predictive models have been 
developed and published descriptions of algorithms capable of diagnosing skin cancer, brain 
cancer, lung lesions, or osteoarthritis progression from RGB camera photos, MRI sequences, X-
ray, or CT scan input data. 
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Expert-level results can be achieved in a wide variety of use cases; however, applicability of 
these algorithms in practice is inhibited by any differences between the new real-world clinical 
data never seen by the model, and the datasets used for training. Additionally, even though 
demographics or ethnicity of patients are not explicitly expressed in radiographic images, there 
can be a bias in diagnostics, due to underrepresentation of certain groups or biased labels provided 
by clinicians. 

In order to investigate the behavior of machine learning models as a function of demographics, 
ethnicit
Positive Rate statistic of a model in different groups of interest. To that end, Sayyed-
al. (2021) built a deep learning model for classifying chest X-rays, using multiple public chest X-
ray datasets15. They trained a model with close to state-of-the-art performance and found that its 
accuracy depends on the patient's demographics, ethnicity, and insurance type. This discovery 
implied that validating the quality of the model across different populations should be one of the 
key quality checks for practitioners deploying a machine learning model in clinics. Without these 
kinds of quality checks, deep learning models may end up perpetuating biases rather than 
alleviating them. 

3.3.  Quality control of images in telemedicine 

Other elements of clinical workflows can be addressed much more immediately than algorithmic 
imaging diagnostics, such as automating quality control. This is particularly important whenever 
images are collected by patients themselves (as in telemedicine) rather than by trained personnel 

immediate benefits to clinics and present low risk to patients while improving their care. 
Confident image assessment for clinicians, such as dermatologists, who are using telemedicine is 
challenging. Low quality images require extra time to read, causing additional delays related to 
retakes and extra reads. Vodrahalli et al. (2021) proposed a machine learning system for 
identifying low quality images automatically using a deep convolutional neural network 
classifier16. Their proof-of-concept algorithm could identify 50% of poor-quality images at a cost 
of only mislabeling 20% of the good quality images. Given a massive upsurge in telemedicine 
visits during the COVID-19 pandemic, this fraction could lead to significant time savings for 
hospitals and patients, as well as improved outcomes for time sensitive cases, such as malignant 
skin cancers. Moreover, these preliminary results could be further improved with better data and 
more thorough machine learning modelling. 

4.  Conclusion and future directions 
Submissions to  “Computational Challenges and Artificial Intelligence in Precision Medicine” 
session at Pacific Symposium on Biocomputing 2021 have revealed the growing importance and 
interest in decomposing components of black-box machine learning models, particularly for 
causality and for finding biases in data. Moreover, while automating the work of clinicians has 
always been a holy grail of artificial intelligence in medicine, papers in this session highlighted 
that there are more direct benefits of machine learning methods. Based on submissions to this 
session we expect further developments in interpretability of computational methods for precision 
medicine and more low-risk clinical applications, such as those motivated by COVID and post-
COVID healthcare requirements. 

Pacific Symposium on Biocomputing 2021

170



 
 

 

5.  Author contributions 

All authors contributed equally to the PSB session. SEB was unable to review this manuscript for 
medical reasons. 

References 

1. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The Missing Diversity in Human Genetic Studies. Cell 
177, 1080 (2019). 

2. Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used 
to manage the health of populations. Science 366, 447–453 (2019). 

3. Dias, R. & Torkamani, A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 
11, 70 (2019). 

4. Singh, A., Zhong, Y., Nahlawi, L., Park, C.S., De, T., Alarcon, C., & Perera, M.A.. Incorporation of 
DNA methylation into eQTL mapping in African Americans. in Pac Symp Biocomput (2021). 

5. -lin Huang. AeQTL: eQTL analysis 
using region-based aggregation of rare genomic variants. in Pac Symp Biocomput (2021). 

6. McInnes, G., & Altman, R.B.. 
Participants. in Pac Symp Biocomput (2021). 

7. -G. Clinical Implementation of Pharmacogenomics for 
J. Pharm. Sci. 106, 2368–2379 (2017). 

8. Aoki, R., & Ester, M. Pac Symp 
Biocomput (2021). 

9. 
immeasurable source of knowledge. Contemp. Oncol. 19, A68–77 (2015). 

10. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. 
Nature 579, 270–273 (2020). 

11. Chau, A. S. et al. The Longitudinal Immune Response to Coronavirus Disease 2019: Chasing the 
Cytokine Storm. Arthritis Rheumatol (2020) doi:10.1002/art.41526. 

12. Gupta, S. et al. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 
2019 in the US. JAMA Intern. Med. (2020) doi:10.1001/jamainternmed.2020.3596. 

13. Alexander, G. C. et al. Use and Content of Primary Care Office-Based vs Telemedicine Care Visits 
During the COVID-19 Pandemic in the US. JAMA Netw Open 3, e2021476 (2020). 

14. Michael B. Mayhew

-Hospital Mortality. in 
Pac Symp Biocomput (2021). 

15. Laleh Seyyed-
Ghassemi. CheXclusion: Fairness gaps in deep chest X-ray classifiers. in Pac Symp Biocomput (2021). 

16. 
Improve the Quality of Telehealth Photos. in Pac Symp Biocomput (2021). 

 
 

Pacific Symposium on Biocomputing 2021

171



© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed under 
the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License. 

 

AeQTL: eQTL analysis using region-based aggregation of rare genomic variants 

Guanlan Dong1, Michael C. Wendl2, Bin Zhang3, Li Ding2 and Kuan-lin Huang3,* 

1Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA 
2Department of Medicine, McDonnel Genome Institute, Washington University in St. Louis, St. Louis, MO 

63108, USA 
3Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Icahn 

School of Medicine at Mount Sinai, New York, NY 10029, USA 
*Corresponding Email: kuan-lin.huang@mssm.edu 

Concurrently available genomic and transcriptomic data from large cohorts provide opportunities to 
discover expression quantitative trait loci (eQTLs)—genetic variants associated with gene expression 
changes. However, the statistical power of detecting rare variant eQTLs is often limited and most 
existing eQTL tools are not compatible with sequence variant file formats. We have developed 
AeQTL (Aggregated eQTL), a software tool that performs eQTL analysis on variants aggregated 
according to user-specified regions and is designed to accommodate standard genomic files. AeQTL 
consistently yielded similar or higher powers for identifying rare variant eQTLs than single-variant 
tests. Using AeQTL, we discovered that aggregated rare germline truncations in cis exomic regions 
are significantly associated with the expression of BRCA1 and SLC25A39 in breast tumors. In a 
somatic mutation pan-cancer analysis, aggregated mutations of those predicted to be missense versus 
truncations were differentially associated with gene expressions of cancer drivers, and somatic 
truncation eQTLs were further identified as a new multi-omic classifier of oncogenes versus tumor-
suppressor genes. AeQTL is easy to use and customize, allowing a broad application for discovering 
rare variants, including coding and noncoding variants, associated with gene expression. AeQTL is 
implemented in Python and the source code is freely available at https://github.com/Huang-
lab/AeQTL under the MIT license. 

Keywords: Gene expression; Sequencing; eQTL; Rare variants; Data integration. 

1.  Introduction 

Advances in sequencing technologies have enabled the generation of large-scale disease cohorts 
with concurrently available genomic and transcriptomic data1,2. Samples with concurrent DNA- and 
RNA-sequencing (DNA-seq and RNA-seq) provide opportunities to discover expression 
quantitative trait loci (eQTLs), i.e. genetic variants associated with variations in gene expression3. 
Most existing eQTL tools focus on applying various statistical models to test for association between 
individual pairs of a variant and the associated gene expression4–6. However, for rare variants, the 
underlying power of the statistical testing is often limited and identifying eQTLs from rare variants 
remains a challenge7. 

Multiple methodologies and tools using aggregation strategies to group and identify rare variants 
associated with disease status have been developed8–11, yet similar strategies have rarely been 
implemented for identifying eQTLs. In addition, these tools are not readily compatible with standard 
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variant call files resulted from sequencing data, including VCFs/MAFs and RNA-seq data from 
large cohorts.  

Here, we present AeQTL, a software tool that performs eQTL analysis on aggregated variants 
in specified genomic regions and is designed to accommodate standard file formats generated from 
sequencing data. Previous studies have found that rare germline variants are significantly enriched 
at both high and low extremes of gene expression in promoter regions12. Here, we show AeQTL’s 
aggregation algorithm can increase the statistical power in order to discover rare variant eQTLs with 
a larger size of grouped carriers. Further, we demonstrate AeQTL’s capacity in identifying both 
germline variants and somatic mutations associated with gene expression changes, which can help 
prioritize disease susceptibility genes or cancer driver genes. In sum, AeQTL offers a much-needed 
versatile multi-omics tool to integrate DNA-seq and RNA-seq data. 

2.  Methods 

AeQTL implements standard eQTL analysis with user-defined variant-aggregation and its workflow 
is shown in Fig. 1. AeQTL requires three input files: an expression file, a genotype file, and a region 
file. The user can provide an additional covariate file for advanced analyses.  

2.1.  Set up eQTL association tests 

The input region file (i.e. a BED file) is provided by the user to set up desired association tests 
between gene expressions and variants. Each line of the file contains a genomic region followed by 
one or more genes to be tested against. An association test will be set up between the expression 
level of each specified gene and aggregated variants in the genomic region. If no genes are specified, 
AeQTL by default will test each region against every gene’s expression in the expression file in a 
trans-eQTL discovery mode. This user-constructed BED file allows flexibility in the design of 
eQTL analysis for testing both cis- and trans- eQTLs. We also provide a coding exomic region BED 
file on our Github page, which can be used for testing and exploratory purposes.  

While all variants with matching samples in the expression file will be included in the tests, 
users can further restrict the aggregation by setting two optional thresholds: the number of mutated 
samples per region and the number of variants per region, in which case regions with samples or 
variants below the thresholds will be filtered out. Both thresholds are set to 1 by default.  

2.2.  Aggregate variants and conduct regression analysis 

AeQTL aggregates variants by finding overlaps between variants and regions using the interval tree 
data structure, which is part of the bx-python package (https://github.com/bxlab/bx-python). We 
used a standalone wrapper of the interval tree (https://github.com/ccwang002/bx_interval_tree) for 
easier compilation. The interval tree is designed for fast intersect queries on one-dimensional 
intervals. Compared to other simple positional intersection methods, the interval tree has two major 
strengths: (1) it allows each interval to be annotated and the annotations will be preserved in queries; 
(2) the interval tree is implemented in Cython which is faster and more computationally efficient. 
AeQTL creates an interval tree for each chromosome. For each genomic region provided in the BED 
file, an interval is specified by the start and end positions, annotated by the region name, and added 
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to the interval tree of its corresponding chromosome. Then, AeQTL finds the intervals that overlap 
with the given variant to extract its region name and aggregates variants of the same region. AeQTL 
accommodates different types of variants including single-nucleotide variants (SNVs), insertions, 
and deletions. After aggregation, AeQTL maps each region to samples and defines a regional 
mutation status by assigning a genotype “1” if a sample has any variants in this region and a 
genotype “0” otherwise.  

For each tested gene in each region, AeQTL performs a linear regression analysis of RNA-seq 
gene expression e against regional genotype g: 

𝑒 = 𝛼 + 𝛽𝑔 + 𝜖, 𝜖	~	𝑖. 𝑖. 𝑑.		𝑁(0, 𝜎!).	 

The linear model is built using the ordinary least squares method with a residual term ϵ that 
follows a normal distribution with a mean of zero and a constant variance. AeQTL supports 
covariates c to be incorporated into the regression model:  

𝑒 = 𝛼 + 𝛽"𝑔 + 𝛽!𝑐 + 𝜖, 

which enables the model to account for clinical factors and population structures.  

2.3.  Output intermediate mapped files and a result file with summary statistics 

AeQTL outputs mapped files with variant genotypes, expression, and covariates for each region, 
which can be readily routed into other aggregational statistical tests such as SKAT8 to allow 
comparison. Notably, most of the other aggregational software do not allow common sequence file 
formats (i.e. VCF or MAF) and thus the intermediate files enable flexibility for users. 
All the regression results are compiled in a summary file where AeQTL reports both p-values and 
coefficients of the intercept and all dependent variables, including regional genotype and covariates. 
To correct for multiple testing, AeQTL also reports adjusted p-values with false discovery rate 
(FDR) based on the Benjamini-Hochberg (BH) procedure. 

 
Fig. 1. AeQTL workflow. AeQTL links regions to gene expressions to set up the cis/trans-eQTL testing, 
partitions sample expression profiles based on aggregated variants in each region, conducts a linear 
regression test for each region-gene expression pair with optional covariates, and outputs a summary file.  
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3.  Results 

3.1.  AeQTL algorithm development and power simulation 

To demonstrate the aggregating effect on the statistical power of identifying rare variant eQTLs, we 
performed a simulation analysis using AeQTL. Based on VCF files and expression matrices of 10 
rare variants (frequency = 0.1%, five were effective) with a series of sample sizes, we ran AeQTL 
on both single variants and grouped variants specified by BED files (Fig. 2a). Gene expression 
profiles were generated from a normal distribution with a mean of 20 and a standard deviation of 
10, while effective variants had an effect size t (t = −10 or t = −20) from a normal distribution with 
a mean of t and a standard deviation of | t ⁄ 2 |. For each sample size, power was calculated as the 
averaged value of 10,000 independent simulations.  

Overall, statistical analysis of aggregated variants consistently demonstrated comparable or 
higher powers than individual variants. When the sample size was small, the powers of grouped and 
single variants were similarly low for both effect sizes. As the sample size increased, the powers 
under all testing conditions increased as expected. However, the powers of grouped variants 
increased noticeably faster than those of single variants. When effect size = −20, the increased power 
fold change provided by the AeQTL aggregation method was the most substantial within the sample 
size interval of 600 to 2,000. The power of grouped variants reached 97% with sample size = 2,000, 
while single variants required three times the sample size to reach a similar power. When effect size 
= −10, the power of grouped variants reached 95% with sample size = 6,000 and single variants did 
not reach the same power until sample size = 15,000. At a sample size of 5,000, the powers of all 
testing conditions except for single variants with effect size = −10 were higher than 90% and were 
saturated (> 99%) when the sample size reached 8,000.  

3.2.  Germline eQTL detection 

We further tested AeQTL on rare germline truncations (minor allele frequency ≤ 0.05%) on 
chromosome 17 of the TCGA PanCanAtlas cohort13. We tested the hypothesis that rare truncations 
in cancer susceptibility genes are associated with their cis-expression in tumor samples. For the 
input BED file, we specified each of the genes on chromosome 17 as a region of interest and tested 
truncations in each gene region against the expression of its located gene. We used the level 3 TCGA 
RNA-seq gene expression data in RSEM14 from breast invasive carcinoma (BRCA) patients and 
incorporated six covariates: age, gender, ethnicity, tumor stage, as well as the top two components 
from the principal component (PC) analysis on population structure (accounting for > 80% of the 
top 20 PCs). Because low gene expression levels would likely present technical noises, we filtered 
out genes with median expressions lower than log(2) (Fig. S1a). This germline analysis, which 
contained 1,071 samples, 3,150 variants, and 261 unique gene regions, took ~35 min on a Mac with 
a 2.3 GHz processor and 8 GB memory.  
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We visualized the distribution of adjusted genotype p-values on a QQ-plot (Fig. 2b). The 
expression of BRCA1 was significantly associated with aggregated rare truncations in the BRCA1 
exomic region (P = 0.033) in the BRCA cohort, demonstrating that AeQTL could efficiently identify 
grouped genotype-expression association. In addition, SLC25A39 (P = 0.030) was among the top-
ranked genes whose expressions were negatively associated with the aggregated rare truncations in 
their regions. We also carried out a sensitivity analysis of adjusted genotype p-values against region 
sizes, which suggested no significant correlation between the two, indicating the lack of false-
discovery from large genes (rs = 0.16, P = 0.18, Fig. S1b). 

3.3.  Somatic eQTL detection 

Aside from germline variants, we also tested AeQTL on somatic truncations and missense mutations 
across 32 cancer types of the TCGA PanCancer cohort15. Similar to the germline eQTL detection, 
the input BED file contained coding sequence positions of all genes where each gene region was 
tested against the expression of itself in a cis-expression pattern. We used the TCGA PanCancer 
RNA-seq data and incorporated seven covariates: age, gender, ethnicity, the same top two PCs on 
population structure as in the germline analysis, cancer subtype, and whether the patient showed an 
onset age ≤ 50 years old. A separate AeQTL run was performed for each variant type in each cancer 
type, and all the output summary files for each variant type were compiled together for multiple 
testing correction using FDR to generate the final pan-cancer output. 

We interrogated a subset of 299 genes that were reported as likely driver genes by Bailey et al.16 
and extracted 23,849 truncations and 11,966 missense mutations located in these genes from 8,639 

Fig. 2. (a) Power simulation on eQTL analyses using rare variants. The statistical powers of AeQTL 
(grouped variants; in green) and single-variant testing (in blue) are compared under different sample sizes. 
(b) QQ-plot of -log10 adjusted genotype p-values from rare germline truncations on chromosome 17 in 
breast cancer patients. The red diagonal line is the expected value. BRCA1 and SLC25A39 are marked in red 
triangles. Other genes showing significant associations (P < 0.05) are also labeled and marked in blue. 

Pacific Symposium on Biocomputing 2021

176



 
 

 

samples. AeQTL identified 243 gene-cancer pairs with truncations and 77 gene-cancer pairs with 
missense mutations that were significantly associated with their respective gene expressions (FDR 
< 0.05, Fig. 3). The total and unique variant sites used in the analysis are summarized in Table S1. 
The top-ranked gene-cancer pairs with truncations include the MET proto-oncogene from brain 
lower grade glioma (LGG), the calcium channel gene CACNA1A from lung adenocarcinoma 
(LUAD), and TP53 from BRCA; the top-ranked gene-cancer pairs with missense mutations include 
JAK2 from stomach adenocarcinoma (STAD), TP53 from lung squamous cell carcinoma (LUSC), 
and FGFR3 from bladder urothelial carcinoma (BLCA).  

To demonstrate the computational capacity of AeQTL, we expanded the analysis to the entire 
dataset, including 335,866 truncations and ~2 million missense mutations from 10,208 samples. 
AeQTL identified 1,179 gene-cancer pairs with truncations and 3,241 gene-cancer pairs with 
missense mutations significantly associated with their respective gene expressions (FDR < 0.05).  

For significant gene-cancer pairs with truncations, 156 overlapped with the likely driver genes. 
For significant gene-cancer pairs with missense mutations, 115 overlapped with the likely driver 
genes. Interestingly, we also identified many top-ranked genes that were not previously identified 
drivers by TCGA PanCanAtlas driver project16. The top-ranked somatic eQTL genes with 
truncations include OR8D1 in LUSC, SOX10 in head and neck squamous cell carcinoma (HNSC), 
and PSG7 in kidney renal clear cell carcinoma (KIRC). The top-ranked somatic eQTL genes with 
missense mutations include USP29 in cholangiocarcinoma (CHOL) and AMELX, CNTN5, and 
OR1L3 in lymphoid neoplasm diffuse large B-cell lymphoma (DLBC). Multiple recent reports 
highlight the functionality of the “long-tail driver genes” found with lesser mutations in multiple 
cancer types17–21. These somatic eQTL genes and their expression-associated mutations represent 
new candidates that warrant further investigations.  

Fig. 3. QQ-plots of -log10 adjusted genotype p-values from somatic truncations (a) and missense mutations 
(b) on likely driver genes in 32 cancer types. The red diagonal line is the expected value. Gene-cancer pairs 
showing significant associations (P < 0.05) are marked in blue and the top three ranked pairs are labeled. 
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3.4.  eQTL patterns of oncogenes and tumor suppressor genes 

Cancer driver genes, depending on their mutated cancer type and pathway context, can be 
subclassified into oncogenes and tumor suppressor genes (TSGs). But most existing methods to 
classify oncogenes and TSGs leveraged cohort-level mutation data22–25 that lack considerations of 
their downstream consequences. To understand whether eQTL patterns could capture the distinction 
between oncogenes and TSGs, we further investigated the significant genes classified as oncogene 
or TSG from Bailey et al.’s DNA mutation-based study16.  

In the likely-driver-gene subset analysis, the genotype coefficients of truncations showed a 
strong association with their respective predicted classifications of oncogenes or TSGs. Genes 
predicted to be oncogenes or possible oncogenes had larger positive genotype coefficients while 
genes predicted to be TSGs or possible TSGs had larger negative genotype coefficients (Fig. 4a), 
demonstrating a polarized pattern of how truncations in oncogenes versus TSGs may affect their 
respective genes’ expression in opposite directions. Moreover, we performed a receiver operating 
characteristic (ROC) analysis evaluating how well genotype coefficients could predict the labels of 
driver genes. The analyses yielded an area under the curve (AUC) of 86.3% (Fig. 4c), suggesting 
the potential of using somatic truncations eQTL patterns to distinguish between oncogenes and 
TSGs. In comparison, such a pattern was not recapitulated in the genotype coefficients of missense 
mutations, where both oncogene and TSG mutations were associated with increased gene 
expressions (Fig. 4b). Overall, genotype-expression analyses revealed distinct eQTL patterns 
associated with missenses versus truncations and oncogenes versus TSGs in cancer drivers.  

3.5.  Comparison with existing variant-aggregation methods 

We used the intermediate mapped files from TCGA somatic likely driver subset to test two of the 
most popular variant-aggregation methods, SKAT8 and SKAT-O9, and performed the same multiple 
testing correction based on the BH procedure using FDR. For each gene-cancer pair, we analyzed 

Fig. 4. Violin plots of signed log10 genotype coefficients from significant somatic truncations (a) and 
missense mutations (b) on likely driver genes in 32 cancer types (P < 0.05). The driver gene predictions are 
obtained from Bailey et al. and genes with no predictions are filtered out. (c) ROC curve of significant 
somatic truncations labeled as either “Oncogene” or “TSG” (AUC = 0.863). Genes labeled as “Possible 
Oncogene” or “Possible TSG” are filtered out. 
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the difference between the adjusted p-value from AeQTL and the adjusted p-values from SKAT and 
SKAT-O. The majority of the adjusted p-values from AeQTL were lower than the ones from SKAT 
and SKAT-O (median difference for truncations = -0.076 (SKAT) and -0.017 (SKAT-O), median 
difference for missense = -0.012 (SKAT) and -0.010 (SKAT-O), Fig. S2). For both truncations and 
missenses, SKAT-O identified more significant associations than SKAT while recapturing the ones 
identified by SKAT. This is not surprising since SKAT-O leverages both SKAT and burden test and 
implements a small-sample adjustment procedure, which should work well with somatic data. 
Notably, AeQTL was able to identify more significant truncation associations than SKAT-O and 40 
out of the 243 associations were unique to AeQTL (Fig. S3a). On the other hand, SKAT-O identified 
more significant missense associations than AeQTL (Fig. S3b). This is possibly due to SKAT-O's 
better compatibility with scenarios where only a fraction of variants show functionalities and 
potentially different directionalities. Further, neither SKAT nor SKAT-O provides a regression 
coefficient for regional genotype, which makes it difficult to understand the direction of variant’s 
effect on gene expression and make discoveries such as the polarized eQTL patterns of oncogenes 
and TSGs.  

 Most existing variant-aggregation methods are designed to conduct association tests on 
quantitative traits, most notably for SNP-array genotype data. While each gene expression value can 
be considered as a continuous trait for analyses using these methods, few of those readily 
accommodate sequencing data formats such as large VCFs/MAFs and expression matrices from 
cohorts. To address this challenge, AeQTL can complement the existing methods since it provides 
intermediate mapped files which can be routed into other aggregational statistical tests based on the 
users' preference and hypothesis. We believe such user-friendly functionality would be essential to 
help the field adopt aggregated eQTL testing from sequencing data. 

4.  Discussion 

AeQTL increases the power of eQTL detection by aggregating variants in a defined genomic region. 
We have applied AeQTL to both synthetic and real datasets. The synthetic dataset demonstrated that 
variant aggregation consistently yielded similar or higher powers for rare variant eQTL detection. 
For real datasets, we used rare germline truncations in breast cancer to showcase that AeQTL can 
efficiently identify significant associations between grouped variants and gene expressions. 
Furthermore, we applied AeQTL to somatic mutations in a pan-cancer dataset and identified top-
ranked gene-cancer pairs that were significantly associated with either truncations or missense 
mutations in their respective gene regions.  

To facilitate users’ adoption of AeQTL, we also provide input files to conduct analyses using 
MAF datasets, as used by TCGA PanCancer somatic mutation data15. The application procedure is 
described in detail and included as an example on Github. 

AeQTL is easy to use and customize. Out of the three required input files (region, variant, and 
expression files), both variant and expression files can be directly taken by AeQTL without any 
complicated reformatting or pre-processing, while the user-constructed region file allows great 
flexibility for setting up association tests. Moreover, we provide the exome BED file used in our 
TCGA analyses on the Github page so that users can easily explore the tool in the cis-eQTL mode.  
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The simplicity of AeQTL’s method design means that it can be broadly applied to datasets 
without imposing on them excessive assumptions or limitations. We have demonstrated AeQTL’s 
promising performance when applied to cancer datasets. However, with more genomic and 
transcriptomic data being collected and made available in other fields such as neurodegenerative 
diseases and psychiatric diseases, we believe AeQTL will contribute to multiple areas of study. 
Aside from research, another important application of AeQTL is in educational settings. From 
processing standard sequencing data formats, to building classic regression models, and to 
producing FDR-controlled outputs, AeQTL has a clear and simple workflow that can facilitate the 
learning process of eQTL analysis.  

There are a few aspects of the method that may be improved. First, a potential downside of 
having a simple method that suits more datasets is that the aggregated genotype of each region is 
not weighted. Having unweighted variants does not necessarily lead to worse performance, since 
the underlying mechanism is often unknown and having preset weights may actually confound the 
results. Nevertheless, we would like to offer more options for users in cases where there are known 
variations in the magnitudes of effect for certain variants. We plan to introduce more optional 
settings such as an annotated variant file with a scaling factor, either specified by the user or 
generated using other algorithms.  

Traditional methods to classify oncogenes or tumor suppressors rely on algorithms considering 
only DNA-mutation patterns or functional curation22–25. Herein, we present truncation eQTL 
patterns revealed by AeQTL as a potential new method to distinguish oncogenes (elevated 
expression) from tumor suppressors (reduced expression). In TSGs, truncations including nonsense 
variants or frameshift variants may introduce early stop-codons that likely have led to nonsense-
mediated decay (NMD), thus abolishing gene transcripts. In contrast, oncogene truncations show a 
higher frequency of inframe indels16, albeit the mechanisms through which they are associated with 
higher gene expression warrant further investigation.  

With increasingly available cohorts of matched genomic (e.g. whole-genome sequencing) and 
transcriptomic (e.g. RNA-seq) data, we expect that the robust and versatile AeQTL tool can be 
applied broadly for discovering rare coding and noncoding variants associated with gene expression.   
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6.  Appendix 

 
Fig. S1. (a) Histogram of the log-transformed sample median gene expression. (b) Sensitivity analysis of 
whether genomic region size affects eQTL detection. A randomly scattered pattern is shown when adjusted 
genotype p-values are plotted against region sizes. The Spearman correlation test also shows no significant 
correlation (rs = 0.16, P = 0.18). 

Fig. S2. Histograms of the differences between adjusted p-values from AeQTL and (a) SKAT for 
truncations, (b) SKAT-O for truncations, (c) SKAT for missense mutations, (d) SKAT-O for missense 
mutations in TCGA somatic likely-driver-subset analysis. 
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Table S1. Summary of the number of variant sites used in TCGA somatic likely-driver-subset analysis. 

 Likely Driver Genes Likely Driver Genes (sig.) 
Unique Truncations 15430 4190 
Total Truncations 18124 5311 

Unique Missense Mutations 5233 1364 
Total Missense Mutations 9882 3059 
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Pharmacogenetics studies how genetic variation leads to variability in drug response. Guidelines            
for selecting the right drug and right dose for patients based on their genetics are clinically                
effective, but are widely unused. For some drugs, the normal clinical decision making process may               
lead to the optimal dose of a drug that minimizes side effects and maximizes effectiveness. Without                
measurements of genotype, physicians and patients may adjust dosage in a manner that reflects the               
underlying genetics. The emergence of genetic data linked to longitudinal clinical data in large              
biobanks offers an opportunity to confirm known pharmacogenetic interactions as well as discover             
novel associations by investigating outcomes from normal clinical practice. Here we use the UK              
Biobank to search for pharmacogenetic interactions among 200 drugs and 9 genes among 200,000              
participants. We identify associations between pharmacogene phenotypes and drug maintenance          
dose as well as differential drug response phenotypes. We find support for several known              
drug-gene associations as well as novel pharmacogenetic interactions.  

Keywords: Pharmacogenetics, Pharmacogenomics, Statistical Analysis, Biobank, UK Biobank 

1. Introduction

Pharmacogenetics promises to revolutionize patient care by offering personalized drug selection           
and dosage based on an individual’s genetics 1. Variations in the genes that encode proteins              
involved in drug pharmacokinetics and pharmacodynamics are known to lead to interindividual            
heterogeneity in drug response and can greatly affect clinical outcome. Dosage guidelines have             
been developed by organizations such as the Clinical Implementation of Pharmacogenetics           
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LM012409). R.B.A is supported by NIH/National Institute of General Medical Sciences PharmGKB 
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License. 
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Consortium (CPIC; cpicpgx.org) to aid physicians in incorporating pharmacogenetics into their           
practice, however the adoption of pharmacogenetics by practicing physicians has not lived up to              
the optimism in the field2,3. 

Doctor’s may not directly be using pharmacogenetics to inform practice, but genetics            
influences how patients respond to drugs nonetheless. Some drugs, such as warfarin, have a              
narrow therapeutic index and blood concentration of the drug must be frequently measured to              
ensure patient safety4. The ultimate dose at which the patient achieves the appropriate, stable              
blood concentration of the drug is the maintenance dose. For warfarin, this dose is strongly               
influenced by genetic factors such including variations in the metabolizing enzymes CYP2C9 and             
CYP4F2,  as well as the drug target VKORC1.  

In other instances genetic variation may lead patients to be at higher risk for side effects.                
The frequently prescribed drug simvastatin has well known pharmacogenetic interactions with           
SLCO1B1 that can lead to simvastatin-induced myopathy5. While this is a rare side effect,              
individuals with poor functioning SLCO1B1 are at higher risk for simvastatin-induced myopathy.            
CPIC guidelines for simvastatin recommend that individuals with poor functioning SLCO1B1 take            
a reduced simvastatin dose or a different drug altogether. 

Numerous pharmacogenetic drug-gene relationships have been discovered, but most         
pharmacogenetic studies are small and narrowly focused. The use of electronic health record and              
biobank scale data as a means for pharmacogenetic discovery and validation of known             
relationships has been proposed, but until recently databases linking clinical data with genetic data              
for a large number of patients were unavailable 1,6. Biobanks offer an opportunity to retrospectively              
assess known drug-gene relationships in a clinical setting as well as offer the opportunity to               
discover new drug-gene associations. Biobanks and electronic health records have been used to             
perform targeted association studies between genomics and response to individual drugs7 as well             
as characterize frequency of pharmacogenetic alleles in populations8,9, but studies of drug response             
across a large number of drugs have not yet been performed. 

The UK Biobank has been widely used to perform genome-wide association studies on a              
wide variety of traits, but it also includes primary care data from the United Kingdom’s National                
Health System10. This dataset offers longitudinal, structured clinical data for more than 220,000             
participants that includes diagnoses, laboratory tests, and prescription data. This dataset offers a             
unique opportunity to identify associations between drug response phenotypes and genetics. Here            
we present a retrospective pharmacogenetic analysis linking drug exposure for 200 drugs to             
clinical outcome using the UK Biobank primary care data. We focus on two types of clinical                
outcomes of interest: maintenance dose and differential drug response.  
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2.  Methods 

2.1.  Pharmacogenetic Allele Calling 

We investigated drug-gene relationships for nine important pharmacogenes in the UK Biobank for             
222,114 participants using primary care data from the National Health System, provided by the              
UK Biobank10. The pharmacogenetic alleles used in this study were derived from a previously              
reported procedure, described here in brief8. We used imputed genotypes from the Axiom Biobank              
Array released by the UK Biobank11. We included nine genes in our analysis: CYP2B6, CYP2C19,               
CYP2C9, CYP2D6, CYP3A5, CYP4F2, SLCO1B1, TPMT, and UGT1A1 . The proteins encoded by            
these genes play critical roles in drug pharmacokinetics and each is included in a CPIC dosing                
guideline for a drug. We assigned pharmacogenetic phenotypes for each gene using PGxPOP, a              
tool designed for high throughput mapping of pharmacogenetic alleles and phenotypes           
(https://github.com/PharmGKB/PGxPOP). The analysis was limited to individuals of European         
descent. This included participants who self reported as European and were confirmed as             
European using principal component analysis. 

2.2.  Drug Dosage Association with Pharmacogenetics 

Drugs used in this study were derived from the PharmGKB curated drug list             
(https://www.pharmgkb.org/downloads, drugs.zip)12. For each drug, we extracted prescription        
information from the UK Biobank primary care prescription data by matching the drug name and               
brand names in the prescription data. Dosage information and drug quantity was extracted using              
regular expressions that searched within the drug description. We excluded combination therapies            
from the analysis.  

We calculated maintenance dose by determining the average milligrams of drug per day             
for the last five prescriptions of each drug. This was done by calculating the total milligrams of                 
drug administered for a single prescription divided by the number of days until the next               
prescription. We then averaged the milligrams of drug per day over the five most recent               
prescriptions. Prescriptions with a quantity outside two standard deviations from the mean            
quantity across all participants for that drug were excluded. Subjects were required to receive a               
minimum of five prescriptions to be included in the analysis. We required drugs to have a                
minimum of 50 subjects with a maintenance dose to be included in the analysis. 

We divided the analysis of maintenance dose associations into three groups of drug-gene             
pairs. First, we investigated the relationship between drug-gene pairs that have an existing CPIC              
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guideline. This indicates a strong level of evidence of a relationship between a drug and a gene.                 
Second, we investigated drug-gene pairs which have some level of evidence in PharmGKB, but no               
existing CPIC guideline. These pairs still have some prior evidence indicating an association, but              
not enough to develop a dosage guideline. Third, we investigated all other drug-gene pairs where               
an interaction is indicated in DrugBank13. These pairs have no prior evidence of a              
pharmacogenetic association. Data was grouped within each gene by predicted phenotype. For            
example, for CYP2C9 participants were put into bins by metabolizer class (normal metabolizers             
(NM), intermediate metabolizers (IM), and poor metabolizers (PM). Phenotype groups with less            
than ten participants for a drug are excluded from analysis. 

Association between maintenance dose and pharmacogenetic phenotypes was tested for          
200 drugs using two types of non-parametric statistical association tests. We used both a              
Kruskal-Wallis one-way analysis of variance and Jonckheere-Terpstra trend tests to test for            
associations between each drug and gene pair. Both types of tests are necessary to detect various                
relationships between dosage and genetics. First, the Kruskal-Wallis test was used to identify any              
pharmacogenetic phenotype (e.g. CYP2C9 PMs) that have a significant difference in the dosage             
from other metabolizer classes. Second, Jonckheere-Terpstra tests for an ordered relationship in            
ranked groups. This is a natural fit for pharmacogenetic phenotypes since there is an inherent               
order in function which may lead to a linear relationship with dosage (e.g. NM > IM > PM).                  
Resulting p-values are adjusted using a Bonferroni correction. We used a covariate-adjusted dose             
as the response variable for each test. To do this we fit a linear regression model to the dosage                   
using several covariates: age (at time of last prescription), sex, BMI, genotyping array, and the               
first for principal components of a principal component analysis (PCA) using genotype data (UK              
Biobank Data-Field 22009). 

We tested the impact of the intronic CYP2C19 variant rs3814637 on warfarin dose. We              
used a two-sided Jonckheere-Terpstra test on the allele dosage against the warfarin maintenance             
dose. Allele dosage was determined as the sum of the alternate alleles for rs3814637. 

2.3.  Differential Drug Response Phenotype Association 

In a separate analysis, we tested the relationship between pharmacogenes and drug response for all               
drugs using diagnosis codes in primary care data. We sought to identify pharmacogenomic             
phenotypes that would lead to a differential drug response phenotype, for example, instances             
where poor metabolizers have an increased risk of developing some side effect compared to              
normal metabolizers. For each drug included in the dosage analysis we identified all diagnoses in               
the primary care data in the year following the first exposure to the drug. Diagnosis codes in the                  
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primary care data are provided as Read Codes (version 2 and version 3), we mapped the Read                 
Codes to ICD-10 codes including only the first three digits (the chapter and first two numerals).                
ICD-10 codes from chapters V, W, X, Y, and Z were excluded from analysis. Codes were required                 
to have at least 100 events per drug to be included in the analysis. Diagnosis codes may represent                  
the primary disease indication for the drug, side effects, comorbidities, or other unrelated events. 

We used logistic regression to test the association between gene phenotypes and ICD-10             
code incidence for each drug. This was set up using a binary indicator as the response variable and                  
a one-hot encoding of gene phenotype. We included age (at time of first prescription), sex,               
genotyping array, and the first four principal components from a genotype PCA as covariates. 

We evaluated three tiers of drug-gene relationship, as in the maintenance dose analysis.             
Drug-gene pairs with CPIC guidelines, drug-gene pairs with any level of evidence in PharmGKB              
but no CPIC guideline, and an exploratory analysis. For the exploratory analysis of side effect               
relationships we limited our search to drugs known to interact with CYP2C9 , CYP2C19 , and              
CYP2D6, as indicated by DrugBank. These genes were selected because they are promiscuous             
metabolizing enzymes with well defined pharmacogenetics.  

3.  Results 

The pharmacogenetic analyses presented here included a total of 201,498 participants, after            
removing 20,615 participants not of European descent. More than 57 million prescriptions are             
contained within the primary care data, an average of 262 prescriptions per participant. Our initial               
drug list included 3,358 drugs. Of this, 200 were found in the UK Biobank prescription data with                 
sufficient counts to be included in subsequent analysis. 

3.1. Drug Dosage Association with Pharmacogenetics 

We sought to evaluate methods for testing the relationship between maintenance dose and             
pharmacogenes at a biobank scale. We performed this analysis using three groups of drug-gene              
pairs. Of the drugs with CPIC guidance for any of the nine genes queried, there were 24 that had                   
the minimum of 50 participants for whom a maintenance dose could be calculated. We find that                
nine of the drug-gene pairs have a significant difference in the dosage across gene phenotypes               
(Kruskal-Wallis or Jonckeere-Terpstra p < 0.05, Table 1). We do not adjust for multiple tests               
because these are known relationships not discoveries. Warfarin and CYP2C9 phenotypes had the             
most significant relationship (p ≅ 0, Jonckeere-Terpstra). The remaining twenty drug-gene pairs            
did not have a significant relationship between maintenance dose and gene phenotype. 

 

Pacific Symposium on Biocomputing 2021

188



 
 
 

Table 1. Drug-gene dose relationship results. Drug-gene pairs are presented in three            
groups: drugs with CPIC guidelines, without guidelines but PharmGKB evidence, and           
novel associations. Level of Evidence represents the maximum level of evidence for the             
drug-gene relationship in PharmGKB. p-values with a * are significant at p <= 8.6 x 10-6,                
bonferroni adjusted. Test indicates which type of test achieved the p-value shown            
(JT=Jonckheere-Terpstra, KW=Kruskal Wallis). Only results with a standard error less          
than 0.2 are included. 

Group Drug Gene 
Level of 
Evidence # Samples Test p-value 

CPIC guidance warfarin CYP2C9 1A 6,409 JT 0.00E+00 

 phenytoin CYP2C9 1A 459 KW 1.04E-05 

 azathioprine TPMT 1A 799 KW 9.13E-03 

 imipramine CYP2C19 2A 348 JT 1.10E-23 

 lansoprazole CYP2C19 2A 2,793 JT 2.52E-02 

 pantoprazole CYP2C19 3 114 JT 2.56E-02 

 simvastatin SLCO1B1 1A 34,611 KW 3.52E-02 

 warfarin CYP4F2 1A 4,559 KW 3.69E-02 

 paroxetine CYP2D6 1A 2,804 KW 4.22E-02 

No guidance warfarin CYP2C19 3 6,410 KW 2.22E-14 

 nicotine CYP2B6 3 391 JT 6.38E-04 

Novel associations cyclosporine CYP2C19 NA 166 JT 1.87E-05* 

 rabeprazole CYP2C9 NA 223 JT 4.55E-05* 

We then investigated association between maintenance dose and gene phenotype for           
drug-gene pairs with any level of evidence in PharmGKB but no CPIC guideline. We found two                
drug-gene pairs with a p-value less than 0.05 for either the Kruskal-Wallis test or              
Joncheere-Terpstra trend test (Table 1). The most significant was the Kruskal-Wallis test for             
warfarin and CYP2C19 phenotype. Investigating the dose relationship with phenotype reveals that            
CYP2C19 normal metabolizers have a decreased maintenance dose compared to the other            
CYP2C19 metabolizer classes (Figure 1, second row, first column). We followed up on this              
finding by interrogating the association between rs3814637 and warfarin maintenance dose. 

The intronic variant rs3814637 within CYP2C19 has been previously reported to be            
associated with warfarin response14–16. This variant is contained within several CYP2C19 star            
alleles: CYP2C19*1.004 , CYP2C19*1.005 , and CYP2C19*15.001 , all of which are normal          
functioning alleles. We observed that normal metabolizers had an average daily dose of 4.8 mg               
(compared to 5.3 mg for the other metabolizer classes). We then tested the association between               
rs3814637 and warfarin maintenance dose. We find a significant relationship between rs3814637            
dosage and warfarin maintenance dose ( p <= 1.0 x 10-46, two-sided Jonckheere-Terpstra, Fig. 2). 
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Figure 1. Box plots of maintenance dose for most significant drug-gene pairs. The top two most significant pairs are 
shown for each group (columns). Enzyme metabolizer classes are represented along the x-axis and the distribution 

of maintenance dose along the y-axis. 

We then analyzed the relationship between maintenance dose and gene phenotype for            
drug-gene pairs that had no previous indication of a pharmacogenetic relationship but are known              
to interact. We tested 581 drug-gene pairs and found two significant relationships between dose              
and gene phenotype: cyclosporine and CYP2C19 , and nicotine and CYP2B6 (p < 8.6 x 10-6,               
Jonckheere-Terpstra, bonferroni adjusted, table 3: Novel associations).  

 

Fig. 2. CYP2C19 intronic variant rs3814637 has a strong influence on warfarin maintenance dose. The x-axis 
indicates the alternate allele dosage. The y-axis is the maintenance dose. 
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3.2. Differential Drug Response Phenotype Association  

We investigated the degree to which adverse drug reactions related to pharmacogenetics could be              
discovered by performing a statistical analysis of pharmacogene phenotypes and coded medical            
events within a one year window following the first administration of a drug. We again evaluated                
three drug-gene groups starting with drug-gene pairs with CPIC guidelines (Table 2, CPIC             
Guidance Group). The most significant side effect is a decreased incidence of herpes zoster              
diagnoses among CYP2C19 intermediate metabolizers ( p  <= 8.76 x 10-5).  
 

Table 2. Drug-gene side effect relationship results. Associations are presented in three groups: drug-gene pairs with                
CPIC guidelines, pairs with no guidelines but evidence in PharmGKB, and novel associations. Phenotype is the gene                 
phenotype (IM: Intermediate Metabolizer, PM: Poor Metabolizer, RM: Rapid Metabolizer, UM: Ultrarapid            
Metabolizer, IF: Increased Function, PF: Poor Function). Odds ratio is the odds ratio relative to normal metabolizer                 
or normal function alleles. * indicates significance with Bonferroni adjusted p-value threshold of 1.0 x 10-5. Only                 
results with a standard error less than 0.2 are included. 

Group Drug Gene 
Level of 
Evidence Phenotype ICD-10 Code definition 

Odds 
ratio p-value 

CPIC 
Guidance 

citalopram CYP2C19 1A IM B02 Herpes zoster 0.53 8.76E-05 

simvastatin SLCO1B1 1A IF M65 Synovitis and tenosynovitis 1.82 1.42E-04 

 amitriptyline CYP2C19 1A RM R53 Malaise and fatigue 1.55 1.74E-04 

 amitriptyline CYP2C19 1A UM J30 Vasomotor and allergic rhinitis 1.94 2.75E-04 

 codeine CYP2D6 1A PM A52 Late syphilis 1.78 3.30E-04 

 ibuprofen CYP2C9 1A PM E13 Other specified diabetes mellitus 2.00 4.90E-04 

 clopidogrel CYP2C19 1A RM B08 Viral infections characterized by skin and 
mucous membrane lesions 

0.59 5.17E-04 

 tamoxifen CYP2D6 1A IM C50 Malignant neoplasm of breast 0.62 6.98E-04 

 simvastatin SLCO1B1 1A PF M79 Unspecified soft tissue disorders 1.49 7.46E-04 

 simvastatin SLCO1B1 1A DF M65 Synovitis and tenosynovitis 1.79 7.75E-04 

No 
Guidance 

citalopram CYP2D6 3 IM J45 Asthma 1.44 9.13E-05 

citalopram CYP2D6 3 IM I50 Heart failure 1.56 1.12E-04 

 simvastatin CYP2C9 3 PM J01 Acute sinusitis 1.74 1.56E-04 

 citalopram CYP2D6 3 IM J64 Unspecified pneumoconiosis 1.56 5.74E-04 

 propranolol CYP2D6 4 IM O86 Other puerperal infections 1.85 6.38E-04 

Novel 
associations 

diazepam CYP2C9 NA PM M19 Osteoarthritis 2.33 4.52E-06* 

zopiclone CYP2C9 NA IM H91 Unspecified hearing loss 2.20 1.73E-05 

 loratadine CYP2D6 NA IM M16 Osteoarthritis of hip 1.98 1.20E-04 

 tramadol CYP2B6 NA PM H61 Disorders of external ear 1.95 1.86E-04 

 quinine SLCO1B1 NA IF N39 Disorders of urinary system 1.95 1.87E-04 

Next we looked to see if there are any differential drug response phenotypes enriched              
among drug-gene pairs with any level of evidence but no CPIC guideline. The top five results are                 
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shown in Table 2 under “No Guidance”. We find several phenotypes enriched among CYP2D6              
intermediate metabolizers taking citalopram, including respiratory issues and heart failure. We           
also find an increased risk of sinus infections among CYP2C9 poor metabolizers on simvastatin,              
and an increased risk of puerperal infections among CYP2D6 intermediate metabolizers on            
propranolol. 

We interrogated all other drugs known to be metabolized by CYP2C9, CYP2C19, or             
CYP2D6 for differential drug response phenotypes. This resulted in 4,806 independent association            
tests across 81 drugs. After multiple hypothesis corrections one side effect was significantly             
associated with a drug-gene pair: increased incidence of osteoarthritis in CYP2C9 poor            
metabolizers after taking diazepam. We show the top five results from the exploratory analysis in               
Table 2.  

4.  Discussion 

Biobanks offer a powerful solution for enabling the study of relationships between drugs and              
genes. Large datasets linking genetic and longitudinal clinical data are becoming more broadly             
available and allow interrogation of the relationship between drug response and pharmacogenetic            
phenotypes. Here we derived drug phenotypes in the form of maintenance dose and differential              
drug response phenotypes for more than 200,000 participants across 200 drugs in the UK Biobank               
and tested their association with well established pharmacogenetic phenotypes for nine genes.  

Pharmacogenetic testing is not yet common practice, but for some drugs the standard             
clinical procedures used to determine maintenance dose are influenced by genetics. We find             
evidence to support existing pharmacogenetic associations with maintenance dose. Among 24           
drugs with CPIC guidance in our study we find evidence for a genetic influence on maintenance                
dose for nine drugs. For the remaining pairs with guidance, it is possible we are not likely to                  
observe an association with maintenance dose because efficacy is difficult to measure or side              
effects are rare. Among drugs with any prior evidence of a pharmacogenetic relationship but no               
CPIC dosage guideline we find that maintenance dose supports the association for two drug-gene              
pairs. Most notably, carriers of the CYP2C19 intronic variant rs3814637 have a significantly             
decreased warfarin maintenance dose. The causal mechanism through which this effect occurs is             
unclear, and this variant itself may not be causal, rather in linkage disequilibrium with a causal                
variant. In GTEx, rs3814637 is associated with increased expression of CYP2C9 (the gene             
typically associated with warfarin response) in several tissues, although importantly not in liver.             
There is a gap in the amount of warfarin dosing variability that can be explained by genetics                 
among individuals of African descent17. rs3814637 has nearly twice the allele frequency in the              
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African population as it does in the European population (11.6% vs 6.7%)18. Although this study               
focuses on Europeans, this variant may explain some of the missing heritability of warfarin              
response among Africans, but further study is needed to confirm this relationship. 

We discovered potential novel pharmacogenetic associations with maintenance dose for          
two drugs: cyclosporine with CYP2C19 , and nicotine with CYP2B6 . Both drugs are known to be               
metabolized by their respective associated enzymes, however there is no prior literature evidence             
suggesting a pharmacogenetic relationship. For both drugs, we find a decreasing association            
between dose and metabolizer class of their associated enzymes, where individuals with higher             
rates of metabolism tend to be on lower doses.  

Our analysis of differential drug response phenotypes reveals associations with side effects            
among drug-gene pairs. This analysis is limited due to the large number of tests requiring a strict                 
multiple hypothesis testing threshold, but produces interesting hypotheses. At first glance many of             
the differential phenotype associations seem unlikely, but literature evidence exists for many of             
the findings. For example, the most significant association among drugs with CPIC guidelines was              
a decreased incidence of herpes zoster among CYP2C19 intermediate metabolizers compared to            
CYP2C19 normal metabolizers treated with citalopram. However, two previous studies have           
demonstrated that SSRIs can lead to increased resistance to herpes19,20. CYP2C19 intermediate            
metabolizers have an increased blood concentration of citalopram and may have an increased             
resistance to a herpes infection. We also find CYP2C19 rapid metabolizers on clopidogrel have a               
decreased risk of viral skin lesions compared to CYP2C19 normal metabolizers. There is evidence              
that clopidogrel may inhibit viral clearance 21. It may be possible that CYP2C19 rapid metabolizers              
have a lower concentration of clopidogrel and therefore the degree to which they are able to fight                 
off viral infections is higher than that of CYP2C19 normal metabolizers. The most significant              
association is between CYP2C9 poor metabolizers on diazepam having an increased incidence of             
osteoarthritis. There is no literature that suggests osteoarthritis may be a side effect of diazepam,               
although there are studies that suggest diazepam could be used to treat pain as a result of                 
rheumatoid arthritis. Without further evidence we cannot say whether this relationship results from             
pharmacogenetics and not a correlation with the drug indication or a statistical artifact. 

This work has several limitations. First, we use pharmacogenetic alleles called from data             
imputed from genotyping arrays. We previously reported limitations in accuracy of the ability to              
accurately call alleles in several pharmacogenes from imputed data, notably in CYP2D6 8. The lack              
of structural variants in the dataset in addition to the inability to call rare variants may lead to                  
inaccurate prediction of CYP2D6 phenotypes. Second, we broadly apply our maintenance dose            
algorithm to drugs in the UK Biobank. While this is effective for some drugs, better clinical end                 
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points may provide an improved representation of patient response. For example, a dose response              
curve may provide more fine grained insight into individual response and yield better insight into               
the genetics of drug response. It is challenging to broadly define response across drugs from               
numerous classes with varying indications and therapeutic indices. Even a single drug can be used               
for different indications and may require different doses to treat each indication. Additionally, this              
approach will miss patients who take a drug once and experience side effects that lead them to                 
immediately switch drugs. No catch-all definition will suffice, but maintenance dose does reveal             
insight into patient response. Third, the data we used to define drug usage is in the form of                  
prescription orders. We do not know whether the prescriptions were filled or if the patient took the                 
drug as prescribed. Finally, we do not provide any clinical validation of the predictions presented               
here; further followup is needed. 

Biobanks are an immense resource that allow for pharmacogenetic association testing at an             
unprecedented scale. Longitudinal clinical data is critical to be able to define drug response              
phenotypes in order to accurately assess patient response to treatment and ultimately test genetic              
associations. As access to biobanks continue to expand and more data is available, the ability to                
perform pharmacogenetic studies at large scale will increase. We believe that these resources offer              
a promising avenue for discovery and will further advance the field of pharmacogenetics. 
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ParKCa: Causal Inference with Partially Known Causes

Raquel Aoki† and Martin Ester

School of Computing Science, Simon Fraser University
Burnaby, Canada

†E-mail: raoki@sfu.ca

Methods for causal inference from observational data are an alternative for scenarios where
collecting counterfactual data or realizing a randomized experiment is not possible. Our
proposed method ParKCA combines the results of several causal inference methods to learn
new causes in applications with some known causes and many potential causes. We validate
ParKCA in two Genome-wide association studies, one real-world and one simulated dataset.
Our results show that ParKCA can infer more causes than existing methods.
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1. Introduction

The vision of precision medicine is the development of prevention and treatment strategies that
take individual variability into account.1 Precision medicine promises to allow more precise
diagnosis, prognosis, and treatment of patients, based on their individual data. In the context
of precision medicine, it is important to understand the leading causes of the outcome of
interest, which can be achieved using causal discovery methods. Drug response and adversarial
drug reactions are examples of an outcome of interest, and OMICS data record potential causes
and confounders.

The gold standard of causal inference is based on experimental design, with randomized
trials and control groups, which is not always available due to the lack of the full experiment
and counterfactual data, either because it is too expensive or impossible to collect. Therefore,
there is a rise of more data-driven methods, based on observational data, to either perform
causal discovery or estimate treatment effects.2–4 Furthermore, some applications, such as
Driver Gene Discovery,5 have a few causes that are well known. Most of the existing methods
use these only to evaluate or to eliminate edges on constraint-based causal discovery methods.

To handle computational biology (CB) applications with thousands of treatments, unob-
served confounders, and partially known causes, we propose ParKCa: a method that uses the
few known causes to learn new causes through the combination of causal discovery methods.
The intuition is that ParKCa will learn how to identify causes based on the outputs of the
other methods (similar to ensemble learning) and a few known examples. ParKCa has many
advantages. First, leveraging several methods instead of using a single one can minimize biases
and highlight patterns common across the methods. Second, it allows the use of known causes

c© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and 
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 
4.0 License.
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to help identify new causes. Finally, it also allows the combinations of several datasets that
share the same set of possible causes but might differ in the datatype or set of rows.

The proposed method ParKCa is validated in a simulated dataset and on the driver gene
discovery application. The existence of associations between cancer and specific genes is well
accepted in the precision medicine field. However, the human body has more than 20,000
genes, and not all genes mutations lead to cancer.5 Hence, the challenge here is to recognize
those genes that are associated with cancer spreading from the original site to other areas of
the body (metastasis) through causal inference. These genes are known as driver genes and
play an important role in cancer prevention and treatment.

There are many challenges around driver gene discovery. The progress in sequencing tech-
nology and the lower cost of collecting genetic information allowed the creation of datasets
such as The Cancer Genome Atlas (TCGA). However, the number of columns (genes) is often
much larger than the number of rows (patients), which poses a challenge for machine learning
models. The partially known dependence between genes due to pathways is also a challenge.
Pathways are sets of genes where the alteration or mutation in one gene can cause changes
in other genes that share the same pathway.6 Additionally, some elements that cause cancer
might not be included in the dataset. Examples of attributes not observed are the structured
clinical information about the patient, such as their lab results and lifestyle. Finally, the lack
of a well-defined training set is also a challenge that makes the evaluation of results tricky.
There is no ‘true’ list of driver genes to evaluate the quality of the machine learning models.7–9

Table 1. Toy example of the transposed input data (on the left) and output data (on
the right). Note that in the input data we have Y and in the outcome data, the known
causes.

Gene 1 ... Gene V Y L1 L2 Known Cause
Patient 1 7.39 ... 1.60 0 Gene 1 -1.2 -2.4 1
... ... ... ... ... → ... ... ... ..
Patient J 3.25 ... 2.73 1 Gene V 0 12.3 0

A toy example is shown in Table 1. The goal is to learn which genes among V genes are
causally associated with a phenotype Y from a dataset with J patients as in the left side of
Table 1. The input data represents the gene expression of patients, and it is used to fit the
level 0 models L1 and L2. The right side of Table 1 shows the output data, constructed with
the learners’ output. We add to the output an attribute with the partially known causes.

The main contributions of this paper are as follows:

• We introduce the problem of causal discovery from observational data with partially
known causes. We are the first ones to formalize it as a stacking problem.

• We propose ParKCa, a flexible method that learns new causes from the outputs of
causal discovery methods and from partially known causes.

• ParKCa is validated on a real-world TCGA dataset for identifying genes that are
potential causes of cancer metastases and on simulated genomic datasets.
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2. Related Work

Our work combines several research areas:
Causality: Motivated by the need for models that are more robust, reproducible, and

easier to explain, causality has received a lot of attention. Constraint-based and score-based
causal discovery methods, such as PC-algorithm,10 fast PC-algorithm,11 FCI,12 RFCI,13 and
fGES,14 are still largely used. Their main goal is to recover the causal structure that fits the
observed data. However, these methods have a poor performance on large dimensional datasets
and/or assume causal sufficiency, suppositions that fail on most of the computational biology
(CB) applications.

Deep learning models are making significant contributions to the estimation of treatment
effects in the past years.2,3,15 BART16 uses the Conditional Average Treatment Effect (CATE)
to estimate the treatment effects has been successful in many applications. Finally, the De-
confounder Algorithm (DA),4 combines probabilistic factor models and outcome models to
estimate causal effects. Considering the challenge of learning causes from several datasets,
Tillman and Spirtes17 proposed a method to learn equivalence classes from multiple datasets.
A limitation of this work, however, is the lack of scalability to large dimensional datasets.

Ensembles: Our work is based on stacking ensemble.18 Its main idea is to use several
learners models whose outputs are combined and used as input for fitting a meta-model. The
idea of using an ensemble approach to calculate causal effects is not new.19,20 Instead of using
ensemble learning to make more accurate causal effect estimates, our work focuses on using
ensemble learning to discover new causes. We adopted commonly used meta-learner models
(Logistic Regression, Random Forest, Neural Networks, and others), and we also explore
PU-learning classification models,21–23 a sub-class of semi-supervised learning. Our method
performs a classification task with the meta-learner on the level 1 data D1

V×L and a new
variable that encodes the known causes. The labels are Y 1

v = 1 for well-known causes and
Y 1
v = 0 for non-causal or unknown causes. In other words, the classification learns from positive

(known causes) and unlabeled (not causal or unknown causes) data.
Driver Gene Discovery (real-world dataset): Spurious correlations or associations

between genes and metastasis are common. Therefore, the challenge lies in identifying those
genes that are true causes (driver genes) of the underlying condition, not just associ-
ated with it. In our real-world dataset, we want to find genes that contribute to cancer
metastasis development. In this condition, cancer spreads from the original site to other
areas. Previous methods that explored this application are: MuSiC,7 OncodriveFM,24 Ac-
tiveDriver,25 TUSON,26 OncodriveCLUST,27 MutsigCV,28 OncodriveFML,29 20/20+ (https:

//github.com/KarchinLab/2020plus), and others.6,8 The first challenge of this application
is the large number of genes (possible causes) along with the small sample size and the known
(and unknown) dependencies among genes, which adds a certain complexity to the problem.
The existence of confounders, some possible to be observed (such as clinical information),
others not (such as family history or lifestyle)5 poses another challenge. Finally, the limited
and biased list of known driver genes30 also needs some attention.9 This list, here referred to
as Cancer Gene Census (CGC), is the gold-standard of driver genes currently available.
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3. The ParKCa Method

ParKCa deals with causal discovery from a stacking ensemble perspective with some adap-
tations. Typically, each causal discovery method is estimated individually, and their results
compared. In ParKCa, we use the causal discovery methods’ outputs as a classifier’s features
to learn how these methods agree to identify new causes based on a few known causes used
as examples. According to the stacking nomenclature, the causal discovery methods are our
learners, and the classification model is our meta-learner, as shown in Figure 1.

Fig. 1. Illustration of the ParKCa method. From d datasets/subsets with Jd columns (examples)
and V rows (possible causes), L× d outputs are extracted using L level 0 models. These outputs are
aggregated in a single dataset D1

V×(L∗d). In this step, we also add the partially known causes Y 1 and

fit a meta-learner model to predict new potential causes.

Compared to a standard stacking model, the first modification required by our approach
is how we feed the learners. Unlike stacking used as a predictive model, where the goal is
to maximize the accuracy of the predictions, we focus on the features (potential causes).
Therefore, a learners fL receives a transpose(D0

V×J) as input data. The outcome of interest Y 0
J

can be easily added using the transposed level 0 data. In our real-world dataset, Y 0 encodes
if the patient had cancer metastasis or not. The learners’output is one value per feature v ∈
{1, ..., V }. The second modification is how we create level 1 data. Traditionally, to avoid data
leaking and overfitting, stacking learning models use cross-validation to make the predictions
used on level 1 data. The same is not possible in our approach: subsets of the possible causes
would violate assumptions, such as causal sufficiency. Instead, we use bootstrapping on the
transposed level 0 data. By doing so, we can decrease biases and test the significance of
coefficients when suitable.

All assumptions that the learners make, such as discrete treatments, also need to be
satisfied. ParKCa requires the number of possible causes V to be sufficiently large to be able
to fit the meta-learner. As an ensemble method, ParKCa requires sufficient diversity among
the learners. We check the diversity with the averaged Q statistics31 over all pairs of classifiers.
Considering two learners, fi and fj, and the number of True Positives (TP), True Negatives
(TN), False Positives (FP) and False Negatives (FN) from a confusion matrix between the two
learners, the Q Statistic is Qi,j = TP×TN−FP×FN

TP×TN+FP×FN , and Qi,j ∈ [−1, 1]. The diversity increases
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when the learners commit errors in different objects, resulting in a negative or close to zero
Qi,j. For L learners, the average Q is defined as:

Qav =
2

L(L− 1)

L−1∑
i=1

L∑
j=i+1

Qi,j (1)

3.1. Learners

ParKCa starts by fitting the learners, also called level 0 models. As Figure 1 shows, the
transpose(D0

V×J) is the input of the learners fl,∀l ∈ [1, L]. The level 0 models of ParKCA
are causal discovery methods or models that estimate the treatment effect, and their output
concatenated is the level 1 data D1

V×L. The learners employed must have all their assumptions
satisfied for the validity of the results. The Deconfounder Algorithm (DA),4 for example,
requires a predictive check of its latent variables. Therefore, it is necessary to verify if the
factor model passes the predictive check.

Defining φ(v,l) as the outcome from learner fl and potential cause v, the value φ(v,l) can be
continuous or discrete depending on the outputs of the learners. The outcomes φ(v,l)∀v ∈ V
and ∀l ∈ L aggregated form the level 1 data D1

V×L. Optionally, one might choose to set all
non-causal variables to 0. In this case, if v is a non-causal variable according to method fl,
then D1

v×l = 0, else, D1
v×l = φ(v,l).

Some methods, such as models that estimate treatment effects, might benefit from using
bootstrapping to decrease biases and, when suitable, perform a statistical test for H0 : φ(v,l) = 0

or H1 : φ(v,l) 6= 0. To use bootstrap, we suggest the following steps:

(1) Take B samples of size J ′ = b0.9 ∗ Jc from transpose(D0
J×V ) and fit the learner fl in

each sample D0
J ′×V saving the estimated outputs φ(v,l),b; then, set D1[v, l] = 1

B

∑B
b=1 φ(v,l),b

(Strong Law of Large Numbers)
(2) (Optional) Apply a two-tailed test to check the hypothesis test with the sample
{φ(v,l),1, ..., φ(v,l),B}. If p-value ≤ 0.05, reject H0 and set D1[v, l] = 1

B

∑B
b=1 φ(v,l),b, else 0.

According to the Strong Law of Large Numbers, let {φ(v,l),1, ..., φ(v,l),B} be independent
identically distributed random variables with E|φ(v,l),b| < ∞, then the average of the samples
converges to the true mean when B is sufficient large.

ParKCa assumes that the number of possible causes V is sufficiently large to fit a meta-
learner. Therefore, the learners must be robust to large datasets. A few examples are the
RFCI13 and fGES14 work well in applications where there are no unobserved confounders; the
PC-algorithm fast11 is robust to unobserved confounders, but its performance in large datasets
is poor; the DA32 and CEVAE3 are suitable to applications with unobserved confounders.

To validate ParKCa, in the experiments we worked with three methods: the Deconfounder
Algorithm (DA)a,4 BART,16 and CEVAE.3 The main idea behind DA is to learn latent features
as a substitute for unobserved confounders. Then, use the data augmented with the latent

aThere is an ongoing discussion about DA, with some recent criticism33,34 and extra clarification35

presented. ParKCa assumes that the original work4 is correct. However, in case the reader is uncom-
fortable with the use of this method, we recommend to replace it with other suitable learner.
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variables to make the causal inference through an outcome model. The use of proxies to
replace true confounders in causal inference analysis36 will also be employed on the BART
model. BART makes data interventions to estimate the conditional average treatment effect
(CATE). For each possible cause v ∈ {1, ..., V }:

CATEv = E[Y |X = x, do(Xv = a), Z]− E[Y |X = x, do(Xv = 0), Z] (2)

where Xv = 0 represents the intervention component on the observed data Xv = a and Z

the estimated proxies. Finally, CEVAE infers causal effects from observational data and is
robust to unobserved confounders. Based on Variational Autoencoders (VAE), it tries to si-
multaneously discover the hidden confounders and infer how they affect the treatment and
output.

The learners of our experiments were selected to satisfy the requirements and assumptions
of the application. We would like to emphasize that ParKCa is not limited to these learners.

3.2. Meta-learner

The level 1 dataset D1
V×L records the outputs of L learners for V possible causes. If multiple

level 0 datasets are being used, then the format is D1
V×L∗d, where d is the number of level 0

datasets (see Figure 1). The prior knowledge about known causes is added as a new attribute
Y 1, where Y 1

v = 1 if v is a known cause, and 0 otherwise. Note that, unless all the possible causes
are known, some true causes will be labeled as 0. ParKCa uses binary classification models
as meta-learners. The level 1 data contains only positive or unlabeled examples, so we tested
PU-learning classification models and compared their results with traditional classification
models (Logistic Regression (LR), Random Forest (RF), and Neural Network (NN)).

The PU-learning model Adapter-PU22 uses a traditional probabilistic classifier co(X) such
that co(X) = p(Y = 1|X) is as close as possible. This method assumes that the labeled positive
examples are randomly selected among all true positive examples. Unbiased PU (UPU)23 is
another PU-learning model adopted. UPU is a convex classification method that aims to cancel
the bias from the unlabeled data being a mix of positive and negative examples by using a
loss function for positive examples and another loss function for unlabeled examples.

The traditional binary classification models consider all unlabeled examples as negatives
examples or non-causal variables, which can add bias and noise to the predictions. A majority
vote ensemble from the methods described above is also used. Finally, a random model is also
compared. The random model assigns the labels 1 and 0 according to the proportion of 1’s
and 0’s in the training data.

4. Experiments

We performed experiments to validate our method on two Genome-wide association studies
(GWAS) datasets, a real-world dataset, and a simulated dataset.
Real-world dataset: We use The Cancer Genome Atlas Program (TCGA) dataset, which
has available the gene expression (RNA-seq) of patients with cancer. The data pre-processing
is described in the Supplemental Material A.1, and the level 0 dataset from this application
has 7066 genes and 2854 patients, of which 1039 (36%) have metastases. From the 7066 genes,
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681 (9%) are known driver genes.30 These known driver genes are our positive examples in the
meta-learner models. For this application, we also worked with multiple datasets considering
their clinical information, such as gender and cancer type.
Simulated datasets: We simulated GWAS data following the scheme described by Wang
and Blei4 and Song et al.,37 illustrated with more details in the Supplemental Material A.2.
Single nucleotide polymorphisms (SNPs), the most common type of genetic variation among
people, is the datatype adopted. We simulated 10 independent datasets, with 5000 individuals
and 10000 SNPs, and confounders. 10% of these SNPs were set to be causal of a binary trait.

To validate our method, we first evaluate the learners adopted. Then, we check if ParKCa
indeed contributes to detecting more causes. We also verify for the simulated dataset if ParKCa
can be used to make better estimates of the treatment effect. Finally, as an extra analysis,
we compare our results in the real-world dataset with the state-of-art methods in driver gene
discovery. We say ‘extra’ because these methods are not standard causal discovery methods
but aim to solve the same problem.

Evaluation of the learners: We adopted DA with the probabilistic PCA38 as a factor
model and Logistic Regression with the elastic net as an outcome model. In our experiments,
increasing the number of the latent variables did not improve the results (See Supplemental
Material B.1); thus, we adopted k = 15. The DA models passed the predictive check with
k = 15 (average p-value= 0.7181 at real-world dataset and 0.5381 on the simulated dataset).

The ROC curves of the learners on level 0 data were also evaluated (Supplemental Material
B.2). To construct the ROC curves, we split the transposed dataset D0

V×J into training (67%)
and testing set (33%). Thus, each set has all the possible causes and a subset of the samples.
Using the models fitted on the training set, we predicted the outputs for the testing set, which
is the outcome of interest at level 0. We used 12 learners on the real-world dataset: BART +

3 datasets (all patients, female and male patients), and DA + 9 datasets (all patients, female
and male patients, and six groups of patients with same cancer type). All level 0 models
had an excellent performance, except for 4 DA models constructed using datasets based on
cancer type. Therefore, we removed the outputs obtained through datasets based on cancer
types ESCA, LIHC, PAAD, and SARC from the level 1 dataset. In the simulation study,
we repeated the experiment ten times, once for each simulated dataset, and reported the
rate of True Positives and False Positives using either CEVAE or DA for each repetition.
All learners had a good performance in predicting the outcome of the level 0 datasets. The
CEVAE’s convergence plots indicate that the model converges after 40 epochs on average.
Some randomly selected convergence plots are shown in the Supplemental Material B.3.

The last step of the learners’ evaluation is checking the diversity among the final level 0
models measured by Qav. Negative values of Qav indicate diversity because the learners are
committing errors on different objects. The learners used on the real-world dataset about
driver gene discovery has diversity equal to −0.013, and the average diversity of the learners
used with the simulated dataset was −0.051, from which we conclude there is diversity among
the learners adopted in our experiments.

Learners versus Meta-Learners: This comparison is the core of our validation process.
Here, we investigate if adding an extra layer in ParCKa, the meta-learner, contributes to
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discovering more causes. Therefore, we compare the learners and the meta-learners capacity
of identifying causal variables. The learners are used individually to predict if a variable is
causal according to their metrics and definitions. These predictions are compared with the
meta-learners’ predictions Ŷ 1.

(a) Real-world dataset: Comparison between learn-
ers and ParKCa meta-learners to recover causes.

(b) Simulated dataset: Comparison to identify
causes with different proportions of known causes.
Large F1-score indicate good models.

(c) Simulated dataset: PEHE on the level 1 test set. Small PEHE indicates good models.

Fig. 2. Causal discovery task evaluation. The learners consider only the original data; ParKCA
meta-learners use the learners’ outputs and partially known causes to identify more causes.

The DA considers variables significantly different from 0 in the outcome model as a causal
variable. BART and CEVAE do not have a similar metric, and they only provide treatment
effect estimates. One option is using the bootstrap method explained earlier to fit a confidence
interval and check if the treatment effect estimated is significantly different from zero. In our
experiments, however, we obtained better performance by assigning the 10% largest estimated
treatment effects as causal variables and setting the other variable as non-causal. The learners
are compared individually against 6 meta-learners (UPU, Adapted-PU, Logistic Regression -
LR, Random Forest - RF, Neural Network - NN, Ensemble - E), and a random model.

To perform a fair comparison between learners and meta-learners, we split the level 1
data into training and testing sets. We calculated the precision and recall using only the
predicted values for the testing set, and the list of known causes as ground truth. The results
for the real-world data are shown in Figure 2a. While meta-learners and learners models
have similar precision, meta-learners tend to have much better recall then learners. Overall,
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ParKCa has fewer causal variables undetected (False Negatives) than the learners. Figure 2b
shows the average F1-score on the simulated datasets versus the proportion of known causes.
The proportion of known causes represents how much of the true causes ParCKa has access:
if ParKCa knows 40% of the causes, during the training phase, we randomly label 40% of
the true causes as 1 and the other 60% as 0, to replicate what we usually encounter in the
real-world.We observe that even when ParKCa can access to only a small proportion of true
causes, it performs better than the existing baselines, which are independent of the percentage
of known causes. The meta-learners, except for the RF, have a higher average F1-score even
when only 10% of the causes are known. These results validate our claim that the stacking
approach used by ParKCa can identify more causes then existing methods when some causes
are known. All meta-learners, except the RF, seem to be independent of the proportion of
known causes on the testing set, which points out another ParKCa’s quality: even a small
portion of known causes can produce better results than traditional methods. These results
sustain our claim that the stacking approach (ParKCa) is capable of identifying more causes
than isolated causal methods (learners).

Treatment Effect Estimates: We investigate a secondary result of the learners used
on the simulated datasets, the estimation of treatment effect. We compare the Precision in
Estimation of Heterogeneous Effect (PEHE)3,16 of our approach against that of the learners
used in dependency from the percentage of known causes. PEHE = 1

N

∑N
i=1((yi1 − yi0) −

(ŷi1 − ŷi0)), where yi1 and yi0 are the true treatment effects, and ŷi1 and ŷi0 are the estimated
treatment effects. This scenario requires known treatment effect estimates, which are hardly
ever available in real-world applications. However, this experiment can easily be performed on
a simulated dataset, and its results collaborate with our claim that ParKCa finds better results
than the learners. We adopted a simple linear regression model as a meta-learner, and we split
the level 1 data into training and testing sets. We compared the PEHE of the meta-learner
with CEVAE and DA on the test set. Figure 2c shows the PEHE for the causal variables in
the left and for all variables on the right. The average PEHE for the ParKCa meta-learner
is similar to that of DA when only 10% of the causes are known; however, it decreases when
more causes are known in both plots. These results point out an alternative use of ParKCa
for treatment effect estimation.

Comparison between ParKCa and other baselines: We compared our results from
the real-world dataset with reported results from eight driver gene discovery methods analyzed
using the Cancer Gene Census (CGC).9 The baselines are MutsigCV, ActiveDriver (AD), Mu-
SiC, OncodriveCLUST (ODC), OncodriveFM (ODFM), OncodriveFML (ODFML), TUSON,
and 20/20+. Their approaches vary from analysis of somatic point mutations, mutation signif-
icance, functional impact and clusters of somatic mutations, and Random Forest of previous
driver genes methods. These baselines are not considered causal discovery methods, which is
why we did not use them as learners, but are strong methods that try to solve the same prob-
lem on the real-world dataset. We remind the reader that ParKCA takes partial knowledge
of causal genes and genomic data as input, while the compared methods only have genomic
data as input, but use multiple and more sophisticated types of genomic data. We used the
results reported by Tokheim et al.9

Pacific Symposium on Biocomputing 2021

204



(a) (b)

Fig. 3. (Real-world dataset) Comparison between driver gene discovery baselines and ParCKa. The
goal is to predict driver genes (causal variables) correctly. Large Recall, Precision, and F1-score
indicate good models. The score reported is from the full real-world dataset.

It is important to point out that the choice of what is considered a good driver gene
discovery model is also an open question. Large recall and small precision indicate models
that can recover many known driver genes at the cost of a high rate of False Positives (FP).
One can interpret this as a bad model because the true driver genes are lost in the middle
of the FP, while others might think that this is an indication of a larger number of unknown
driver genes yet to be discovered and explored. On the other hand, high precision and low
recall indicate models good at identifying certain driver genes; however, they fail to identify
a broader range of them, reflected by a large number of False Negatives (FN). The F1-score
summarizes these measures by giving the same importance to both of them. Figure 3a indicates
that ParKCA meta-learners have a larger recall (0.69 on average) and smaller precision (0.16
on average). On the other hand, the baselines have lower recall (0.17 on average) and larger
precision (0.28 on average). Figure 3b shows that ParKCA with RF has the largest F1-score,
which is almost the double of the largest F1-score from the baseline methods. Overall, ParKCa
has competitive results when compared to existing driver gene discovery methods.

5. Discussion and Conclusion

Our proposed method ParKCa demonstrated excellent results in the experiments. For small
percentages of known causes, Adapter-PU was the meta-learner with the best performance.
Furthermore, there was almost no difference between PU models and traditional classification
models when the percentage of known causes was above 70%. If the unlabeled examples are
mostly negative, the contribution that PU methods can make is limited, and PU classification
reduces to traditional binary classification.

While our simulations show the efficacy of our method, we highlight that in practice, the
results crucially depend on the list of known causes. If this list is comprehensive and includes
causes with diverse behaviors, ParKCa will likely succeed in its task. On the other hand, if
the list is biased towards certain characteristics, our method might only identify causes with
behavior similar to the known examples. Furthermore, ParKCa performance also relies on the
assumptions of the level 0 learner’s being met.
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In conclusion, we believe our proposed method ParKCa makes important contributions
to the causal discovery and causal inference. ParKCa exploits partial knowledge of causes, is
flexible, robust, easy to use, and demonstrated promising results on a real-life dataset and
in simulations. After narrowing down from thousands or millions of potential causes, the
causes detected by ParKCa can be better explored and confirmed thought rigorous laboratory
studies. Improvements in causal discovery and causal inference methods that work on CB
applications can bring many other benefits beyond the development of sophisticated causal
discovery techniques. A successful approach has the potential to significantly improve therapy
recommendations, working towards the goal of precision medicine to provide the “right drug
at the right dose to the right patient”.1

Supplemental Material:

sites.google.com/view/raquelaoki/publications/parkca-supplemental-material

Code: https://github.com/raquelaoki/ParKCa
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Acute infection, if not rapidly and accurately detected, can lead to sepsis, organ failure and
even death. Current detection of acute infection as well as assessment of a patient’s severity
of illness are imperfect. Characterization of a patient’s immune response by quantifying
expression levels of specific genes from blood represents a potentially more timely and pre-
cise means of accomplishing both tasks. Machine learning methods provide a platform to
leverage this host response for development of deployment-ready classification models. Pri-
oritization of promising classifiers is dependent, in part, on hyperparameter optimization for
which a number of approaches including grid search, random sampling and Bayesian opti-
mization have been shown to be effective. We compare HO approaches for the development
of diagnostic classifiers of acute infection and in-hospital mortality from gene expression
of 29 diagnostic markers. We take a deployment-centered approach to our comprehensive
analysis, accounting for heterogeneity in our multi-study patient cohort with our choices
of dataset partitioning and hyperparameter optimization objective as well as assessing se-
lected classifiers in external (as well as internal) validation. We find that classifiers selected
by Bayesian optimization for in-hospital mortality can outperform those selected by grid
search or random sampling. However, in contrast to previous research: 1) Bayesian opti-
mization is not more efficient in selecting classifiers in all instances compared to grid search
or random sampling-based methods and 2) we note marginal gains in classifier performance
in only specific circumstances when using a common variant of Bayesian optimization (i.e.
automatic relevance determination). Our analysis highlights the need for further practical,
deployment-centered benchmarking of HO approaches in the healthcare context.

Keywords : hyperparameter optimization; Bayesian optimization; acute infection; sepsis; dis-
ease severity; mortality; classification; molecular diagnostics; genomics.

1. Introduction

Patient lives depend on the swiftness and accuracy of 1) assessment of the severity of their
illness and 2) detection of acute infection (when present). The COVID-19 pandemic has put
this fact into stark relief. Currently, clinicians determine severity of illness by computing scores

∗Supplementary material can be found at https://arxiv.org/abs/2003.12310

c© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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(e.g. SOFA1) based on patient physiological features associated with the risk of adverse events
(e.g. in-hospital mortality, organ failure). Similarly, detection of acute infection generally in-
volves evaluation of symptoms (e.g. cough, runny nose, fever) as well as laboratory tests for
the presence of specific pathogens. However, these methods provide superficial and imprecise
measures of patient illness. Recent work has highlighted the potential of using gene expression
measurements from patient blood to detect the presence and type of infection to which the
patient is responding2–5 as well as the patient’s severity of illness.6

Coupled with these host response signatures, advances in machine learning (ML) provide
a platform for the development of robust, diagnostic classifiers of acute infection status (e.g.
bacterial or viral) and in-hospital mortality from gene expression. An important step in this
development is optimization of the classifier’s hyperparameters (e.g. penalty coefficient in a
LASSO logistic regression, learning rates for gradient descent). Hyperparameter optimization
begins with specification of a search space and proceeds by generating a user-specified number
of hyperparameter configurations, training the classifier models given by each configuration,
and evaluating the performance of the trained classifier in internal validation. Internal vali-
dation performance is typically assessed either on a separate validation/tuning dataset or by
cross-validation. Configurations are then ranked by this performance, with the top configura-
tion selected and retained for external validation (application to a held-out dataset).

Multiple HO approaches have been proposed. For classifiers with relatively small hyper-
parameter spaces (e.g. support vector machines), optimizing over a pre-defined grid of hyper-
parameter values (grid search; GS) has proven effective. More recent work has shown that
optimization by randomly sampling (RS) hyperparameter configurations can lead to better
coverage of high-dimensional hyperparameter spaces and potentially better classifier perfor-
mance.7 Bayesian optimization (BO) is a global optimization procedure that has also proven
effective for hyperparameter optimization in classical8–12 and biomedical13–16 ML applications.
In BO, one uses a model (commonly a Gaussian process (GP)17) to approximate the objective
function one wants to optimize; for hyperparameter optimization, the objective function maps
from hyperparameter configurations to the internal validation performance of their correspond-
ing classifiers. In contrast to GS/RS, BO proceeds by sequentially evaluating configurations
with each newly visited configuration used to update the model of the objective function.

In this work, we compare GS/RS and BO methods for hyperparameter optimization of
gene expression-based diagnostic classifiers for two clinical tasks: 1) detection of acute infec-
tion and 2) prediction of mortality within 30 days of hospitalization. We optimize and train
three different types of classifiers using gene expression features from 29 diagnostic markers
in a multi-study cohort of 3413 patient samples for acute infection detection (3288 for 30-
day mortality prediction). Patient samples were assayed on a variety of technical platforms
and collected from a range of geographical regions, healthcare settings, and disease contexts.
Our extensive analysis evaluates the BO approach, in particular, under a range of compu-
tational budgets and optimization settings. Crucially, beyond assessing and comparing the
performance of top classifiers in internal validation, we further evaluate top models selected
by all HO approaches in a multi-cohort external validation set comprising nearly 300 patients
profiled by a targeted diagnostic instrument (NanoString). Our analysis provides important
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insights for diagnostic classifier development using genomic data, and, more generally, about
the implementation and practical usage of HO methods in healthcare.

2. Related Work

Previous studies comparing HO approaches in the ML community have demonstrated that
BO can select promising classifiers more efficiently (with fewer evaluations of hyperparame-
ter configurations) than GS/RS methods.8–12,15,16,18 However, these studies have focused on
internal validation performance and on benchmark datasets whose composition and handling
(i.e. partitioning into training-validation-test splits) doesn’t necessarily reflect characteristics
of healthcare settings (i.e. smaller, structured, and more heterogeneous datasets; high propen-
sity for models to be applied to out-of-distribution samples at test time19).

Bayesian optimization has also found recent success in genomics and biomedical appli-
cations.20–22 Ghassemi et al.13 compare multiple HO approaches, including BO, for tuning
parameters of the multi-scale entropy of heart rate time series to aid mortality prediction
among sepsis patients. Colopy et al.14 analyzed RS and BO methods for optimization of
patient-specific GP regression models used in vital-sign forecasting. A study by Nishio et al.15

evaluated both RBF SVM and XGBoost classifiers tuned by either RS or BO for detection of
lung cancer from nodule CT scans. Borgli et al.16 evaluated BO for tuning and transfer learn-
ing of pre-trained convolutional neural networks to detect gastrointestinal conditions from
images. Again, however, these studies only reported either internal validation performance
or performance on a test set partitioned from a full, relatively small and homogeneous (e.g.
collected from a single hospital) dataset, making conclusions difficult to draw about the gen-
eralizability of selected models in other segments of the deployment population. Moreover,
these studies focused on: 1) no more than two classifier types, 2) a narrow range of settings
for BO, and 3) physiological or image data. To our knowledge, no studies have evaluated the
external validation performance of selected models, an important pre-requisite for eventual
model deployment. In addition, no comparison of HO approaches has yet been attempted for
development of diagnostic classifiers using genomic data.

3. Methods

3.1. Cohort & Feature Description

To build our datasets, we combined gene expression data from public sources and in-house
clinical studies designed for research in diagnosing acute infections and sepsis. We collected
the publicly available studies from the NCBI GEO and EMBL-EBI ArrayExpress databases
using a systematic search.2 The public studies were profiled using a variety of different technical
platforms (e.g. mostly microarrays). Samples from the in-house clinical studies were profiled on
the NanoString nCounter platform using a custom codeset for 29 diagnostic genes of interest.
All included studies consisted of samples from our target population: both adult and pediatric
patients from diverse geographical regions and clinical settings. Each included study had
measurements taken from patient blood for all 29 markers. To account for heterogeneity across
studies, we performed co-normalization (see5 and the Supplement).

The features we used in our analyses were based on the expression values of 29 genes pre-
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viously found to accurately discriminate three different aspects of acute infection: 1) viral vs.
bacterial infection (7 genes),3 2) infection vs. non-infectious inflammation (11 genes),2 and 3)
high vs. low risk of 30-day mortality (11 genes).6 Building on our previous work,5 we computed
both the geometric means and arithmetic means of these six groups of genes, producing 12
features. We optimized and trained our classifiers on the combination of these 12 features and
the expression values of all 29 genes (41 features in total). Labels for one of three classes of the
acute infection detection or BVN task (Bacterial infection, Viral infection, or Non-infectious
inflammation) were determined differently for each of the training and validation studies de-
pending on available data. For training set studies, we used the labels provided by each study,
deferring to each study’s criteria for adjudication which may have involved multi-clinician
adjudication with or without positive pathogen identification or positive pathogen identifica-
tion alone. When BVN adjudications were not directly provided by the study, we assigned
class labels based on available pathogen test results from the study metadata/manuscripts.
For validation data, one study was adjudicated by a panel of clinicians using all available
clinical data (including pathogen test results) while all other validation studies were labeled
by us using only pathogen test results. Non-infected determinations did not include healthy
controls. Binary indicator labels of whether a patient died within 30 days of hospitalization
were derived from study metadata (when available) and the associated study’s manuscripts.

For both tasks, we separated studies into a training set and an external validation set. For
the BVN task, the training set consisted of 43 studies (profiled outside Inflammatix) and 3413
patients (1087 with bacterial infection, 1244 with viral infection, and 1082 non-infected). The
BVN external validation set consisted of six studies (profiled by Inflammatix) and 293 patients
(153 with bacterial infection, 106 with viral infection, and 34 non-infected). For the mortality
task, the training set consisted of 33 studies (profiled outside Inflammatix) and 3288 patients
(175 30-day mortality events) while the mortality external validation set comprised four studies
(profiled by Inflammatix) and 348 patients (80 30-day mortality events). A description of the
publicly available studies in our training set appears in Supplementary Table 1.

3.2. Grouped cross-validation

Previous analyses by our group5 suggested that alternative cross-validation strategies were
preferable over conventional k-fold cross-validation (CV) for identifying classifiers able to
generalize across heterogeneous patient populations. We use 5-fold grouped CV (full studies
are allocated to one and only one of five folds) to rank and select hyperparameter configurations
from GS/RS methods and as an objective function in BO.

3.3. Classifier types and performance assessment

We evaluated three types of classification models: 1) support vector machines with a radial
basis function (RBF) kernel, 2) XGBoost (XGB23) and 3) multi-layer perceptrons (MLP).
MLP models were trained with the Adam optimizer24 with mini-batch size fixed at 128.

For the BVN task, we ranked and selected models based on multi-class AUC (mAUC).25

For the mortality task, we selected models by binary AUC but report both AUC and average
precision to account for class imbalance. To determine performance of models in grouped 5-
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fold CV, we pooled the model’s predicted probabilities for each fold and computed the relevant
metric from the pooled probabilities. The top-performing hyperparameter configuration was
then trained on the full training set and applied to the external validation set. We computed
external validation performance for these top models using their predicted probabilities for
the validation samples. We computed 95% bootstrap confidence intervals for differences in
classification performance by sampling predicted probabilities with replacement 5000 times
(using the same set of bootstrap sample IDs for both sets of predicted probabilities in the
comparison), computing the relevant performance metric on each bootstrap sample, computing
the difference between performance metrics for each bootstrap sample in a given comparison,
and reporting the 2.5th and 97.5th quantiles of the 5000 differences.

3.4. Hyperparameter optimization details

For RBF SVM, we conduct a grid search over configurations of the cost, C, and bandwidth
hyperparameters, γ. C values ranged from 1e-03 to 2.15 and γ values ranged from 1.12e-04
to 10. We generated RS samples for XGBoost and MLP uniformly and independently of one
another from pre-specified ranges or from grids (Suppl. Tables 2 and 3).

For BO, the objective function maps from hyperparameter configurations to 5-fold grouped
CV performance of the corresponding classifiers. The two main components of BO are: 1) a
model that approximates the objective function, and 2) an acquisition function to propose the
next configuration to visit. We use a GP regression model with Gaussian noise to approximate
the objective function. To initialize construction of the objective function, we uniformly and
independently sample configurations (either 5 or 25) from the hyperparameter space.

We investigate both the expected improvement and upper confidence bound acquisition
functions. We use both standard and automatic relevance determination (ARD) forms of
the Matern5/2 covariance function in BO’s GP model of the objective (further details in
Supplement). We also perform BO in the hyperparameters’ native scales (original space) or
in which continuous and discrete hyperparameter dimensions are searched in the continuous
range 0 to 1 and transformed back to their native scales prior to their evaluation (transformed).

4. Results

We compared BO and GS/RS approaches for hyperparameter optimization of three types of
classifiers for two clinical tasks. For the BVN task, we sought classifiers that could achieve high
performance in predicting whether a patient had a bacterial or viral infection or was showing
a non-infectious inflammatory response. For the mortality task, we sought high-performing
classifiers of mortality events within 30 days of hospital admission. Though we considered BO
at two initialization budgets (5 and 25 configurations), we did not see substantial differences
in performance between classifiers with 5 and 25 initial configurations (Suppl. Table 4, Suppl.
Figs. 3-6). We focus on BO results with 25 initial configurations and the expected improvement
acquisition function for the remainder of this work (results for all runs in Supplement).

General comparison of classifier performance across tasks and HO approaches
Across both tasks and HO approaches, we note distinct performance characteristics of the
selected classifiers of each type. While RBF SVM classifiers performed similarly to the other

Pacific Symposium on Biocomputing 2021

212



two classifier types on the BVN task, they were the worst performers on the mortality task.
XGB classifiers selected by either RS or BO demonstrated competitive performance in both
tasks and were remarkably consistent in their performance regardless of the number of hyper-
parameter configurations evaluated for HO. MLPs achieved the highest internal and external
validation performance for both acute infection detection and mortality prediction (Table 1),
suggesting potential benefits of learning latent features (hidden layers) for these tasks. We also
find that, despite the considerable class imbalance in the mortality task, all classifier types
selected by AUC still demonstrated average precision considerably higher than the respective
baselines for internal ( 175

3288
≈ 0.053) and external ( 80

348
≈ 0.230) validation.

A. B.

Fig. 1: Differences in classification performance of models selected by either BO
or GS/RS using BO evaluation budgets. Performance differences greater than 0 on
the BVN (A; mAUC) and mortality (B; AUC) tasks indicate better performance for the
BO-selected classifier. Classifiers were selected with the indicated number of hyperparameter
configurations evaluated. Automatic relevance determination was not enabled for BO. Points
represent observed differences while error bars represent 95% bootstrap confidence intervals.

Evaluation of BO- and GS/RS-selected classifiers at evaluation budgets typical of
BO. Previous studies have shown that BO can select promising classifiers more efficiently
than GS/RS methods. Surprisingly, we find that at smaller numbers of configurations evalu-
ated (more typical of BO), classifiers selected by GS/RS showed similar or better performance
in both internal and external validation (Table 1 and Figs. 1) when compared with corre-
sponding BO-selected classifiers. We observed similar trends when using the upper confidence
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Table 1: Grouped 5-fold CV and external validation (Val.) performance of selected classi-
fiers for the BVN and mortality tasks. BO results used the EI acquisition function and 25
initialization points. The ARD column indicates whether automatic relevance determination
was enabled (Y/N) in BO’s GP model of the objective function. Bold numbers indicate the
best performance for a column. BVN column shows performance in mAUC; mortality col-
umn shows AUC performance with average precision in parentheses. ∗Grid specified only 4757
configurations.

Model
HO
Type

No. of
Evals. ARD

BVN
CV

BVN
Val.

Mortality
CV

Mortality
Val.

RBF

GS 10 - 0.808 0.862 0.758 (0.182) 0.736 (0.375)
GS 50 - 0.814 0.853 0.797 (0.169) 0.739 (0.372)
GS 100 - 0.814 0.853 0.800 (0.192) 0.782 (0.533)
GS 250 - 0.814 0.853 0.801 (0.191) 0.749 (0.386)
GS 500 - 0.815 0.853 0.801 (0.191) 0.749 (0.386)
GS 1000 - 0.815 0.853 0.839 (0.225) 0.708 (0.444)
GS 5000* - 0.815 0.853 0.839 (0.225) 0.708 (0.444)
BO 10 Y 0.811 0.788 0.800 (0.190) 0.747 (0.383)
BO 10 N 0.815 0.851 0.800 (0.187) 0.746 (0.381)
BO 50 Y 0.816 0.852 0.801 (0.196) 0.752 (0.389)
BO 50 N 0.816 0.852 0.801 (0.194) 0.749 (0.385)
BO 100 Y 0.816 0.852 0.800 (0.197) 0.753 (0.392)
BO 100 N 0.816 0.852 0.801 (0.196) 0.752 (0.389)

XGB

RS 50 - 0.809 0.830 0.880 (0.315) 0.819 (0.542)
RS 100 - 0.813 0.827 0.885 (0.288) 0.819 (0.526)
RS 250 - 0.812 0.826 0.885 (0.308) 0.829 (0.556)
RS 500 - 0.810 0.829 0.885 (0.320) 0.826 (0.559)
RS 1000 - 0.810 0.822 0.885 (0.311) 0.822 (0.552)
RS 5000 - 0.813 0.830 0.888 (0.310) 0.823 (0.552)
RS 25000 - 0.815 0.860 0.889 (0.303) 0.816 (0.532)
BO 50 Y 0.818 0.865 0.887 (0.301) 0.814 (0.540)
BO 50 N 0.812 0.828 0.881 (0.275) 0.817 (0.516)
BO 100 Y 0.811 0.825 0.885 (0.314) 0.825 (0.559)
BO 100 N 0.809 0.826 0.878 (0.288) 0.817 (0.521)
BO 250 Y 0.818 0.865 0.886 (0.290) 0.826 (0.539)
BO 250 N 0.816 0.834 0.882 (0.272) 0.802 (0.483)
BO 500 Y 0.818 0.865 0.889 (0.346) 0.827 (0.591)
BO 500 N 0.812 0.831 0.880 (0.313) 0.815 (0.538)

MLP

RS 50 - 0.818 0.860 0.763 (0.121) 0.631 (0.288)
RS 100 - 0.814 0.863 0.785 (0.156) 0.640 (0.301)
RS 250 - 0.824 0.861 0.807 (0.211) 0.625 (0.366)
RS 500 - 0.819 0.859 0.853 (0.240) 0.691 (0.401)
RS 1000 - 0.835 0.872 0.809 (0.158) 0.637 (0.333)
RS 5000 - 0.837 0.835 0.826 (0.249) 0.796 (0.546)
RS 25000 - 0.840 0.856 0.859 (0.267) 0.743 (0.428)
BO 50 Y 0.816 0.820 0.888 (0.340) 0.823 (0.554)
BO 50 N 0.814 0.824 0.888 (0.290) 0.820 (0.564)
BO 100 Y 0.822 0.845 0.886 (0.296) 0.847 (0.631)
BO 100 N 0.828 0.854 0.884 (0.292) 0.825 (0.577)
BO 250 Y 0.817 0.848 0.890 (0.312) 0.842 (0.614)
BO 250 N 0.832 0.832 0.889 (0.335) 0.812 (0.566)
BO 500 Y 0.837 0.855 0.894 (0.304) 0.835 (0.593)
BO 500 N 0.826 0.822 0.890 (0.330) 0.806 (0.561)
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bound acquisition function (Suppl. Figs. 7 and 8, Suppl. Table 5) or the transformed hyperpa-
rameter space (Suppl. Figs. 11 and 12, Suppl. Table 6). However, we do note two instances in
which BO-selected classifiers exceeded performance of GS/RS-selected classifiers: 1) XGBoost
classifiers in external validation for the BVN task and 2) MLP classifiers for the mortality
task. While these instances support prior findings of BO’s efficiency, our results also suggest
that simply committing to a single HO approach could miss models that generalize well and
that performance of selected classifiers will depend on the task and classifier type.

Evaluation of BO- and GS/RS-selected classifiers at evaluation budgets typical
of GS/RS. In the previous analysis, we compared BO- and GS/RS-selected classifiers at
evaluation budgets typical of BO (i.e. fewer configurations evaluated). In Figure 2, we compare
BO-selected classifiers from their highest evaluation budgets (100 evaluations for RBF and 500
evaluations for XGB and MLP) to classifiers selected by GS/RS at larger evaluation budgets.
Interestingly, we find that the BO-selected MLP classifiers for the mortality task continue
to outperform their corresponding RS-selected counterparts, even with 25000 configurations
evaluated for RS. Similarly, we find that BO-selected XGBoost classifiers exceed external
validation performance of RS-selected classifiers on the BVN task up to an evaluation budget
of 25000 configurations (though the differences do not persist at 25000 configurations). We
observe these differences when conducting BO with the upper confidence bound acquisition
function or with a transformed hyperparameter space (Suppl. Figs. 9, 10, 13 and 14). These
results indicate the relative efficiency of BO in candidate classifier selection in these two
instances but also illustrate the competitiveness of GS/RS-selected classifiers in our setting.

Assessment of effects on classifier performance of automatic relevance determi-
nation in BO. For high-dimensional hyperparameter spaces, some hyperparameters may
have a greater impact on the model’s generalization performance than others. Automatic
relevance determination (ARD;26) in the GP model of BO’s objective provides the means
to estimate effects of variations in hyperparameter dimensions on the objective’s value and
has been used in multiple implementations of BO (e.g. Snoek et al., 20128 and BoTorch,
https://botorch.org/docs/models). We directly compare the internal and external vali-
dation performance of classifiers selected by BO with and without ARD. In Figure 3, we
find that enabling ARD seems to lead to comparable if not slightly better internal valida-
tion performance at higher evaluation budgets. Moreover, enabling ARD seems to improve
external validation performance for both XGB (BVN task) and MLP classifiers (both tasks).
In fact, the highest external validation performance by XGB classifiers on the BVN task is
only achieved with ARD enabled (Table 1). However, these differences in performance are not
as evident when using the upper confidence bound acquisition function (Suppl. Fig. 15) or
conducting BO in the transformed hyperparameter space (Suppl. Fig. 16). Thus, ARD may
not be necessary to select top-performing diagnostic classifiers for these two clinical tasks.

5. Discussion & Conclusions

In this analysis, we compared HO approaches for diagnostic classifier development to deter-
mine what approach (if any) led to improvements in: 1) external validation performance or
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A. B.

Fig. 2: Differences in classification performance of models selected by either BO
or GS/RS using GS/RS evaluation budgets. Run settings and figure layout are the
same as in Figure 1 except that here, indicated evaluation budgets apply to GS/RS-selected
classifiers; BO-selected classifiers are taken from 100-evaluation (RBF) or 500-evaluation (XGB
and MLP) runs.

2) computational efficiency. Consistent with previous findings, we found that BO was able
to prioritize candidate classifiers for two tasks relevant to emergency and critical care with a
fraction of the configurations evaluated using GS/RS. As embarrassingly parallel approaches
like GS/RS can necessitate the use of commodity computing clusters, BO’s efficiency makes
the approach a potentially cost-effective solution. We also found that external validation per-
formance of BO-selected MLPs for in-hospital mortality was consistently better across a range
of HO evaluation budgets than that of GS/RS-selected classifiers, highlighting BO’s potential
to uncover diagnostic classifiers that generalize better to unseen patients.

However, and in contrast to previous comparisons of HO approaches, our analyses indicated
that GS/RS methods could select classifiers for both tasks with evaluation budgets comparable
to those used for BO. We also found mixed evidence in support of enabling ARD in the kernel
of BO’s GP model of the objective function. Thus, while we hoped we would uncover distinct
and general differences between HO approaches in order to develop better guidelines about
when (or even if) to use one approach over another, we did not identify such clear differences
across tasks, classifier types, and optimization settings. Rather, our analysis suggests that
both GS/RS and BO approaches should be investigated for classifier development.

We acknowledge limitations of our approach. For our RS runs, we sampled configurations
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A. B.

Fig. 3: Differences in classification performance for BO-selected classifiers with or
without automatic relevance determination (ARD) enabled. Performance differences
greater than 0 on the BVN (A; mAUC) and mortality (B; AUC) tasks indicate better perfor-
mance for the classifier selected by ARD-enabled BO. Points represent observed differences
while error bars represent 95% bootstrap confidence intervals.

uniformly and independently from pre-defined ranges or grids of values. Other random sam-
pling approaches could’ve been used in which configurations are generated dependent on the
values of previously generated configurations (e.g. Latin hypercube or low-discrepancy Sobol
sequences) in order to encourage diversity of the resulting sample.7 We felt that the similar
performance we observed between BO and GS/RS-selected models using basic variants of
GS/RS didn’t necessarily justify further analysis with more sophisticated GS/RS variants. A
second limitation is that we used a single set of features derived from a previously identified
set of 29 gene expression markers. We chose these features based on previous analyses5 and
consistent with our goal of developing diagnostic classifiers from these specific markers for
clinical deployment. We acknowledge our conclusions may not hold with other feature sets.

Throughout this work, we wanted our hyperparameter optimization to reflect our clinical
deployment scenario: that classifiers would likely be evaluated on structured populations (e.g.
from a given geographic region) not seen in training. A recent study by Google highlighted this
challenge for deployment in healthcare: their AI system for breast cancer screening showed
drops in predictive performance when trained on mammograms from the UK and applied to
mammograms from the US.27 However, our survey of ML studies comparing hyperparameter
optimization approaches highlighted important differences from our setting in terms of dataset
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partitioning and, consequently, in the choice of internal validation-based objective function.
For example, we found that ML studies primarily focused on larger (N >∼100k) datasets
composed mainly of natural images. These benchmarks were often constructed (e.g. MNIST;
http://yann.lecun.com/exdb/mnist/) to satisfy the assumption that the distribution of
training and external validation samples are similar if not the same. Internal validation was
then performed on subsets of these ’mixed’ datasets, with samples from the same structured
group in the full dataset appearing in both the training and validation set. However, as
patient data is known to be heterogeneous due to biological differences as well as differences in
geography, healthcare delivery, and assay technologies used, that assumption of distributional
similarity between training and external validation samples is likely to be violated. Indeed, our
recent work found that standard k-fold cross-validation gives optimistically biased estimates of
generalization error in our setting,5 breaking the group structure in left-out folds by randomly
distributing patients from the same study into different cross-validation folds (akin to test
set contamination). Consequently, in difference to the ML studies we reviewed, we opted for
grouped 5-fold cross-validation as our objective function as well as evaluation of performance
in external validation to aid model selection.

In conclusion, we find that both GS/RS and BO remain promising avenues for hyper-
parameter optimization and represent key components in the development of more effective
diagnostics for emergency and critical care.
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Telehealth is an increasingly critical component of the health care ecosystem, especially
due to the COVID-19 pandemic. Rapid adoption of telehealth has exposed limitations in
the existing infrastructure. In this paper, we study and highlight photo quality as a major
challenge in the telehealth workflow. We focus on teledermatology, where photo quality is
particularly important; the framework proposed here can be generalized to other health
domains. For telemedicine, dermatologists request that patients submit images of their
lesions for assessment. However, these images are often of insufficient quality to make a
clinical diagnosis since patients do not have experience taking clinical photos. A clinician
has to manually triage poor quality images and request new images to be submitted, leading
to wasted time for both the clinician and the patient. We propose an automated image
assessment machine learning pipeline, TrueImage, to detect poor quality dermatology photos
and to guide patients in taking better photos. Our experiments indicate that TrueImage can
reject ∼50% of the sub-par quality images, while retaining ∼80% of good quality images
patients send in, despite heterogeneity and limitations in the training data. These promising
results suggest that our solution is feasible and can improve the quality of teledermatology
care.

Keywords: Telemedicine; Teledermatology; Computer Vision; Image Quality Assessment.

1. Introduction

Due to the SARS-CoV-2 (COVID-19) pandemic, many hospitals have rapidly transitioned
patient visits to video conference calls on a digital platform to limit exposure for both patients
and healthcare workers. Although these digital visits have some limitations, they have recently
accounted for more than 10% of all visits in the US, corresponding to more than an 10000%

c© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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increase since February 2020.1

The rapid adoption of telehealth has unearthed substantial challenges. For example, pro-
ductive teledermatology visits require high clinical quality images of the area of concern;
however, video call platforms do not have sufficient imaging resolution for diagnosis. In tele-
dermatology, a clinician will often request patients to send in photos of their lesions or rash
ahead of time. The clinician will use these images for assessing the patient’s condition and
use the digital platform of the visit to communicate with a patient rather than for making
assessments.

Patients are guided on how to take photos of their lesions; see Figure 1 for standard guide-
lines. Despite these instructions, it is common for patients to take blurry images, images in
poor lighting conditions (e.g., too much glare or too dark), or images that do not adequately
show the lesion (e.g., taken from too far away). Prior assessments of image quality in der-
matology are not applicable to real world teledermatology, as trained medical professionals
took the photos in these studies.2 So, we conducted an informal survey of dermatologists that
suggests up to one fifth of all images sent in by patients could be of too low quality to be of
use; see Table 1.

Due to this high percentage of low quality images, dermatologists or other staff members
screen images prior to a visit and request a patient to retake an image when necessary. This
process is time consuming and can take a similar amount of time as a regularly scheduled
visit. Moreover, it is common for patients to send in images just prior to a visit leaving no
time for image quality screening. When these images are low quality, the clinical visit is spent
coaching the patient on retaking the photo rather than the clinical issue. Therefore, poor
quality images can significantly disrupt a clinician’s schedule and affect clinical care.

We propose an automated machine learning method for assessing dermatology image qual-
ity and giving concrete feedback for how to improve quality when necessary (e.g., “turn on
camera flash” for dim lighting). We envision this solution as integrated into a smartphone
application that can guide a patient through the process of taking an image with interactive,
real-time feedback so that only high-quality photos are submitted for the televisit. This ne-
cessitates a computationally lightweight solution and motivates some of our design decisions.

We detail our prototype algorithm, TrueImage, and assess our method on a dataset of
dermatology photos as a proof-of-concept. The method provides a quality score to quantify
how suitable a photo is for teledermatology. The score enables clinicians to flexibly set a
threshold for filtering photo quality – a more stringent threshold makes it more likely that the
clinician works with high-quality images but could require more patients to retake photos. For
example, we can reject ∼50% of poor quality images at while retaining ∼80% of good quality
images; alternatively, we can reject ∼10% of all poor quality images while retaining >95% of
good quality images.

Contributions We identify photo quality as an important emerging challenge for telehealth,
especially for dermatology. There has been relatively little work in this area. We develop an
algorithm for automatic quality detection in dermatology images and to provide guidance to
patients. This can potentially improve the clinical workflow and efficiency.
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Fig. 1. Example set of instructions given to patients at Stanford Health Care for how to take images
for dermatology visits.

Table 1. Results of a survey we conducted asking dermatologists how
often patients send in poor quality photos. Samples size is 37. Several
responders reported poor image frequency as high as 1/2.

Frequency of poor quality photos per visit 1/5 1/10 1/20 1/50

Percent of survey response 78.4% 10.8% 5.4% 5.4%

2. Background

Dermatology has become an important application of machine learning research in recent years
with the success of deep learning and the acquisition of large dermatology datasets. Much of
this work is related to disease diagnosis3,4 or lesion segmentation,5 and most public data
is taken using dermatoscopes, a special tool for magnifying lesions. However, as large-scale
teledermatology is relatively new, little work has been done in solving problems specific to
automatically assessing the quality of patient-taken images. There are several related problems
that we detail here.

2.1. Clinical Image Guidelines

Photography for dermatology is commonly used in a clinical setting for both educational
purposes and to track disease progression in patients. To ensure high quality photos, there
are several guidelines that have been developed to counter the common issues that produce
low quality photos in dermatology.6 See Figure 2 for illustrative examples. These issues can
be summarized as

1. Skin lesion area is blurry (Figure 2c).
2. Skin is discolored due to lighting conditions – this may be induced by a dim environment,
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excessive shadows, excessive glare (e.g., due to camera flash), or the background reflecting
tinted light (Figure 2b).

3. Skin lesion is cropped or image is taken from too far away (Figure 2d).
4. Image is distorted due to camera effects (e.g., fish-eye effect).
5. Background is distracting or patient is wearing distracting clothing and jewelry.
6. Image is taken at a poor orientation (e.g., a leg is photographed horizontally; a vertical

photograph is preferable so that the entire frame is filled with the leg).

Items 5 and 6 above tend to be less critical for dermatologists to make an assessment.
Empirically, we have noted that the most common issues in patient-taken images are items
1-3, with the ordering corresponding to their prevalence. So in this work, we focus on these 3
issues.

Fig. 2. Examples of poor quality images. (a) is a good quality image; the acne is in-focus, the
lighting is not too dark and there is little glare. (b) has excessive glare and shadows on the skin. (c)
is too blurry. Note that the lighting is also dim here; brighter lighting would likely also reduce issues
with blur. (d) is cropped and zoomed in too close; the slight blur and glare exacerbates the problem.

2.2. Image Quality Assessment

Image quality assessment (IQA) methods attempt to measure the quality of digital images,
where image quality is usually defined by human labelers. IQA methods can be split into two
categories – full-reference IQA (FR-IQA) which require a high quality reference image and
no-reference IQA (NR-IQA) which work given a single image; some techniques are adaptable
to both settings.7 Additionally, some methods are designed with respect to specific distortions
like Gaussian blur, additive white noise, and JPEG compression artifacts,8–10 while others
are general purpose and adapt to the distortions present in a training dataset.11 IQA has
generally been studied for use on natural images, though some techniques have been adapted
for detecting artifacts in MRI, CT, and ultrasonography12 in clinical settings.

Due to the cost of labeling data (trained human labelers are required), most IQA datasets
are small. However, deep learning methods have become prevalent recently and typically
utilize data augmentation techniques like applying fixed distortions (e.g., Gaussian blur) to
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high quality images,10 utilizing generative models like GANs,13 or through leveraging larger
image classification datasets for transfer learning.14

Classical methods also have good performance, in particular when a specific, known distor-
tion is in consideration. Of particular interest to us, blur detection is a well-studied problem
and efficient classical algorithms exist.8,15 These algorithms generally rely on detecting the
magnitude of low and high-frequency content in images – blurry images tend to have reduced
high-frequency content.

2.3. Semantic Segmentation

Semantic segmentation is the problem of generating per-pixel class labels in an image. In our
case, we are interested in a binary semantic segmentation problem of labeling skin and non-
skin pixels in an image; segmentation is important to us as we are interested in the quality of
only the parts of the image containing the lesion (e.g., the background can be blurry, but the
lesion cannot).

Deep learning methods have dominated the field in recent years, with most modern meth-
ods relying on fully convolutional networks.16,17 Methods like Mask RCNN18 and YOLACT19

layer a semantic segmentation module over an object detection framework to allow for instance
level semantic segmentation. Other techniques use recurrent connections when multiple images
(e.g., a video sequence) are available.20

Classical methods also exist and utilize a variety of approaches. Of particular interest to us,
there are a large number of methods designed specifically for skin detection as part of gesture
recognition or facial detection algorithms. Some of the most simple methods utilize decision
trees learned from a dataset of skin pixels and classify each pixel independently;21,22 other
methods fit the distribution or skin colors using, for example, histogram-based techniques or
a Gaussian mixture model and apply a threshold on the predicted probability to classify skin
pixels.23 More sophisticated methods apply additional steps to account for spatial information
in the image.24

3. TrueImage Algorithm

Our algorithm can be described in 3 stages as shown in Figure 3. It consists of (1) semantic
segmentation to identify skin regions, (2) feature generation, and (3) a quality classifier applied
to these features. Our algorithm design is guided by two considerations/constraints:

1. We desire a computationally lightweight algorithm, due to the end-goal of having an
interactive system deployable on older-generation smartphones.

2. As labeling data is costly, a more data-efficient algorithm is preferable.

These constraints motivated us to represent each photo by a relatively small number of
interpretable features, which we explain in detail below. Additionally, the algorithm itself is
more interpretable and so we can more easily ensure it is robust to various skin tones.
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Fig. 3. Workflow schematic of the TrueImage dermatology image quality detection algorithm. (a)
Image is input for skin segmentation. (b) After segmentation, the original image and segmentation
mask are used for feature generation in three groups. Principal component analysis (PCA) is used
to reduce the dimensionality of features within each feature group. (c) 4 classifiers are applied to the
concatenated feature vectors, giving us (d) labels for reason(s) of poor image quality.

3.1. Semantic Segmentation

We use a per-pixel semantic segmentation algorithm to identify skin and lesion pixels. Each
pixel is classified independently. Each pixel is transformed from RGB into both YCrCb and
HSV color spaces, and the two representations are concatenated giving a vector in R6. We
then use a Gaussian mixture model to assign the pixel a score corresponding to its likelihood
of being “skin”; applying a threshold to the pixels scores gives us our semantic segmentation.

Additionally, we always consider border pixels to be non-skin. Empirically, we have seen
that patient-taken images are generally well-centered. Thus, center cropping is a simple way of
ensuring we are assessing the lesion area and not the surrounding skin or background clutter.

We also implement a simple, per-pixel lesion segmentation algorithm. The algorithm takes
a pixel, transforms it to the LAB color space, and keeps the brightest pixels from each color
channel. Then we compute the fraction of these brightest pixels located near the center of the
image. The color channel with the highest fraction is used as the lesion mask; we additionally
perform a bitwise-and operation with the skin segmentation mask to reduce false positives.
An inspection of 15 images suggested that this algorithm detects red and dark patches well.

Although threshold-based algorithms are generally inferior to modern deep learning algo-
rithms, our algorithm performs adequately in our setting, largely due to the constraints on
our distribution of images (e.g., images are generally centered). Furthermore, since our end
goal is a downstream task that uses the segmentation as an input, slight errors do not have
significant impact.
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3.2. Features

We consider 3 major reasons for poor quality images: blur, lighting conditions, and zoom.
Although there are other reasons as noted in,6 we have found empirically that these 3 are
the most common issues in patient-taken images. We generate features designed to capture
good-to-bad image variance for each of these issues.

3.2.1. Blur Features

Blur can be characterized by a higher presence of low-frequency components in an image as well
as other effects like decreased color saturation. These effects can be measured by computation
of the Fourier Transform on an image, through analysis of the image gradient (or higher order
derivatives), or through various other means like looking at the color saturation.8,15

Subsequent to our semantic segmentation, we uniformly sample 100 32× 32 pixel patches
that contain at least 90% “skin” pixels. For each patch P , we compute

1. the magnitude of the high-pass filtered patch,

1

322

∑
i,j∈[32]

20 ln (||Fh(P )i,j ||) ,

where Fh denotes the high-pass filter, and
2. the variance of the Laplacian of the patch,

1

322

∑
i,j∈[32]

(L(x, y)− E[L(x, y)])2,

where L(x, y) = ∂2P
∂x2 + ∂2P

∂y2 .

Subsequently, we summarize the patch-level distribution by computing the mean, median,
max, min, and standard deviation of each feature across patches. This process results in 10

total features. We apply principal component analysis (PCA) to these features and keep the
top 5 principal components.

3.2.2. Lighting Features

To detect poor lighting conditions, we use two types of features. We compute these features
per patch, using the same 100 patches as for blur.

1. We transform the image to grayscale, G, and compute per each patch PG (1)
underexposed := PG[PG < 50] and (2) overexposed := PG[PG > 205]. Color values are
integers in the range [0, 255]. underexposed assess the amount of shadows and dim lighting
in the image while overexposed assess the amount of glare. Note that both underexposed

and overexposed are sets of values; we summarize each set by computing the median and
the upper and lower quartiles. We summarize the patch-level distribution by computing
the mean, median, max, min, and standard deviation across patches for each feature,
resulting in 30 features.
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2. We consider the probability distribution given by the Gaussian mixture model trained for
skin segmentation for each patch. This distribution gives us information on the glare and
shadow content, as well as discoloration in the skin due to poor lighting (e.g., a blue tinted
light). We compute the median and lower and upper quartiles per patch, and subsequently
compute the mean, median, max, min, and standard deviation across patches.

The above process results in 45 total features; we reduce this to 5 features using PCA.

3.2.3. Zoom Features

For assessing crop and zoom, we compute the ratio of skin to non-skin pixels and lesion to
non-lesion detected inside the center cropped area. Images zoomed out too far will have fewer
“skin” pixels near their center. Similarly, a high fraction of lesion pixels near the boundary of
an image suggest that the lesion is not shown with adequate context.

Note that the relevance of these features are entirely dependent on the skin and lesion
segmentation algorithms; to counteract deficiencies in our segmentation algorithm, we apply
a more generous threshold for computing these features.

3.3. Feature Aggregation

We concatenate across feature groups and train four binary classifiers using logistic regression:
one predicts whether an image is good quality, and the remaining three predict whether the
image is blurry, has poor lighting, or is zoomed out / cropped respectively.

4. Training and Evaluation

4.1. Skin Segmentation Model

The Gaussian mixture model is trained to fit the distribution of skin pixels using the dataset
from Bhatt et. al.21 This dataset consists of roughly 50000 skin pixels sampled from 14,701
face images of a diverse set of individuals across age, gender, and ethnicity. Our model is
fit using the standard expectation-maximization algorithm. Note that though this model is
trained with pixels from face images, it is able to identify skin pixels in a generalizable manner.

4.2. Logistic Classifiers

To train our binary classifiers, we use four datasets. The first dataset was curated from Google
Images using images licensed for free commercial use and contains images of various diseases
and lesion types. A dermatologist added labels assessing image quality and giving reasons for
poor quality. Note that the assigned labels should be interpreted as “too blurry to make an
assessment” (if the assigned label is blurry). We augmented this dataset by applying one of two
types of distortions to all good quality images. We split the dataset into training, validation,
and test sets prior to augmentation so as to avoid data leakage.

1. (blur) Gaussian blur with randomly sized kernel.
2. (zoom/crop) Select random corner cropping of the image.
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A dermatologist separately labeled some of the artificial images for use in our test set; only
images the dermatologist deemed realistic were included for testing. See rows 1 and 2 (“Web”
and “Web-Augmented”) of Table 2 for a breakdown of the labels in this data.

We also used a dataset collected at Stanford Health Care. This dataset contains images
taken by a dermatologist of various lesions observed in clinic. See row 3 (“Stanford”) of Table 2
for details. We do not augment this dataset.

As these datasets have relatively few images of poor lighting conditions, we additionally
collected our own poor lighting images by taking pictures of the authors and their families with
their consent. We used this data only for training purposes. See row 4 (“Extra”) of Table 2
for details. By aggregating across these four datasets from heterogeneous sources, we provide
more representative photos to train and evaluate our approach.

Table 2. Image counts for our dermatology dataset. Some images have multiple
labels. Images are randomly split into train, validation and test sets.

Data source Total Good Blurry Poor Lighting Poor Zoom / Crop

Web 55 46 5 5 1
Web-Augmented 179 14 80 0 85
Stanford 99 86 5 7 2
Extra 29 0 0 29 0

All data 362 146 90 41 88

4.3. Results on Dermatology Dataset

After training our algorithm, we evaluated it on the test dataset described above. Our results
are shown in Figure 4. There are four plots shown, one for each of the labels we generate:
(a) good/poor quality, (b) blurry/not blurry, (c) good/poor lighting, (d) good/poor zoom or
crop. We plot the receiver operating characteristic (ROC) curve.

Looking at Figure 4a, we notice that (1) we can reject ∼50% of poor quality images while
retaining ∼80% of good quality images or (2) we can reject ∼10% of poor quality images while
retaining >95% of good quality images; this is particularly important as it suggests we can
set TrueImage’s parameters to reduce time spent by clinicians without adversely affecting
patients. Looking at Figure 4b-d, we see that we can detect blur quite well, but can only
detect poor lighting or crop moderately well. Lastly, we note that the result in Figure 4a is
dependent on the distribution of poor quality images. Empirically, we have found that blurry
images are the most common followed by poor lighting conditions.

Many of the “good” quality images are not actually good quality, but are adequate enough
for clinical assessment. This label may vary between dermatologists, and the threshold pa-
rameter should be tuned per dermatologist and even per disease category (e.g., inflammatory
lesions vs. non-inflammatory lesions). We envision that individual dermatologists or group

Pacific Symposium on Biocomputing 2021

228



practices will set their thresholds based on their preferences prior to sharing the application
with patients; moreover, these settings would be adjustable by clinicians based on patient
feedback. Some images are in a gray-area where their image quality rating is situation de-
pendent (e.g., what context the dermatologist is viewing them in). The ∼10% we can reject
outright are in a set of images that are indisputably poor quality.

Fig. 4. Receiver operating characteristic (ROC) curve of TrueImage; 1 standard deviation confidence
interval shaded in. Classifiers are for (a) Good/bad, (b) Blur, (c) Lighting, (d) Zoom/crop.

5. Discussion and Future Work

This work highlights photo quality as a significant and understudied challenge for telederma-
tology. We develop a novel, automated approach to detect poor quality dermatology photos.

We have also implemented an interactive user interface for TrueImage using gradio25 shown
in Figure 5, which will facilitate usage of TrueImage in clinical pilot studies. The eventual goal
is to make an interactive interface run by the user to guide them in real-time in taking clinical
photos. Our algorithm is computationally very efficient, and an unoptimized, single-threaded
implementation takes about 1 second to run per photo using a standard laptop with a 1.8
GHz Intel Core i5 processor. This timing was computed by averaging over the runtime of 20

images. Because teledermatology is still quite new, there are limited publicly available datasets
of patient photos annotated with quality measures. To address this challenge, we curated a
dataset of 362 images from diverse sources and annotated the quality of each photo along
with reasons for poor quality images. While our dataset is a good first step, creating larger
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datasets of dermatologist labeled photos would be a useful resource for telehealth research and
can further improve the performance of TrueImage. Moreover, with a larger dataset, we hope
to create more specific feedback for patients (e.g. instead of saying ”poor lighting”, stating
”lighting is too dark” or ”lighting is too bright”). Additionally, most of the images are of
patients with lighter skin tones. A larger dataset with more diverse skin types is critical for
TrueImage to be more broadly useful. However, our current results demonstrate that it is
possible to robustly detect image quality in dermatology photos.

Fig. 5. User interface design using gradio.25 Displays input image, skin segmentation, and quality
classification.
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Machine learning systems have received much attention recently for their ability to achieve
expert-level performance on clinical tasks, particularly in medical imaging. Here, we exam-
ine the extent to which state-of-the-art deep learning classifiers trained to yield diagnostic
labels from X-ray images are biased with respect to protected attributes. We train convo-
lution neural networks to predict 14 diagnostic labels in 3 prominent public chest X-ray
datasets: MIMIC-CXR, Chest-Xray8, CheXpert, as well as a multi-site aggregation of all
those datasets. We evaluate the TPR disparity – the difference in true positive rates (TPR)
– among different protected attributes such as patient sex, age, race, and insurance type as
a proxy for socioeconomic status. We demonstrate that TPR disparities exist in the state-
of-the-art classifiers in all datasets, for all clinical tasks, and all subgroups. A multi-source
dataset corresponds to the smallest disparities, suggesting one way to reduce bias. We find
that TPR disparities are not significantly correlated with a subgroup’s proportional disease
burden. As clinical models move from papers to products, we encourage clinical decision
makers to carefully audit for algorithmic disparities prior to deployment. Our supplementary
materials can be found at, http://www.marzyehghassemi.com/chexclusion-supp-3/.

Keywords: fairness, medical imaging, chest x-ray classifier, computer vision.

1. Introduction

Chest X-ray imaging is an important screening and diagnostic tool for several life-threatening
diseases, but due to the shortage of radiologists, this screening tool cannot be used to treat
all patients.1,2 Deep-learning-based medical image classifiers are one potential solution, with
significant prior work targeting chest X-rays specifically,3,4 leveraging large-scale publicly avail-
able datasets,3,5,6 and demonstrating radiologist-level accuracy in diagnostic classification.6–8

Despite the seemingly clear case for implementing AI-enabled diagnostic tools,9 moving
such methods from paper to practice require careful thought.10 Models may exhibit disparities
in performance across protected subgroups, and this could lead to different subgroups receiving
different treatment.11 During evaluation, machine learning algorithms usually optimize for, and
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distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
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report performance on, the general population rather than balancing accuracy on different
subgroups. While some variance in performance is unavoidable, mitigating any systematic
bias against protected subgroups may be desired or required in a deployable model.

In this paper, we examine whether state-of-the-art (SOTA) deep neural classifiers trained
on large public medical imaging datasets are fair across different subgroups of protected at-
tributes. We train classifiers on 3 large, public chest X-ray datasets: MIMIC-CXR,5 CheXpert,6

Chest-Xray8,3 as well as an additional datasets formed of the aggregation of those three
datasets on their shared labels. In each case, we implement chest X-ray pathology classifiers
via a deep convolutional neural network (CNN) chest X-ray images as inputs, and optimize
the multi-label probability of 14 diagnostic labels simultaneously. Because researchers have
observed health disparities with respect to race,12 sex,13 age,14 and socioeconomic status,12

we extract structural data on race, sex, and age; we also use insurance type as an imperfect
proxy11 for socioeconomic status. To our knowledge, we are the first to examine whether SOTA
chest X-ray pathology classifiers display systematic bias across race, age, and insurance type.

We analyze equality of opportunity15 as our fairness metric based on the needs of the
clinical diagnostic setting. In particular, we examine the differences in true positive rate (TPR)
across different subgroups per attributes. A high TPR disparity indicates that sick members
of a protected subgroup would not be given correct diagnoses—e.g., true positives—at the
same rate as the general population, even in an algorithm with high overall accuracy.

We find three major findings: First, that there are indeed extensive patterns of bias in
SOTA classifiers, shown in TPR disparities across datasets. Secondly, the disparity rate for
most attributes/ datasets pairs is not significantly correlated with the subgroups’ proportional
disease membership. These findings suggest that underrepresented subgroups could be vul-
nerable to mistreatment in a systematic deployment, and that such vulnerability may not be
addressable simply through increasing subgroup patient count. Lastly, we find that using the
multi-source dataset which combines all the other datasets yields the lowest TPR disparities,
suggesting using multi-source datasets may combat bias in the data collection process. As re-
searchers increasingly apply artificial intelligence and machine learning to precision medicine,
we hope that our work demonstrates how predictive models trained on large, well-balanced
datasets can still yield disparate impact.

2. Background and Related Work

Fairness and Debiasing. Fairness in machine learning models is a topic of increasing at-
tention, spanning sex bias in occupation classifiers,16 racial bias in criminal defendant risk
assessments algorithms,17 and intersectional sex-racial bias in automated facial analysis.18

Sources of bias arise in many different places along the classical machine learning pipeline.
For example, input data may be biased, leaving supervised models vulnerable to labeling and
cohort bias.18 Minority groups may also be under-sampled, or the features collected may not
be indicative of their trends.19 There are several conflicting definitions of fairness, many of
which are not simultaneously achievable.20 The appropriate choice of a disparity metric is
generally task dependent, but balancing error rates between different subgroups is a common
consideration,15,17 with equal accuracy across subgroups being a popular choice in medical set-
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tings.21 In this work, we consider the equality of opportunity notion of fairness and evaluate
the rate of correct diagnosis in patients across several protected attribute groups.

Ethical Algorithms in Health. Using machine learning algorithms to make decisions
raises serious ethical concerns about risk of patient harm.22 Notably, biases have already been
demonstrated in several settings, including racial bias in the commercial risk score algorithms
used in hospitals,23 or an increased risk of electronic health record (EHR) miss-classification
in patients with low socioeconomic status.24 It is crucial that we actively consider fairness
metrics when building models in systems that include human and structural biases.

Chest X-Ray Classification. With the releases of large public datasets like Chest-
Xray8,3 CheXpert,6 and MIMIC-CXR,5 many researchers have begun to train large deep
neural network models for chest X-ray diagnosis.4,6,8,25 Prior work8 demonstrates a diagnostic
classifier trained on Chest-Xray8 can achieve radiologist-level performance. Other work on
CheXpert6 reports high performance for five of their diagnostic labels. To our knowledge,
however, no works have yet been published which examined whether any of these algorithms
display systematic bias over age, race and insurance type (as a proxy of socialeconomic status).

3. Data

We use three public chest X-ray radiography datasets described in Table 1: MIMIC-CXR
(CXR),5 CheXpert (CXP),6 Chest-Xray8 (NIH).3 Images in CXR, CXP, and NIH are associ-
ated with 14 diagnostic labels (see Table 2). We combine all non-positive labels within CXR
and CXP (including “negative”, “not mentioned”, or “uncertain”) into an aggregate “nega-
tive” label for simplicity, equivalent to “U-zero” study of ‘NaN’ label in CXP. In CXR and
CXP, one of the 14 labels is “No Finding”, meaning no disease has been diagnosed for the im-
age and all the other 13 labels are 0. Of the 14 total disease labels, only 8 are shared amongst
all 3 datasets. Using these 8 labels, we define a multi-site dataset (ALL) that consists of the
aggregation of all images in CXR, CXP, and NIH defined over this restricted label schema.

These datasets contain protected subgroup attributes, the full list of which includes sex
(Male and Female), age (0-20, 20-40, 40-60, 60-80, and 80-), race (White, Black, Other, Asian,
Hispanic, and Native) and insurance type (Medicare, Medicaid, and Other). These values are
taken from the structured patient attributes. NIH, CXP, and ALL only have the patient sex
and age, while CXR also has race and insurance type data (excluding around 100,000 images).

4. Methods

We implement CNN-based models to classify chest X-ray images into 14 diagnostic labels. We
train separate models for CXR,5 CXP,6 NIH3 and ALL and explore their fairness with respect
to patient sex and age for all 4 datasets as well as race and insurance type for CXR.

4.1. Models

We initialize a 121-layer DenseNet26 with pre-trained weights from ImageNet27 and train
multi-label models with a multi-label binary cross entropy loss. The 121-layer DenseNet was
used as it produced the best results in prior studies6,8 . We use a 80-10-10 train-validation-test
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Table 1. Description of chest X-ray datasets, MIMIC-CXR (CXR),5 CheXpert (CXP),6

Chest-Xray8 (NIH).3 and their aggregation on 8 shared labels (ALL). Here, the number
of images, patients, view types, and the proportion of patients per subgroups of sex,
age, race, and insurance type are presented. ‘Frontal’ and ‘Latral’ abbreviate frontal and
lateral view, respectively. Native, Hispanic, and Black denote self-reported American
Indian/Alaska Native, Hispanic/Latino, and Black/African American race respectively.

Subgroup Attribute CXR5 CXP6 NIH3 ALL

# Images 371,858 223,648 112,120 707,626
# Patients 65,079 64,740 30,805 129,819
View Frontal/Lateral Frontal/Lateral Frontal Frontal/Lateral

sex Female 47.83% 40.64% 43.51% 44.87%
Male 52.17% 59.36% 56.49% 55.13%

Age 0-20 2.20% 0.87% 6.09% 2.40%
20-40 19.51% 13.18% 25.96% 18.53%
40-60 37.20% 31.00% 43.83% 36.29%
60-80 34.12% 38.94% 23.11% 33.90%
80+ 6.96% 16.01% 1.01% 8.88%

Race Asian 3.24% — — —
Black 18.59% — — —
Hispanic 6.41% — — —
Native 0.29% — — —
White 67.64% — — —
Other 3.83% — — —

Insurance Medicare 46.07% — — —
Medicaid 8.98% — — —
Other 44.95% — — —

split with no patient shared across splits. We resize all images to 256× 256 and normalize via
the mean and standard deviation of the ImageNet dataset.27 We apply center crop, random
horizontal flip and random rotation, as some of the images maybe flipped or rotated within
the dataset. The initial degree of random rotation is chosen by hyperparameter tuning. We
use Adam28 optimization with default parameters, and decrease the learning rate (LR) by
a factor of 2 if the validation loss does not improve over three epochs; we stop learning if
validation loss does not improve over 10 epochs. Thus the ultimate number of epochs for
training each model is varied based on the early stop condition. For NIH, CXP and CXR we
first tune models to get the highest average area under the receiver operating characteristic
curve (AUC) over 14 labels by fine tuning the LR. For the best achieved model, we fine tune
the degree of random rotation data augmentation from the set of 7, 10 and 15 and select the
best model. Following this, best initial LR is 0.0005 for CXR and NIH where it is achieved
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as 0.0001 for CXP. Also, best initial degree for random rotation data augmentation is 10 for
NIH and 15 for the CXR and CXP. For training on ALL, we use the majority vote of the
best hyperparameters per individual dataset (e.g. 0.0005 initial LR and 15 degree random
rotation). We then, fix the hyperparameters of the best model and train four extra models
with the same hyperparameters but different random seeds between 0 to 100, per dataset.
We report all the metrics based on the mean and 95% confidence intervals (CI) achieved over
five studies per dataset. We choose batch size of 48 to use the maximum memory capacity of
the GPU, for all datasets except NIH where we choose 32 similar to prior work.8 The output
of the network is an array of 14 numbers between 0 and 1 indicating the probability of each
disease label. The binary prediction threshold per disease is chosen to maximize the F1 score
measure on the validation dataset. We train models using a single NVIDIA GPU with 16G of
memory in approximately 9, 20, 40, and 90 hours for NIH, CXP, CXR, and ALL, respectively.

4.2. Classifier Disparity Evaluation

Our primary measurement of bias is TPR disparity. For example, given a binary subgroup
attribute such as sex (which in our data we classify as either ‘male’ or ‘female’), we mimic
prior work16 and define the TPR disparity per diagnostic label i as simply the TPR of label
i restricted to female patients minus that for male patients. More formally, letting g be the
binary subgroup attribute, we define TPRg,i = P [Ŷi = yi|G = g, Yi = yi], and the TPR disparity
as, Gapg,i = TPRg,i−TPR¬g,i. For non-binary attributes S1, . . . , SN , we use the difference
between a subgroup’s TPR and the median of all TPRs to define TPR disparity of the jth
subgroup for the ith label as, GapSj ,i = TPRSj ,i−Median(TPRS1,i, ..,TPRSk,i).

5. Experiments

First, we demonstrate that the classifiers we train on all datasets reach near-SOTA level
performance. This motivates using them to study fairness implications, as we can be confident
any problematic disparities are not simply reflective of poor overall performance. Next, we
explicitly test these classifiers for their implications on fairness. We target two investigations:

(1) TPR disparity: We quantify the TPR disparity per subgroup/disease for sex and age
across all 4 datasets, and due to data availability for race and insurance type on CXR.

(2) TPR disparity in proportion to membership: We investigate the distribution of the
positive patient proportion per subgroup Sj and label yi (which is given by P [S = Sj |Y =

yi]) and the effect on TPR disparities. Prior work on chest X-ray diagnosis prediction has
suggested data imbalance can explain sex TPR disparities29 while work in other domains
illustrates that disparities in small or vulnerable subgroups could be propagated if put
into practice,16,30 and these experiments are meant to probe that hypothesis.

6. Results

One potential reason that a model may be biased is because of poor performance, but we
demonstrate that our models achieve near-SOTA classification performance. Table 2 shows
overall performance numbers across all tasks and datasets. Though results have non-trivial
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Table 2. The AUC for chest X-ray classifiers trained on CXP, CXR, and NIH, averaged over 5
runs ±95%CI, where all runs have same hyperparameters but different random seed. (‘Airspace
Opacity’5 and ‘Lung Opacity’6 denote the same label.)

Label (Abbr.) CXR CXP NIH ALL

Airspace Opacity (AO) 0.782 ± 0.002 0.747 ± 0.001 — —
Atelectasis (A) 0.837 ± 0.001 0.717 ± 0.002 0.814 ± 0.004 0.808 ± 0.001
Cardiomegaly (Cd) 0.828 ± 0.002 0.855 ± 0.003 0.915 ± 0.002 0.856 ± 0.001
Consolidation (Co) 0.844 ± 0.001 0.734 ± 0.004 0.801 ± 0.005 0.805 ± 0.001
Edema (Ed) 0.904 ± 0.002 0.849 ± 0.001 0.915 ± 0.003 0.898 ± 0.001
Effusion (Ef) 0.933 ± 0.001 0.885 ± 0.001 0.875 ± 0.002 0.922 ± 0.001
Emphysema (Em) — — 0.897 ± 0.002 —
Enlarged Card (EC) 0.757 ± 0.003 0.668 ± 0.005 —
Fibrosis — — 0.788 ± 0.007 —
Fracture (Fr) 0.718 ± 0.007 0.790 ± 0.006 — —
Hernia (H) — — 0.978 ± 0.004 —
Infiltration (In) — — 0.717 ± 0.004 —
Lung Lesion (LL) 0.772 ± 0.006 0.780 ± 0.005 — —
Mas (M) — — 0.829 ± 0.006 —
Nodule (N) — — 0.779 ± 0.006 —
No Finding (NF) 0.868 ± 0.001 0.885 ± 0.001 — 0.890 ± 0.000
Pleural Thickening (PT) — — 0.813 ± 0.006 —
Pleural Other (PO) 0.848 ± 0.003 0.795 ± 0.004 — —
Pneumonia (Pa) 0.748 ± 0.005 0.777 ± 0.003 0.759 ± 0.012 0.784 ± 0.001
Pneumothorax (Px) 0.903 ± 0.002 0.893 ± 0.002 0.879 ± 0.005 0.904 ± 0.002
Support Devices (SD) 0.927 ± 0.001 0.898 ± 0.001 — —

Average 0.834 ± 0.001 0.805±0.001 0.840 ± 0.001 0.859 ± 0.001

variability, we show similar performance to the published SOTA of NIH,8 the only dataset for
which a published SOTA comparison exists for all labels. Note that the published results for
CXP6 are on a private, unreleased dataset of only 200 images and 5 labels. Our results for
CXP are on a randomly sub-sampled test set of size 22,274 images, so the numbers for this
dataset are not comparable to the published results there.

6.1. TPR Disparities

We calculate and identify TPR disparities and 95% CI across all labels, datasets and attributes.
We see many instances of positive and negative disparities, which can denote bias for or against
of a subgroup, here referred to favorable and unfavorable subgroups. As an illustrative example
Fig. 1 shows the race TPR disparities distribution sorted by the the gap between least and
most favorable subgroups per label. In a fair setting, all subgroups would have no appreciable
TPR disparities, yielding a gap between least and most favorable subgroups within a label at
‘0’. Table 3 shows the summary of the disparities in all attributes and datasets. We note that
the most frequent unfavorable subgroups are those with social disparities in the healthcare
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Fig. 1. The sorted distribution of TPR race disparity of CXR (y-axis) with label (x-axis). The
scatter plot’s circle area is proportional to group size. TPR disparities are averaged over five runs
±95%CI ( shown with arrows). Hispanic patients are most unfavorable (highest count of negative
TPR disparities, 9/13) whereas White patients are most favorable subgroup (9/13 zero or positive
disparities). Labels ‘No Finding’ (‘NF’) and ‘Pneumonia’ (‘Pa’) have smallest (0.119) and largest
(0.440) gap between least/most favorable subgroups. The average cross 14 labels gap is 0.226.

Table 3. Disparities overview over attributes and datasets. We average per label gaps between the
least and most favorable subgroup’s TPR disparities per attributes/datasets to obtain the average
cross-label gap. The labels (full names on Table 2) that obtained the smallest and largest gaps are
shown next to the average cross-label gap column, along with their gaps. We summarize and label
in columns the most frequent “Unfavorable” and “Favorable” subgroups count, which are the ones
that experience TPRs disparities below or above the zero gap line. See Section 6.1 for more details.

Attribute Dataset Average Cross-Label Gap Unfavorable Favorable
Gap Lowest Greatest

Sex ALL 0.045 Ef:0.001 Pa:0.105 Female (4/7) Male (4/7)
CXP 0.062 Ed:0.000 Co:0.139 Female (7/13) Male (7/13)
CXR 0.072 Ed:0.011 EC.:0.151 Female (10/13) Male (10/13)
NIH 0.190 M:0.001 Cd:0.393 Female (8/14) Male (8/14)

Age ALL 0.215 Ef:0.115 NF:0.444 0-20 (5/7) 40-60,60-80(5/7)
CXR 0.245 SD:0.091 C:0.440 0-20, 20-40 (7/13) 60-80 (10/13)
CXP 0.270 SD:0.084 NF:0.604 0-20, 20-40, 80- (7/13) 40-60 (8/13)
NIH 0.413 In:0.188 Em:1.00 60-80 (7/14) 20-40 (9/14)

Race CXR 0.226 NF:0.119 Pa:0.440 Hispanic (9/13) White (9/13)

Insurance CXR 0.100 SD:0.021 PO:0.190 Medicaid (10/13) Other (10/13)
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system, e.g., women and minorities, but no disease is consistently at the highest or lowest
disparity. We show the average cross-label gap between and the labels of the least and most
favorable subgroups per dataset and attributes. We count the number of time each subgroups
experience negative disparities (unfavorable) and zero or positive disparities (favorable) across
disease labels and report the most frequent unfavorable and favorable subgroups by count in
Table 3. For CXP and CXR, we exclude “No Finding” label in the count (counts are out of
13) as we want to check negative bias in disease labels. Notably, the model trained on ALL
has the smallest average cross- label gap between least/most favorable groups for sex and age.

6.2. TPR Disparity Correlation with Membership Proportion

We measure the Pearson correlation coefficients (r) between the TPR disparities and patients
proportion per label across all subgroups/datasets. As we test multiple (33) hypotheses, (33
total comparisons amongst all protected attributes considered) with a desired significance
level (p < 0.05), then based on Bonferroni correction,31 the statistical significance level for
each hypothesis is p < 0.0015 (0.05/33). The majority of correlation coefficients listed are
positive, but the only statistically significant correlations are: race Other (r: 0.774, p: 0.0012)
& age subgroups 60-80 (r: 0.788, p: 0.0008) and 80- (r:0.841 , p: 0.0002) in CXR, age group
60-80 (r: 0.853, p: 0.0001) in CXP, and age group 60-80 (r: 0.936, p: 0.0006) in ALL.

7. Summary and Discussion

We present a range of findings on the potential biases of deployed SOTA X-ray image classifiers
over the sex, age, race and insurance type attributes on models trained on NIH, CXP and
CXR. We focus on TPR disparities similar to prior work,16 checking if the sick members of
the different subgroups are given correct diagnosis at similar rates.

Our results demonstrate several main takeaways. First, all datasets and tasks display non-
trivial TPR disparities. These disparities could pose serious barriers to effective deployment
of these models and invite additional changes in either dataset design and/or modeling tech-
niques to ensure more equitable models. Second, using a multi-source dataset leads to smaller
TPR disparities, potentially due to removing bias in the data collection process. Third, while
there is occasionally a proportionality between protected subgroup membership per label and
TPR disparity, this relationship is not uniformly true across datasets and subgroups.

7.1. Extensive Patterns of Bias

We find that all datasets and tasks contain meaningful patterns of bias although no diseases are
consistently at the highest or lowest disparity rates across all attributes and datasets. These
disparities are present with respect to age and sex in all settings, with consistent subgroups
(female, 0-20) showing consistently unfavorable outcomes. Note that in the case of the sex
disparities, “female” patients are universally the least favored subgroup despite the fact that
the proportion of female patients is only slightly less than male patients in all 4 datasets.

We also observe TPR disparities with respect to the patient race and insurance type in the
CXR dataset. White patients, the majority, are the most favorable subgroup, where Hispanic
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patients are the most unfavorable. Additionally, bias exists against patients with Medicaid
insurance, who are the minority population and are often from lower socioeconomic status.
They are the most unfavorable subgroup with the model often providing incorrect diagnoses.

7.2. Bias Reduction Through Multi-source Data

Of the four datasets, the multi-source dataset led to the smallest disparities with respect to
age and sex. Based on notions of generalizability in healthcare,10,32 we hypothesize that this
improvement stems from the combination of large datasets reducing data collection bias.

7.3. Correlation Between TPR Disparities and Membership Proportion

Although prior work has raised data imbalance as a potential cause of sex bias,29 we observe
TPR disparities are not often significantly correlated with disease membership. While we
observe positive correlation between subgroups membership and TPR disparities, only 5 of
33 subgroups showed statistically significant correlation. By inspection, we identify diseases
with the same patient proportion of a subgroup and completely different TPR disparities
(e.g. ‘Consolidation’, ‘Nodule’ and ‘Pneumothorax’ in NIH have 45% Female, but the TPR
disparities are in diverse range, -0.155, -0.079 and 0.047, respectively). Thus, having the same
portion of images within all labels may not guarantee lack of bias.

7.4. Discussion

We identify subgroups that may experience more bias through the exploration of variance in
TPR and FPR. Based on the equality of opportunity notion of fairness, a fair network should
exhibit the same TPR on average among all subgroups regardless of how likely a subgroup
may have a disease. Such an improvement would allow two patients with the same condition,
but in different subgroups, to be diagnosed correctly and receive the same level of care. While
we focused on some of the more obvious protected attributes, it is important to note that
there are several other factors, subgroups, and attributes that we have not considered.

Identifying and eliminating disparities is particularly important as large datasets begin
to be used by high-capacity neural models, but are based on highly skewed population, e.g.,
kidney injury prediction in a population that is 93.6% male.33 While chest X-ray images
datasets are not sex-skewed, we note that the age, race and insurance type attributes are
highly unbalanced, e.g., 67.6% of patients are White, and only 8.98% are under Medicaid
insurance. Subgroups with chronic underdiagnosis are those who experience more negative
social determinants of health, specifically, women, minorities, and those of low socioeconomic
status. Such patients may use healthcare services less than others. In some groups, such a
dataset skew can increase the risk of miss-classification.24

Although “de-biasing” techniques34,35 may reduce disparities, we should not ignore the
important biases inherent in existent large public datasets. There are a number of reasons
why dataset may induce disparities in algorithms, from imbalanced datasets to differences in
statistical noise in each group (e.g. unmeasured predictive features) to differences in access
to healthcare for patients of different groups.12,19 For instance, an algorithm that can classify
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skin cancer36 with high accuracy will not be able to generalize on different skin color if similar
samples have not been represented enough in the trained dataset.18 Intentionally adjusting the
datasets to reduce disparities in to protect minorities and the subgroups with high disparities is
one potential option in dataset creation, though our analyses suggest that dataset membership
cannot always ameliorate bias.

With the great promise of advanced models for clinical care, we caution that advanced
SOTA models must be carefully checked for such biases as those we have identified. Disparities
in small or vulnerable subgroups could be propagated30 within the development of machine
learning models. This raises serious ethical concerns22 about the equal accessibility to the
required medical treatment. Usually the SOTA classifiers are trained to provides high AUC
or accuracy on the general population. However we suggest additionally applying rigorous
fairness analyses before deployment. Clear disclaimers about the dataset collection process
and potential resulting algorithmic bias could improve model assessment for clinical use.

8. Limitations and Future Work

As SOTA deep learning diagnosis algorithms become more promising for medical screening,
model bias investigation is essential. This work is a first step in quantifying these biases so
that approaches for amelioration can be developed. However, important future work remains.

First, we note that across these models, our source of diagnostic labels for these images
must be considered at best “silver” labels, as all currently existing public chest X-ray datasets
use automatically deteremined labels based on natural language processing (NLP) techniques
to extract labels from the radiology reports. These silver labels may be incorrect, in ways that
could compound with observe biases or model errors, a risk that warrants further investigation.
Additionally, we must consider the quality of the imaging devices themselves, the region of
data collection, and the patient demographics at each hospital collection site. For instance,
NIH was gathered from a hospital that covers more complicated cases, CXP contains more
tertiary cases, and CXR was gathered from an emergency department, and prior literature has
already shown that models are fully capable of taking advantage of such confounders.32 These
challenges may affect both the label quality,37 and any patterns of bias in the labels, thereby
affecting the resulting fairness metrics. Finally, exploration of existing de-biasing techniques,
however limited, should also be undertaken over this modality to see if any of the problems
we identified here can be resolved.

9. Conclusion

While the development and deployment of machine learning models in a clinical setting poses
exciting opportunities, great care must be taken to understand how existing biases may be
exacerbated and propagated. We show the TPR disparity of SOTA chest X-ray pathology
classifiers trained on 4 datasets, (MIMIC-CXR, ChestX-ray8, CheXpert, and aggregation of
those three on shared labels) across 14 diagnostic labels. We quantify the TPR disparity across
datasets along sex, age, race and insurance type. Our results indicate that high-capacity models
trained on large datasets do not provide equality of opportunity naturally, leading instead to
potential disparities in care if deployed without modification.
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Incorporation of DNA methylation into eQTL mapping in African Americans. 
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Epigenetics is a reversible molecular mechanism that plays a critical role in many developmental, 
adaptive, and disease processes. DNA methylation has been shown to regulate gene expression and 
the advent of high throughput technologies has made genome-wide DNA methylation analysis 
possible. We investigated the effect of DNA methylation on eQTL mapping (methylation-adjusted 
eQTLs), by incorporating DNA methylation as a SNP-based covariate in eQTL mapping in African 
American derived hepatocytes. We found that the addition of DNA methylation uncovered new 
eQTLs and eGenes. Previously discovered eQTLs were significantly altered by the addition of DNA 
methylation data suggesting that methylation may modulate the association of SNPs to gene 
expression. We found that methylation-adjusted eQTLs that were less significant compared to PC-
adjusted eQTLs were enriched in lipoprotein measurements (FDR=0.0040), immune system 
disorders (FDR = 0.0042), and liver enzyme measurements (FDR=0.047), suggesting that DNA 
methylation modulates the genetic regulation of these phenotypes. Our methylation-adjusted eQTL 
analysis also uncovered novel SNP-gene pairs. For example, we found that the SNP, rs1332018, was 
associated to GSTM3. GSTM3 expression has been linked to Hepatitis B which African Americans 
suffer from disproportionately. Our methylation-adjusted method adds new understanding to the 
genetic basis of complex diseases that disproportionally affect African Americans. 

Keywords: genome-wide methylation, eQTLs, African Americans, Hepatocytes 

1. Introduction

DNA methylation plays an important role in the regulation of gene expression which in turn affects 
many complex diseases and traits.1 Integration of DNA methylation into expression Quantitative 
Trait Loci (eQTL) mapping, can be challenging as the addition of SNP-based covariates is 
computationally intensive and multi-omics datasets with matching samples are sparse.2 Moreover, 
matching datasets in minority populations are nearly absent from public databases. DNA 
methylation patterns, in particular, are complex, vary greatly from sample to sample3, and change 
with environmental exposures.4 Therefore, DNA methylation studies can be hard to generalize. The 
advent of high throughput and next generation sequencing technologies, however, has made it 
possible for DNA methylation to be analyzed genome-wide.4  Several investigators have previously 
integrated genome-wide sequencing data and DNA methylation to uncover SNPs that significantly 
associate to CpG methylation status, called methylation QTLs (meQTLs).5, 6  These studies have 
found that DNA methylation plays a significant role in the onset of diseases and phenotypes such 
as obsessive-compulsive disorder and drug response.5, 6  Most of these studies have been conducted 
in populations of European ancestry.  

© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed under 
the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 
License. 
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   The African American population is widely underrepresented in genetic studies. In GWAS 
studies, only 19% of individuals are non-European and less than 5% are non-European and non-
Asian.7 While other eQTL mapping studies have used African American samples, the number of 
individuals have been very small, thus making them underpowered to adequately account for 
population specific variation. Furthermore, these studies did not account for DNA methylation as a 
SNP-based covariate.7 In this study, we perform the first investigation of the effect of DNA 
methylation on eQTL mapping in African Americans and evaluate methylation-adjusted eQTL 
associations to complex diseases, phenotypic traits, and metabolic traits. These findings may explain 
the role DNA methylation plays in health disparities observed in African Americans.  

2.  Methods 

2.1. Cohort 

Sixty-eight African 
American hepatocyte 
cultures were acquired. 
After genotyping, DNA 
methylation quality 
control and RNA-
sequencing quality 
control, 53 samples were 
used to conduct this 
analysis as shown in Fig. 
1. Hepatocytes were 
either purchased from 
commercial companies 
(BioIVT, TRL, Life 
technologies, Corning, 
and Xenotech) or isolated 
from cadaveric livers 
using the same procedure 
described in Park et. al.8 

All genomic, 
transcriptomic and 
methylome data were 
gathered from the same 
hepatocyte samples. 

2.2. Genotyping, Imputation, and QC 

DNA was extracted from each hepatocyte culture using Gentra Puregene Blood kit (Qiagen) and 
all the DNA samples were bar coded for genotyping. The SNPs were genotyped using the Illumina 
Multi-Ethnic Genotyping array (MEGA) at the University of Chicago Functional Genomics Core 

Fig. 1. Flowchart showing the study design and the methods used in each dataset.  
 

Pacific Symposium on Biocomputing 2021

245



 
 

 

using standard protocols. The outputs were then created by Genome Studio using a 0.15 GenCall 
score as the cutoff. PLINK9 was then used to perform a sex check and to identify individuals with 
discordant sex information. The identity-by-descent method was used with a cut off score of 0.125 
to identify duplicated or related individuals, where the cutoff score indicates third-degree 
relatedness. The following SNPs were excluded: SNPs on the sex and mitochondrial chromosome, 
A/T or C/G SNPs which may introduce flip-strand issues, SNPs with missing rate > 5% or failed 
Hardy-Weinberg equilibrium (HWE) tests (p < .00001), leaving 674,996 SNPs. Genotypes were 
phased using SHAPEIT and imputed with IMPUTE2. After imputations, SNPs were excluded for 
minor allele frequency < 0.05, imputation quality scores < 0.8, and HWE p-value < .00001, 
leaving 7,180,502 SNPs in the analysis.  

2.3. RNA-sequencing and QC 

Total RNA was extracted from each primary cell culture after three days of plating using the Qiagen 
RNeasy Plus mini-kit. Only the samples with RNA integrity number (RIN) score > 8 were 
sequenced. RNA-seq libraries were prepared using TruSeq RNA Sample Prep Kit, Set A (Illumina 
catalog # FC-122-1001) in accordance with the manufacturer’s instructions. Illumina HiSeq 2500 
and HiSeq 4000 machines were used to prepare the cDNA libraries sequence and. This resulted in 
50 million reads per sample (single-end 50bp reads).  
   Quality of the raw reads from FASTQ files was assessed by FastQC (v0.11.2). A per base 
sequence quality threshold of > 20 across all bases was set for the fastq files. STAR 2.510 was used 
to align the reads to human Genome sequence GRCh38 and Comprehensive gene annotation 
(GENCODE version 25). Only uniquely mapped reads were retained and indexed by SAMTools 
1.2.11 To assess the nucleotide composition bias, GC content distribution and coverage skewness of 
the mapped reads read_NVC.py, read_GC.py and geneBody_coverage.py from RNA-SeQC 
(2.6.4)12 were used. Lastly, Picard CollectRnaSeqMetrics was applied to evaluate the distribution 
of bases within transcripts. Fractions of nucleotides within specific genomic regions were measured 
and only samples with > 80% of bases aligned to exons and UTRs regions were retained for analysis. 

2.4. Gene expression quantification 

To quantify gene expression for the 17,992 genes used in the study a collapsed gene model was 
used, following the GTEx isoform collapsing procedure.13 The reads were mapped to genes 
referenced with Comprehensive gene annotation (GENCODE version 25) to evaluate gene-level 
expression using RNA-SeQC.12  The Bioconductor package, DESeq2 (version1.20.0)14  was used to 
supply HTSeq15 raw counts for the analysis of gene expression. DESeq2 was also used to perform 
principal component analysis (PCA). Using regularized log transformation, the counts were 
normalized. The two PC’s used in the study, PC1 and PC2, were plotted to visualize the expression 
patterns of the samples and two samples with distinct expression patterns were excluded as outliers. 
   The gene expression was normalized by the trimmed mean of M-values normalization method 
(TMM), which was implemented in edgeR.16 The TPM (transcript per million) was calculated by 
first normalizing the counts by gene length and then normalizing by read depth. The thresholds for 
gene expression values were set at < 0.1 TPM in at least 20% of samples and ≤ 6 reads in at least 
20% of samples. Inverse normal transformation was used to normalize the expression values for 
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each gene. The gene coordinates were remapped to hg19/GRCh 37 (GENCODE version 19) due to 
genotype imputation limitations. 

2.5. Methylation Sample Preparation and QC 

DNA was isolated from hepatocytes as described in Park et al.8 As shown in Fig. 1, 56 of the 
hepatocyte samples produced sufficient bisulfite-converted DNA for analysis. The Illumina 
MethylationEPIC BeadChip microarray (San Diego, Ca, USA), consisting of approximately 
850,000 probes17 was used for methylation profiling from 56 AA hepatocytes that overlapped the 
samples used for gene expression analysis.  
   Methylation data QC and normalization was performed using the ChAMP R package (version 
2.10.1)18 as previously described in Park et.al.8 This process removed: 9204 probes for any sample 
that did not have a detection p value <0.01, 1043 probes with a bead count <3 in at least 5% of 
samples, 49 probes that align to multiple locations as identified by Nordlund et al.19,  2975 probes 
with no CG start sites, and 17,235 probes located on X and Y chromosomes. After QC, three samples 
were excluded, resulting in 53 samples remaining in the analysis. 

2.6. Methylation-adjusted eQTLs 

The R package Matrix eQTL20 was used to determine the methylation site(s) that correspond to each 
SNP within a 2.5 kB window. CpG sites were then grouped together by SNP to determine the 
number of CpG sites on average at each SNP and to determine the pairwise correlation between 
CpG sites at each SNP. We used a weighted average based on the distance of the CpG site from the 
SNP to determine the methylation values for each SNP. If only one CpG site was linked to a SNP, 
then the weight of the CpG site would be: 

w = 1 − ( $
%&''

)                                                             (1) 

, where d is the genomic distance (in base pairs) between the CpG site and the SNP and 2500 
represents the 2.5kB window size used in this analysis. This weight would then be multiplied by the 
methylation value of the CpG site to get the normalized methylation value used in the analysis. This 
weighting system allowed proximal CpG sites to have a greater weight. If more than one CpG site 
was found within the 2.5kB region then each CpG site’s weight, 𝑤i, was calculated using equation 
(1) above and the final weight for each CpG site was calculated as: 

𝑤*  =	 ,-
∑ ,/0
/12

                                                                     (2) 

, where N is the total number of CpG sites that correspond to a particular SNP and ∑ 𝑤3
456 k 

represents the sum of the initial weights of all the CpG sites that correspond to that SNP.  This 
calculation ensures the sum of the final weights of all CpG sites corresponding to a single SNP are 
equal to one. The SNP-based methylation value was then calculated by: 

M = ∑ 𝑤* ∗	𝑚*
3
*56                                                        (3) 

, where M is the SNP-based methylation value and ∑ 𝑤* ∗	𝑚*
3
*56  represents the weighted sum of 

all of the methylation values for the CpG sites corresponding to that SNP. These averaged 
methylation values used as a SNP based covariate and eQTLs were mapped using the LAMatrix R 
package.21 The methylation-adjusted eQTLs and PC-adjusted eQTLs were adjusted for sex, 
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platform, batch, genotype-derived PCs 1 and 2, and 10 PEER variables estimated from normalized 
expression values as previously described in Zhong et.al.7 The genotype-gene expression 
associations within a cis region (1 Mb around the gene) were tested. PC-adjusted eQTLs (mapped 
in the same hepatocyte cultures) were compared to methylation-adjusted eQTLs to investigate if 
changes in the eQTL statistical significance or change in effect size (Spearman’s correlation).21 
All relevant data are within the manuscript are available from the GEO (GSE124076 and 
GSE147628). 

2.7. eQTL and GWAS overlap 

To understand how the methylation-adjusted eQTLs may explain the underlying mechanisms in 
GWAS findings, the method presented in Zhong et. al.7 was used with some modifications. This 
included downloading the NHGRI/EBI GWAS Catalog file (v.1.0.2, 2019-03-22) and keeping only 
the associations that passed the genome-wide significant level (p<5e-8). Furthermore, the rsids were 
remapped from Build38 to Build37 using Ensembl API. The 1000 Genomes YRI population were 
used to extract all the variants in LD with the independent GWAS variants (r2 > 0.8) and the traits 
of the corresponding GWAS hits were put into 17 groups which corresponded to ontology-based 
trait categories.22 A false discovery rate (FDR) threshold of 0.05 was set as significant enrichment 
for an ontology. The methylation-adjusted eQTLs were split into three groups for this analysis: (i) 
eQTLs that were significant with PC-adjustment and increased in significance with methylation-
adjustment, (ii) eQTLs that were not significant with PC-adjustment and became significant with 
methylation- adjustment (FDR<0.05), and (iii) eQTLs that were significant with PC-adjustment and 
became less significant with methylation-adjustment. These three groups of eQTLs were compared 
to the GWAS variants. 

3.  Results 

Fifty-three African American hepatocyte samples were used in this analysis, with 28 (52.8%) males 
and 25 (47.2%) females. The age (mean ± standard deviation) of the cohort was 39 ± 18.4 years old. 
To account for methylation in this eQTL mapping analysis, LAMatrix was used.21 Instead of 
incorporating local ancestry into the analysis as previously done7, DNA methylation was used in its 
place. LAMatrix was chosen because the R package has increased power and controls false positives 
when gene expression differs by locus-specific covariate, such as methylation.21  

3.1 Methylation-adjusted eQTLs vs PC-adjusted eQTLs 

Out of the 7,180,502 total SNPs in the dataset, 2,494,181 SNPs had at least one CpG site within the 
2.5 kB window, with an average of 3.08 CpG sites per SNP (ranging between of 1 to 95 CpG sites 
per SNP). We identified 2,296 eQTLs with methylation-adjustment at an FDR threshold of 0.05. To 
ascertain if any methylation-adjusted eQTLs resulted in the novel discovery of regulatory variation, 
we compared significant methylation-adjusted eQTLs (FDR<0.05) against significant PC-adjusted 
eQTLs (FDR<0.05). This comparison resulted in 308 unique methylation-adjusted eQTLs that were 
not found with PC-adjusted analysis, and 1,954 eQTLs which were common to both analyses. The 
remaining 19,567 found in PC-adjustment were not significant in this analysis (Fig.2A). The 
comparison revealed that there were 11,485 eQTLs that were significant with PC-adjustment and 
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decreased in significance with methylation-adjustment and 50 eQTLs that were significant with PC-
adjustment increased in significance with methylation-adjustment (Fig. 2B). We compared the 
effect size for methylation-adjusted eQTLs (all methylation-adjusted eQTLs and by the groups 
defined in Fig.2B) versus PC-adjusted eQTLs. All groups showed high correlation of effect size 

(Spearman’s correlation = 0.32-0.42, p < 2.2e-6, data not shown). 

3.2 GWAS Associations for Methylation-adjusted eQTLs 

We overlapped the methylation-adjusted eQTLs with SNPs in previously reported GWAS. Variants, 
from NHGRI-EBI GWAS catalog, or their tagging variants (r2 > 0.8, 1000 Genomes YRI 
population) were used to determine the overlap with h the methylation-adjusted eQTLs. To analyze 
the effect of methylation even further, the methylation-adjusted eQTLs were broken into three 
groups: (i) eQTLs that are only significant with methylation-adjustment, (ii) eQTLs that were 
significant with PC-adjustment but became more significant with methylation-adjustment, and (iii) 
eQTLs that were significant with PC-adjustment but became less significant with methylation-
adjustment. In total, there were 285 GWAS associations that intersect with methylation-adjusted 
eQTLs across the three groups.  

3.2.1. Group 1: eQTLs that were only significant with methylation-adjustment (N = 308) 

For eQTLs that were only significant with methylation-adjustment, 16 GWAS associations were 
found that intersected with these eQTLs. There was significant enrichment for digestive system 
disorders (FDR = 0.011), as shown in Fig. 3A. One of the eQTLs enriched for digestive system 
disorders, rs11546996, was associated with primary biliary cirrhosis.23 Due to the intergenic location 
of rs11546996, the causal gene was reported as SPIB in this study. However, our analysis associated 

Fig. 2.  Methylation-adjusted eQTLs as compared to PC-adjusted eQTLs 
A) The Venn-Diagram showing the number of eQTLs that are significant with methylation-

adjustment, significant with PC-adjustment, and significant in both analyses.  
B) Comparison of the p-values of the 308 eQTLs that became significant with methylation-

adjustment (black), 11,485 that were significant with PC-adjustment and decreased in 
significance with methylation-adjustment (red), and 50 that were significant with PC-adjustment 
and increased in significance with methylation-adjustment (gold).  
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rs11546996 to PNKP (P-value = 1.05e-6, FDR = 0.026) thereby potentially identifying a new causal 
gene for primary biliary cirrhosis by accounting for methylation in eQTL mapping.  

3.2.2. Group 2: eQTLs that were significant with PC-adjustment and increased in significance with 
methylation-adjustment (N = 50) 

For eQTLs that were significant with PC-adjustment and increased in significance with methylation-
adjustment, eight GWAS associations intersected with this group of eQTLs. No significantly 
enriched was found (Fig. 3B). This may be due to the very small number of eQTLs in this group. 

3.2.3. Group 3: eQTLs that were significant with PC-adjustment and decreased in significance with 
methylation-adjustment (N = 11,485) 

For eQTLs that were significant with PC-adjustment and decreased in significance with 
methylation-adjustment, 261 GWAS associations intersected with eQTLs in this group. There was 
significant enrichment for lipid or lipoprotein measurements (FDR = 0.0040), immune system 
disorders (FDR = 0.0042), and liver enzyme measurements (FDR = 0.047) (Fig. 3C). This suggests 
that these SNPs may be associated to susceptibility of disease, but that susceptibility may be 
modulated by DNA methylation.  

   Novel SNP-gene associations were also found. Two examples are rs7528419 and rs12740374, 
which are associated with SORT1, a gene known to influence LDL-cholesterol levels and 
lipid/lipoprotein measurements.24 When accounting for DNA methylation the p-value of these two 
SNP-gene pairs increased from 1.99e-9 for both to 4.92e-8 and 1.25e-7, respectively. The FDR also 
increased from 3.01e-5 for both to 3.12e-3 and 6.08e-3, respectively. Furthermore, both SNPs had 
proportion of DNA methylation ranging from 0.12 to 0.33. Although these SNP-gene pairs remained 
significant with methylation-adjustment, their significance decreased dramatically indicating that 
methylation, near these SNPs, may play a role in the association between these SNPs to lipid 
phenotypes. This suggests that DNA methylation should be considered when assessing genomic risk 
of LDL-cholesterol levels and cholesterol-related diseases, such as myocardial infarction. 

Fig. 3. Enrichment of methylation-adjusted eQTLs in GWAS findings 
A) eQTLs, that were only significant with methylation-adjustment. B)  eQTLs, that were significant with PC-
adjustment and increased in significance with methylation-adjustment. C)  eQTLs, that were significant with 
PC-adjustment and decreased in significance with methylation-adjustment. The X-axis represents the 
proportion of SNPs within each category that were within each group and FDR for enrichment is shown by 
the color of the dot. 
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   The methylation-adjusted eQTL, rs9296736 associated with the expression of MLIP, was 
previously found to be associated with liver enzyme measurements.25 High levels of liver-enzymes 
in plasma are widely associated with an increased risk for developing many diseases including 
cirrhosis and cardiovascular disease.25 This SNP-gene pair decreased in significance considerably 
when it was adjusted for methylation. The p-value and FDR of this methylation-adjusted eQTL went 
from 2.08e-9 and 3.13e-5 with PC-adjustment to 0.037 and 0.94, respectively, with methylation-
adjustment. For this SNP-gene pair, rs9296736 was highly methylated, with proportion of DNA 
methylation ranging from 0.89 to 0.97. This result suggests that the association of rs9296736 to 
MLIP and liver enzyme measurements may depend on the DNA methylation landscape. 

3.3. Discovery of eGenes associated to disease traits using methylation-adjusted eQTL mapping 

There were 179 eGenes found through methylation-adjusted eQTL mapping (FDR<0.05) of which 
80 eGenes that were not significant with PC-adjustment. Two of these eGenes, GSTM3 (FDR = 
0.014) and HSPA6 (FDR = 0.029), have been associated to disease traits such as Hepatitis B (HBV) 
for GSTM3 and Hepatocellular Carcinoma (HCC) for both eGenes.26-29 African Americans have a 
higher incidence and worse outcomes of HBV and HCC when compared to other demographics.30, 

31  Since these eGenes were not significant with PC-adjusted eQTL mapping, they may explain how 
methylation plays a role in the health disparities observed in African Americans. As shown in Fig. 

Fig. 4. Boxplots of genotype vs gene expression and DNA methylation for GSTM3 and 
HSPA6.   

A) A significant increase in GSTM3 gene expression (p = 1.1e-6) and a significant 
decrease in DNA methylation (p = 9.2e-13) are associated with rs1332018. The 
number of individuals (n) is shown for each genotype.  

B) A significant increase in HSPA6 gene expression (p=0.0099) and an increase in 
DNA methylation (p=0.20) are associated with rs57711775. The number of 
individuals (n) is shown for each genotype.  
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4A, there is a significant assocication between rs1332018 genotype and GSTM3 expression as well 
as rs1332018 genotype to DNA methylation. From this we can see that the T allele is associated 
with both increased gene expression and lower DNA methylation. A total of 18 CpG sites 
contributed to this association. As shown in Fig. 4B, there is also relationship between HSPA6 gene 
expression and DNA methylation with the A allele associated with both increased gene expression 
and increased DNA methylation, though the later did not reach statistical significance. A total of 7 
CpG sites contributed to this association.  

4.  Discussion 

Through the integration of DNA methylation into eQTL mapping, we showed how methylation 
potentially plays a critical role in SNP-gene associations as well as the association of these eQTLs 
to diseases and metabolic traits. Our analysis was aided by using the computationally efficient R 
package, LAMatrix, which allows for the addition of a SNP based covariate to eQTL mapping. 
Additionally, our use of data from African Americans aided in the discovery of new regulatory 
variants as this population is more genetically diverse than European ancestry populations. Previous 
meQTLs studies have shown that SNPs can affect the methylation status of nearby CpGs, not only 
CpGs that overlap the SNP location. Shultz et. al. showed that SNPs within 0.2Mb of a CpG can 
significantly associate with methylation status.32 We used a weighted approach which assumes that 
SNPs have a larger effect on closer CpG sites as previous studies showed a decrease in the 
association p-values of meQTLs with distance.33, 34 In our analysis we accounted for methylation 
within a 2.5Kb window. Larger window sizes may be more appropriate, but as no previous study 
has incorporate methylation into eQTL mapping we took a conservative approach. 
   We found unique eGenes in our analysis that were not found by eQTL mapping with only PC-
adjustment. Two of these eGenes, GSTM3 and HSPA6, are associated with diseases such as HBV 
for GSTM3 and HCC for both eGenes.26-29 These are diseases that disproportionately affect 
African Americans.30, 31 GSTM3 has also been associated to oxidative stress and specifically 
several studies have found that epigenetic suppression of GSTM3 in HBV-infected cells causes 
oxidative stress27, 28, which can lead to HCC.26  Furthermore, other studies showed that GSTM3 
expression was lowered with promoter hypermethylation35 and in chemical-induced HCC.36  This 
finding agrees with the previous studies mentioned, showing that epigenetic suppression of 
GSTM3 leads to HCC in HBV-infected cells.26-28  We found a significant inverse relationship 
between GSTM3 expression and DNA methylation around rs1332018. This suggests that 
individuals with rs1332018 genotypes that have a lower GSTM3 expression and higher 
methylation may be at a higher risk for HCC.  HSPA6 was also found to be overexpressed in 
human HCC tissues and a potential risk factor for HCC reccurence.29  We found that the 
expression of HSPA6 increased with methylation around rs57711775, which could mean that 
methylation potentially plays a role in upregulating HSPA6. Furthermore, the A allele of 
rs57711775 that is associated with higher HSPA6 expression and higher methylation in our 
analysis. This SNP is not found in European ancestry populations according to the Ensembl 
database. Thus, we potentially elucidated a causal variant and risk allele for HCC specific to 
African Americans by incorporating methylation into this analysis. As has previously been 
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reported, the direction of effect of DNA methylation is dependent on the location of 
methylation.37, 38 Previous studies have shown that methylation within the transcriptional start site 
of the promoter is well known to repress gene expression while methylation within the gene body 
results in more variable expression.37, 38 Therefore, both GSTM3 expression and HSPA6 expression 
may contribute to the onset of HCC in African Americans.     
   In our GWAS enrichment, we found a significant enrichment for digestive system disorders for 
the eQTLs significant only with methylation-adjustment and a significant enrichment for lipid or 
lipoprotein measurements, immune system disorders, and liver enzyme measurements for the 
eQTLs that are less significant with methylation-adjustment. Both immune-related phenotypes and 
lipid and lipoprotein measures differ by population and may contribute to disease disparities. Our 
findings suggest that methylation may play a role in these diseases. Further studies are needed to 
determine if DNA methylation around these specific SNPs and genes differ between populations. 
This analysis also revealed an interesting association with eQTLs that were only significant after 
methylation-adjustment. The SNP, rs11546996, a SNP associated with primary biliary cirrhosis, 
was a methylation-adjusted eQTL for PNKP. In a previous GWAS study, a causal SNP-gene 
association for primary biliary cirrhosis was found with rs11546996 and the causal gene was 
assumed to be SPIB, as it is the closest gene.23 Since our study specifically looked at gene expression 
in hepatocytes, a tissue relevant for this disease, we may have found a potentially novel SNP-gene 
pair associated with primary biliary cirrhosis whose expression is regulated by both DNA 
methylation and gene variation. PNKP has also been associated with repairing DNA after damage 
from oxidative stress39, so rs11546996 could be a SNP that effects this process.  
   There were several limitations to our study. First, we were only able to include 53 samples 
into this analysis and hence our analysis was underpowered. Second, we assessed DNA 
methylation with the Illumina EPIC array which is limited to the CpG sites chosen for the chip. 
Unmeasured DNA methylation may have effects on eQTLs that were not captured by our 
analysis. Third, our results, compared to the findings in the entire GWAS catalog, are only 
applicable to diseases in which hepatocytes play a key role. Our findings may not be 
generalizable to other cell or tissue types. Finally, we have assumed that DNA methylation 
closer to the SNP is more likely to influence eQTL mapping, however this may not always be 
the case. Additionally, we do not account for differences in effect size in our method. With 
greater meQTL analysis in relevant cell types and populations, we may be able to weight 
SNP/DNA methylation interactions more precisely as a SNP-based covariate. 
    In conclusion, this is the first study to explore the effect of DNA methylation in eQTL mapping 
in African Americans. The African American demographic is widely underrepresented in genetic 
studies and their greater genetic diversity may allow us to find novel SNP-gene pairs as well as 
population specific SNPs. Our findings can be used to understand how DNA methylation potentially 
plays a role in complex diseases, phenotypic traits, and metabolic traits in African Americans.  
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1  Introduction 
 
“Biomedical data” refers to the increasingly large corpus of machine-mineable data encompassing 
two similar, yet pointedly distinct fields: biology and medicine. In recent years, experimental and 
technological advancements in these fields have resulted in an unprecedented diversity of 
molecular omics data and longitudinal health record data available for analysis (Lee et al., 2020; 
Mandel et al., 2016; Turro et al., 2020). Moreover, entirely new data sources such as social 
networking data, wearable technologies, and environmental measurements have emerged and are 
relevant indicators of phenomena observed across biology and medicine (Eagle et al., 2010; Le 
Goallec et al., 2020). Creative and sophisticated integration of these datasets promises the 
opportunity to further biological knowledge and understanding of disease and ultimately advance 
our ability to holistically detect and treat disease and improve patient care. However, challenges 
stemming from limited data quality and standardization, coupled with a dramatic increase in data 
size and required computational resources arise in pursuit of these goals.  
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Overcoming these inherent challenges to elucidate meaningful and relevant patterns from 
biomedical data requires integrating distinct data modalities and developing related 
methodological approaches (Lakhani et al., 2019). Data integration is necessitated by the 
noisiness, incompleteness, and/or other insufficiencies of information contained in any single 
biomedical data source when considered in isolation. Sometimes data is missing from certain 
sources in a biased manner as well. In other cases, labels assigned to data can be misleading or 
non-randomly incomplete. Additionally, emerging technologies are leading to more data that may 
not be amenable to traditional analysis approaches. Social media data, environmental data, 
wearable data, and patient-provided data, for instance, have become increasingly common in 
recent years, and each present unique challenges. Domain-specific knowledge and advanced 
technical processing are critical for properly integrating and deriving signals from these data. 
 
Methodologically, it is critical to identify and understand the limits of labels assigned to 
biomedical data. For example, there are challenges in assigning levels of confidence or evidence 
to discoveries that do not have strong gold-standard truth assessments. In other instances, gold 
standard labels may be attainable through a costly and time-consuming process (e.g., clinical 
chart review). In biomedicine, multiple data sources are thus leveraged in practice to “build a 
case” that supports a hypothesis. For instance, genetic and medical imaging data can be examined 
in conjunction for improved pathology predictions (Pasco et al., 2011; Yu et al., 2016). Properly 
correcting for censoring challenges may require examining long term outcomes. Additionally, it 
may be necessary to impute data or otherwise account for its presence or absence.  Building tools 
to visualize data or metadata may be helpful for human in-the-loop learning. Finally, it is critical 
to understand and mitigate sources of bias stemming from external factors or the data generation 
process, such as batch effects, institutional discrepancies in recording, and dataset shift.  
 
Here, we highlight recent, innovative approaches utilizing new combinations of biomedical data 
sources to address previously intractable questions. We focus specifically on cutting-edge 
methods aimed at pattern discovery in biomedical data through novel pattern recognition or data 
integration. The research discussed here has two common themes: (i) using representation 
learning to model structures in data to enable biological or etiological understanding, and (ii) data 
integration with applications to cancer. 
 
2 Understanding Biology by Modeling Structure and Processes with Machine Learning  
 
In recent years, significant advances in learning representations have proven critical for modeling human 
biology and disease etiology processes with machine learning (Ching et al., 2018). These advances in 
knowledge representation can be applied to challenging questions such as modeling genomic and 
protein-protein interaction patterns in cancer to understand dysregulation patterns (Durmaz et al., 2020), 
learning a framework for the connection between chemical compounds and their effects on gene 
expression (Finlayson et al., 2020), and using varied levels of structure to learn both local and global 
patterns from histological images (Levy et al., 2020). Considering graph structures is a common trend 
across each of these latter works.  
 
Durmaz et al. propose a framework to use subgraph mining to identify functional dysregulation patterns 
in cancer. They perform unsupervised learning by probabilistically mining graph structures of 
protein-protein interactions. To this end, they utilized subgraph frequency and random walk approaches. 
Their approach recovers pathways included in expert-knowledge graphs, and, through clustering, points 
towards the biological significance of functionally dysregulated pathways.  
 
Understanding the ways in which chemical structure can lead to different molecular activities could 
greatly enhance therapeutic development and mechanistic understanding of existing therapeutics. Despite 
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these immense advantages, accurately understanding the relationship between chemical structure and 
molecular activity has proven to be a challenging problem in the general sense. Finlayson et al. employ an 
approach to train a set of neural networks to learn how to associate the structure of a given small molecule 
with its effect on changes in gene expression. This method attempts to jointly optimize representations of 
chemical structure and the transcriptional changes resulting from exposure to these chemicals. Despite 
observing mixed performance when attempting to generalize to new tissues, this method shows great 
potential to make progress on a longstanding, challenging problem and may lead to the ability to more 
effectively perform in silico prioritization of molecules to elicit specific transcriptional responses.  
 
Digital pathology has seen an immense amount of activity where deep learning and convolutional neural 
networks have been applied to analyze pathology images. One unique challenge in digital pathology has 
been that whole slide images are too large for many of these neural network approaches to process. Levy 
et al. propose methods that use a combination of topological domain analysis and graph neural networks 
to reduce the need to break whole slide images into smaller patches of images that are computationally 
tractable; this latter approach is lossy yet common. Importantly, their topological analysis allows Levy et 
al. to quantify a graph neural network’s quality of fit and help determine regions of interest. The 
combination of topological domain analysis and graph neural networks showed significant improvement 
over traditional convolutional neural networks applied to the task. 
 
 
3  Data Integration with Applications to Cancer 
 
One of the most genetically, functionally, and medically heterogeneous diseases afflicting humans in 
modern times is cancer. This disease, typified by one’s own cells growing and dividing uncontrollably 
while evading the immune system to form tumors, is still challenging to detect, diagnose, and treat due to 
the various molecular mechanisms involved and diverse medical presentations. The papers we highlight 
here have employed biomedical data integration specifically to address cancer-specific challenges. In 
general, multiple distinct data modalities can be integrated via novel techniques to more effectively use 
poorly labeled or unlabeled data. Data sources that can be examined together include: molecular ‘omics 
data (genomics, transcriptomics, proteomics, metabolomics etc.), medical imaging data, free text, and 
longitudinal outcomes data. The inclusion and integration of new and novel data sources can help 
examine and understand various biological processes, many of which have been implicated in cancer 
progression.  
 
Scott et al. highlight the lack of heterogeneity in discovery populations and subsequent inability to 
accurately translate biomarkers for general use in the clinic. To address this challenge, the authors 
attempted to leverage heterogeneity, both biological and technical, across independent cohorts to find 
biomarkers more likely to generalize. By utilizing a primary dataset that includes 23 different cancers and 
combining it with 57 independent microarray datasets, they found the gene KRT8 to be significantly 
hypomethylated in the 57 independent datasets and overexpressed in 22 out of 23 cancers. Scott et al. then 
performed additional validation steps, including single-cell analyses, immunohistochemistry of tumor 
biopsies, and finally, detecting levels of KRT8 in the serum of patients with pancreatic cancer vs. healthy 
controls. While they have not yet shown its ability as a predictive marker for cases who have not yet been 
identified by other means, these validation steps show great potential for translational applicability.  
 
Durmaz et al.’s approach to subgraph analyses allowed for the examination of single cancers using The 
Cancer Genome Atlas (TCGA) pan-cancer data. Their approach enabled the data-driven identification of 
patient clusters across different TCGA disease codes based on related dysregulation patterns and led to 
elucidating significant differences between survival for various disease codes, including lower grade 
gliomas and uterine cancer. The survival differences illustrate the potential of applying pathway-based 
functional networks to stratify cancer as compared to traditional gene-centric models. Additionally, 
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considering cancer-relevant dysregulation at the pathway level versus the gene level provides additional 
insight into disease etiology.  
 
Similarly, Levy et al.’s combination of topological data analysis with a graph neural network allows for 
identification of regions of interest in whole slide pathology images. The authors were subsequently able 
to measure the degree of overlap between regions of interest in a tumor and in the adjacent normal tissue 
and then associate these regions of interest with clinical outcomes by means of cancer staging. Their 
approach allows for human-readable highlighted regions of interest as well as a prediction of cancer stage 
where they found they were able to predict advanced colon cancer staging and positive lymph nodes at 
>0.9 AUC.  
 
4  Discussion 
 
Pattern recognition has already had and will continue to have a large role in understanding both biology 
and medicine. Technological developments are leading to larger and more varied biomedical datasets. 
Both novel and repurposed methodologies must be developed and applied to these data in order to derive 
insights that can drive more precise patient care, yield novel therapeutics, guide earlier interventions and 
in general provide greater understanding of biomedicine.  
 
The work highlighted here targets these developments. Finlayson et al. aim to make the identification of 
therapeutically-relevant small molecules possible at faster speeds, and Durmaz et al. aspire to characterize 
the molecular mechanisms of cancer development and progress through computation that considers graph 
structure in protein interaction networks. Levy et al. propose novel methods to precisely extract regions of 
interest from histopathology images and to identify prognostic predictors to enable more precise patient 
care. Finally, Scott et al. identified a biomarker that may help lead to earlier and more accurate diagnoses 
of cancer. Each of these works is guided by the common theme of using pattern recognition to go beyond 
computational performance and to drive biomedical discovery and understanding. 
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Abstract. Molecular mechanisms characterizing cancer development and progression are complex and
process through thousands of interacting elements in the cell. Understanding the underlying structure
of interactions requires the integration of cellular networks with extensive combinations of dysregula-
tion patterns. Recent pan-cancer studies focused on identifying common dysregulation patterns in a
confined set of pathways or targeting a manually curated set of genes. However, the complex nature of
the disease presents a challenge for finding pathways that would constitute a basis for tumor progression
and requires evaluation of subnetworks with functional interactions. Uncovering these relationships is
critical for translational medicine and the identification of future therapeutics. We present a frequent
subgraph mining algorithm to find functional dysregulation patterns across the cancer spectrum. We
mined frequent subgraphs coupled with biased random walks utilizing genomic alterations, gene ex-
pression profiles, and protein-protein interaction networks. In this unsupervised approach, we have
recovered expert-curated pathways previously reported for explaining the underlying biology of cancer
progression in multiple cancer types. Furthermore, we have clustered the genes identified in the frequent
subgraphs into highly connected networks using a greedy approach and evaluated biological significance
through pathway enrichment analysis. Gene clusters further elaborated on the inherent heterogeneity
of cancer samples by both suggesting specific mechanisms for cancer type and common dysregulation
patterns across di↵erent cancer types. Survival analysis of sample level clusters also revealed significant
di↵erences among cancer types (p < 0.001). These results could extend the current understanding of
disease etiology by identifying biologically relevant interactions.

Supplementary Information: Supplementary methods, figures, tables and code are available at
https://github.com/bebeklab/FSM Pancancer.

Keywords: Frequent Subgraph Mining, Pan-Cancer, Transcriptomics; Proteomics

1 Introduction

Cancer is an inherently complex and heterogeneous disease. New technologies provided a compre-
hensive list of genomic and epigenetic aberrations for tumor growth and proliferation (1–4). This
knowledge base could provide a more comprehensive view of how signaling events alter homeostasis
within cells, between cells, or the microenvironment. The multiple omics measurements collected
could be integrated to identify mechanisms or specific functions relevant to cancer (5) where shared

�c 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed under the terms 
of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
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genomic features across cancers have been identified (1, 6, 7), some of which were through inte-
grative methods to analyze multiple -omics datasets (8–11), While these gene-centric approaches
report valuable insights, the biology behind their prognostics or stratification might be more com-
plicated, leading to poor treatment options or reproducibility. For example, gliomas with mutated
IDH1 and IDH2 have improved prognosis compared to gliomas with wild-type IDH (12). As a
result, mutant-selective IDH1 inhibitors were developed, but this drug strategy could make tumor
progression worse (13–16). Other arguments are made over the validity of geneset-based biomark-
ers (17–19). Random genesets were shown to stratify patients into subgroups, contradicting the
use of these geneset based methods (20, 21). Pathway-based approaches, on the other hand, could
uncover functionally relevant mechanisms of oncogenic alterations to improve treatment options (4).

The availability of pan-cancer data allowed the simultaneous analysis of multiple cancer types.
However, the multifaceted view of cancer hinders these e↵orts to uncover comprehensive maps of
cancer for each cancer type. Sanchez-Vega et al. (4) were able to map 57% of tumors to at least one
expert-curated signaling pathway targetable by currently available drugs. The ten expert-curated
pathways in this study are a great resource but do not cover the alterations across all cancers.
Leiserson et al. (22) focused on gene-level perturbations to find subnetworks common across cancer
types but the identified subnetworks are not restricted to cover the same set of samples, which
can mask subpopulations of samples with di↵erent genes mutated in the given subnetwork. An
unsupervised approach that mines networks for a dynamic group of patients could bring a more
comprehensive map and would provide improved insight into our understanding of tumor growth
and treatment opportunities.

One of the commonly used methods in graph data mining is frequent subgraph mining (FSM).
FSM provides a means to extract frequently occurring patterns in a graph database. For instance
in the setting for protein-protein interactions (PPIs), one can define a graph for each cancer patient
based on expressed proteins and mine for commonly occurring interactions across patients (23).
FSM has been widely used in a variety of applications, including the identification of common
metabolic pathways and clusters (24–26). Multiple algorithms have been developed to overcome
challenges inherently present in subgraph mining regarding both memory and subgraph isomor-
phism issues (27–30). The general approach for mining frequently occurring patterns in a graph
database is to grow candidate patterns either in depth-first search or breadth-first search manner
and check whether the required support is achievable. One drawback of using FSM-based methods
is the computational requirement since the subgraph isomorphism problem is NP-Complete (31).

One other methodology for utilizing global network topology is the random walks with restarts
(RWR) on finite graphs. RWR algorithm is the simulation of a random walker jumping from node to
node in the interaction network with the given parameters similar to the PageRank algorithm (32).
A modified version of this approach is used to prioritize the local neighborhood by allowing the
random walk to restart from specified seed nodes. This approach has been widely used for candidate
gene prediction or disease-disease similarity measurements (33–35).

In this paper, we describe an integrative -omics approach to pan-cancer analysis using FSM cou-
pled with biased random walks utilizing genomic alterations, gene expression, and PPI networks.
We use FSM to identify frequently occurring interaction patterns to provide a better understanding
of functional alterations across multiple cancer types while accounting for the complex interaction
topology of cancer. Our goal is to integrate PPI networks with somatic alterations and gene expres-
sion profiles to infer molecular networks representing dysregulation in cancers. More specifically,
we extract subnetworks that are frequent in the population and in close proximity to the mutated

2
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genes. In our analysis, we investigate TCGA samples for 32 cancer types. We present patient clus-
ters across all cancer types as well as patient classifications of individual cancers based on these
networks. We identify mechanisms that are shared across tumor types and unique to individual
cancers.

2 Methods

2.1 Pan-cancer Dataset and Omic Databases

We have downloaded TCGA single nucleotide variation (SNV) data from UCSC Xena (36). Ad-
ditionally, we have filtered out samples with mutations of more than 800 to reduce the possible
e↵ects of hypermutators. PPI network was downloaded from StringDB version 10.5 and filtered to
include edges with confidence scores > 0.4 with the remaining number of nodes being 17473 (37).
Pathways were downloaded from the Reactome database. We excluded pathways with genes of less
than 8 (38).

2.2 Biased Random Walks with Restarts

Biased random walks are applied to each sample separately by considering the mutated genes as
seeds hence prioritizing local neighborhood of genomic alterations (See Supplementary Method
Section S1.1). In this process, nodes with high degrees will intrinsically have increased probability
values/traversed more often, to capture nodes with a statistically significant association with the
seed set of nodes, we compared these results to a null distribution generated by applying the biased
random walks to thousand randomly generated seed sets keeping the number of seeds equal to the
original seed set. p-values for each node are obtained by comparing the steady-state probability
vector to the null distribution per gene. Multiple hypothesis testing corrections are done using
the Bonferroni method and genes with p-values < 0.1 are kept. Restart probability for the biased
random walk is chosen as 0.6 to not restrict the networks towards the neighbors of seed sets. How-
ever, note that restart probability can be fine-tuned specifically to each network but 0.6 generally
performs well across biological networks. Furthermore, since biased random walks can also identify
spurious significant nodes solely due to the topology of the network, we have extracted connected
components with the number of genes > 3.

2.3 Frequent Subgraph Mining

We developed an e�cient method to sample for frequently occurring subgraphs across pan-cancer
samples (Algorithm 1). The goal of frequent subgraph mining is to discover all subnetworks of graphs
in the database which recur at least k times (39, 40). The database is a collection of undirected
gene networks assembled as described in Section 2.1. The parameter k in Algorithm 1 is called the
minimum support. A subgraph is considered “frequent” (and supported) if it recurs at least k times.

In this analysis pipeline, we have applied biased random walks over the PPI network for each
sample separately using the somatic alterations as seed sets. Following the RWR, FSM can be
applied with two approaches; Mining a single graph database generated by merging the RWR
results over all the samples or mining graph databases generated separately for each sample. A
Sample-specific network can be generated by filtering the combined network to include nodes found
significant for the current sample. Simply this approach will result in subnetworks with the specified

3
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Param: Mutation Matrix V of size g ⇥ p // Each column is a set of mutations from one sample
Param: Interaction Network W of size g ⇥ g // Interaction matrix stored as an adjacency matrix
Param: Minimum Support k // minimum network size to be discovered
Result: Set of k-frequent subgraphs S

1 // biased random walk profiles
2 for i 1 to p do

3 P  RWR(V [, i],W) // perform RWR per sample using each sample’s mutation set.
4 CC  ConnComp(P) // Find the connected component
5 RES  Append(CC) // Save this network for this patient

6 end

7 // sample-specific graph databases
8 for i 1 to p do

9 PD  []
10 PD[i] RES[i] // For all RWR networks identified with mutations of the patient
11 for j  1 to p do

12 for e 2 RES[j] do
13 if e 2 RES[i] then
14 PD[j] Append(e) // Merge to create a sample-specific network database
15 end

16 end

17 end

18 D  Append(PD)
19 end

20 // frequent subgraph mining of sample-specific graph databases
21 for i 1 to p do

22 PD D[i] // for each patient’s network
23 for h 2 GetCand(PD) // collect frequent subgraphs
24 do

25 if GetSupp(h) � k // if support for subgraphs is larger than k
26 then

27 S  Append(h) // include this subnetwork in the results
28 end

29 end

30 end

31 return S

Algorithm 1: High-level algorithm for the proposed framework. The input matrices V and
W have sizes g ⇥ p and g ⇥ g respectively. g is the number of genes and p is the number of
samples in the pan-cancer data. k is the minimum number of samples a frequent subnetwork
recurs. The algorithm returns the set of k-frequent subgraphs.

support that are also present in the current sample. FSM results for sample-specific networks are
then merged and duplicate networks are filtered. We have chosen to run FSM in sample-specific
approach since applying FSM over an all-sample database (a single graph database including all
the edges from all the samples) will lead to bias in the identified subgraphs due to the subset of
the samples having a high number of dysregulated patterns.

Applying the algorithm above to our problem naively is not practical. It involves solving sev-
eral di�cult sub-problems, including candidate subgraph generation and subgraph isomorphism.
Furthermore, many frequent subgraphs would overlap with each other (41) returning exponentially
large similar subgraphs (42). Our FSM approach resolves these problems in two ways. First, it uses
a highly optimized method for candidate generation which prunes unsupported supergraphs (39).
Second, instead of collecting all frequent subgraphs, a sample of graphs is collected using the
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(a) A colored (labeled) digraph. (b) A 2-frequent connected subgraph lattice.

Fig. 1: Figure (b) is a connected subgraph lattice of the graph in Figure (a) including only the subgraphs with 2 or
more embeddings in Figure (a). The boxed nodes in the graph show the embeddings of the boxed subgraph in the lattice.
In the figure, the colors (black, gray, and white) are standing in for labels on the vertices (Adapted from (39)).

GRAPLE algorithm (42). GRAPLE models the set of frequent subgraphs as a lattice where the
graphs in the lattice are connected by their subgraph and supergraph relationships (see Figure 1).
Frequent subgraphs are sampled from the lattice by taking random walks on the lattice. For full
details see (39, 42), a related approach can be found in (43).

We have extensively tested the FSM algorithm to validate our approach and also compared
it to previous methods (43–45). We tested parameter k on various benchmark datasets (Supple-
mentary Table S3) and validated k’s e↵ect on run time and subnetwork discovery. We ran these
simulations in a non-heuristic mode to recover all subnetworks. We comprehensively compared our
performance with GRAMI (Supplementary Table S4). GRAMI finds a slightly di↵erent number of
patterns because it uses undirected graph search (otherwise GRAMI’s run time su↵ers). Our tool
outperformed GRAMI.

2.4 Integrating Gene Expression Measurements to FSM Framework

We integrated the somatic mutations with gene expressions using the same -omics dataset and
interaction network from (46). The integration of gene expression is done in two steps. First, in
the biased random walk step, the transition probabilities are assigned based on the euclidean norm
of z-scores of interacting genes. This scheme prioritized genes with high dysregulation compared
to the population in addition to seed sets. Furthermore, for functional relevance, we have applied
dimension reduction followed by clustering with PAM and pathway enrichment (PAM-Clusters,
Figure S10) (47). To apply the dimension reduction, each identified subgraph is assigned an average
dysregulation score (matrix of frequent subgraphs vs samples) (23).

2.5 Functional Analysis

To associate biological mechanisms with frequent subgraphs, we utilize clustering, non-linear dimen-
sion reduction, pathway enrichment, and survival analysis. Since FSM is done in a sample-specific
manner, identified subgraphs contain redundant interactions (repeated interactions across multi-
ple subnetworks). We apply greedy clustering to remove these redundant interactions by grouping
highly connected nodes (48). In this process, we find high modularity partitions of our networks.

For survival analysis, we utilized unsupervised clustering using the frequent subgraphs as fea-
tures. Frequent subgraphs mined using gene expression integration are assigned dysregulation scores
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using the average euclidean norms of standardized gene expressions for a single fsg
qPn

i g
2
i and

samples are clustered using PAM on dimension reduced space (47, 49). For FSGs identified using
only SNVs, we assigned the frequency of matching genes in the FSG and the sample as a score
and employed PAM. However note that for clustering samples with matching gene frequencies as
scores, we did not use non-linear dimension reduction.

3 Results

3.1 Pan-cancer Subgraphs

FSM has identified 43k unique subgraphs with sizes between 6-60 edges across the 90% of the pan-
cancer dataset with support 20 corresponding to 0.3% of samples (Figure 2). Identified subgraphs
covered more than 40% of the genes in the protein-protein interaction networks.

KHDC3L

NLRP2

NLRP5

DECR1

LRRC1OOEP

(a) Frequent subgraph with highest frequency

GABRA3

GABRA5

GABRB1

GABRB3
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ARFGEF2
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ARHGEF9
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GABRQ

NPTN

(b) Frequent subgraph with largest size

Fig. 2: Sample frequent subgraphs mined from the pan-cancer dataset. Each edge in the given subgraph is represented
in at least 20 common set of samples.

3.2 Pathway Enrichment

To elaborate on the functional relevance of the identified subgraphs, we have clustered the merged
subgraph network using a greedy approach (FSG-Clusters) (48). More specifically, frequent sub-
graphs are merged into a single network, and clustering is applied. This method can be seen as
filtering the initial protein-protein interaction network to include edges that show frequent interac-
tion patterns. However, note that this scheme is not similar to simply filtering the edges that have
minimum support level but in subgraph space. A total of 106 clusters was identified (See Suppl.
tables). To filter clusters without functional relevance, we have removed clusters with node size
smaller than 10 and larger than 400. Pathway enrichment analysis using the Reactome Pathways
has identified a total of 620 significant subnetworks using a p-value threshold of 0.01, including
previously identified mechanisms: PI3K Cascade, Cytokine Signaling, DNA Repair, Signaling by
NOTCH (Figure 3).

3.3 Disease Enrichment

To evaluate the representation of cancer types in identified clusters we have done enrichment anal-
ysis for each patient as well (Figure S3). Multiple clusters showed few over-representation in terms
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Fig. 3: Top three enrichment results of identified clusters sorted by root pathways (FSG-Clusters).

of predefined disease types. These clusters also showed few or no pathway enrichment which might
suggest small subnetworks stratifying patients in combination with broad dysregulation patterns.

Samples with lower-grade glioma (LGG) are represented across di↵erent clusters similar to
breast cancer samples. However, increased representation for LGG samples in clusters 85 and 63 is
visible. Cluster 85 is mostly associated with CSF2RA-B metabolism, which are cytokines related to
macrophage, granulocyte di↵erentiation, and production. An earlier study showed how intercellular
microglia polarization signaling through CSF2 (GM-CSF) and IFNG are the molecules that drive
microglia towards the M1 phenotype (50). Cluster 63, on the other hand, is related mostly to
NOTCH signaling, p75NTR degradation through NRIF interactions (Figure S11). In contrast,
breast cancer patients show increased representation in clusters 23, 24, 35, and 44. Given clusters
correspond to lipid metabolism (known risk factor for developing cancer (51)), membrane tra�cking,
cytoskeletal related processes, SEMA3A, SEMA4D signaling, which might related to increased
Metastasis in breast cancer (52). Patients with skin disorders are mainly represented in clusters
47 and 102. Pathway enrichment for the clusters identifies degradation of the extracellular matrix,
O-linked glycosylation, and collagen biosynthesis. On the other hand, uveal melanoma patients
are enriched for cluster 89, which shows dysregulation in GPCR signaling, the main biological
processes impacted by the recurrent mutations in uveal melonama (53). Thyroid cancer patients
show the most specific enrichment for cluster 80, showing functional relevance in the regulation of
RAS by GAPs, and MAPK pathways, key signaling pathways in both initiation and progression of
medullary thyroid carcinoma (54). Prostate cancer patients are mainly enriched for clusters 35, 44,
and 23, showing enrichment for Rho GTPase activation of PAK, cleavage of cell adhesion proteins
through apoptosis, SEMA3A, and SEMA4D related signaling. Head and neck cancer patients also
show dysregulation across a large number of clusters discovered but show the highest enrichment
for cluster 106, similar to breast cancer and LGG patients.
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3.4 Comparison of Pan-cancer FSM Networks

Oncogenic Signaling Pathways of Pan-cancer To further elaborate on the utility of the pro-
posed method we have compared the genes in identified frequent subgraphs to previously established
expert-curated pathways (4). We have recovered 65% of genes covering 90% of pathways reported in
the curated list including EGFR, TP53, PIK3CA, PTEN matching various mechanisms. To further
compare against previously curated pathways, we have utilized cancer hallmark genesets (55, 56).
Frequent subgraphs cover 100% of the hallmark gene sets with at least 1 overlapping gene. Interest-
ingly FSG clusters cover multiple pathways and pathways are covered by multiple FSG clusters as
well both for oncogenic signaling pathways and hallmark gene sets. This further elaborates on the
complexity of cancer and the interaction topology (Figure S1). We identified additional genes, novel
to the curated pathway database as well suggesting the importance of system-level identification of
functional mechanisms and the complexity of cancer progression (See Suppl. Figure S2).

HotNet2 Pan-cancer Subnetworks We also compared our method to HotNet2 (22), which
aims to find subnetworks significantly enriched in given alterations across the pan-cancer dataset.
However, the main di↵erence is that HotNet2 focuses on gene-level perturbations and looks for
subnetworks covering a wide range of samples in the dataset. More specifically in the subnetworks
identified by HotNet2, di↵erent subsets of samples can show alterations in di↵erent nodes of the
subnetwork. In contrast, our methodology aims to identify subnetworks for all samples meaning
that in the identified subnetworks a common set of samples show dysregulation for all the nodes
in the subnetwork. When we compare to HotNet2 subnetworks, we observe that clusters 63, 70,
80, and 90 correspond to 5 subnetworks out of 15 relating to BRAF, RAS, PIK3CA subnetwork,
KDM6A, MLL2, MLL3 subnetwork, SWI/SNF complex, BAP1 complex and cell adhesion
networks respectively using overrepresentation analysis (See Suppl. Tables.). However, a comparison
of FSGs prior to clustering results in 12 subnetworks to be significantly enriched. This suggests
that di↵erent groups of patients show dysregulation in separate parts of a larger network that are
combined into a single cluster based on intermediary interactions.

3.5 Functional Classification of Pancancer Samples

We calculated dysregulation scores for each subnetwork to stratify the cancer samples. We set the
support level (k) to 8 for this purpose to increase the number of samples identified during the
FSM run since with larger support of 20, many of the samples drop out. As expected, the number
of unique frequent subgraphs increased dramatically to 135k, increasing the noise inherent in the
frequent subgraph space (14k unique genes). However, dimension reduction shows clear separation
of cancer types (See Figures 4, 5 and Suppl. Figures S4, S5 and S6).

While some cancers are spread across multiple clusters (e.g. BRCA), some cancers were sepa-
rated based on tissue, which reflects implicit biological processed and their alterations (e.g. Uveal
melanoma, brain tumors, LIHC, PCPG, THCA etc.) (See also Suppl. Figure S12). Most impor-
tantly, survival di↵erences (Figure 4) clearly exist across cancers and cancer subtypes. LGG is
split into clusters 11 and 14, where 14 represents GBM-like LGG samples with significant survival
di↵erences (57). BRCA clusters 3, 4, 5, 6, 8, and 26 show significant survival di↵erences in these
groupings, which reflect previous findings (17, 58).

Significant features between clusters are obtained by comparison of subnetwork dysregulation
scores using 1 vs all approach with p-value threshold after Bonferroni correction set as 0.01. Path-
way enrichment is done on genes in the significant subnetworks. Pathway enrichment also shows
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functionally relevant mechanisms. For instance, clusters 9, 21, and 22 representing Stomach Ade-
nocarcinoma, Rectum Adenocarcinoma, and Colon Adenocarcinoma are significantly enriched for
genes related to O-linked glycosylation (Fig.S6). However separately from Rectum and Colon Ade-
nocarcinomas, Stomach Adenocarcinoma is highly enriched for Defective CSF2RA/CSF2RB causes
pulmonary surfactant metabolism dysfunction pathway, which has been previously associated with
Stomach Adenocarcinomas. Interestingly, there is a clear separation of functional mechanisms be-
tween clusters: 1, 5, 6, 8, 9, 10, 20, 21, 22, 26 (Group 1), and the rest. More specifically, the second
group of cancers is all associated with mechanisms related to signaling events such as RAF/MAP
kinase cascades, FGFR signaling, and PI3K Cascade, but the first group is not. These results
provide a strong validation for the FSM approach presented.
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Fig. 4: Left: UMAP dimensionality reduction on scored frequent subgraph matrix. Samples clusters are labeled and
colored based on labels. Right: Pairwise survival di↵erences using log-rank test are shown for FSM patient clusters
shown on the left.

3.6 Analysis of Single Cancers using Pan-cancer Frequent Subgraphs

We have shown further utility of FSGs mined using the pan-cancer dataset to stratify patients
into subtypes. We have applied FSG level clustering using PAM and identified significant survival
di↵erences (Fig. S7). The significant results were seen for two separate cancers, Lower Grade
Gliomas (LGG) and Uterine Cancer suggest that subnetworks mined using the pan-cancer dataset
is able to capture subtype-specific functional networks. This further shows the comprehensive nature
of our networks identified in this framework.

3.7 Single Cancer Analysis with the FSM Framework

While individual cancer analysis using the pan-cancer FSGs are possible (as shown above Sec-
tion 3.6), the FSM framework we present can be applied to a single cancer type as well. For this
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Fig. 5: Disease profile for each UMAP cluster is shown. The number of patients for each cancer type is stacked on
each bar. TCGA disease codes are listed in Supplementary Table S1.

purpose we analyzed glioblastoma multiforme (GBM) samples only. In a recent study, we used a
more simplified FSM framework to cluster individual cancer types and successfully found subtypes
for breast cancer and GBM (23). Using our new approach, we have identified 1.2k frequent sub-
graphs with a total of 5 clusters representing the frequent subgraph network and covering 60%
of the GBM samples. The spectrum of the pathway dysregulation in the clusters corresponded to
Cytokine Signaling, TRAF6 mediated IRF7 activation, PI3K/AKT signaling, and PIP3 signaling.
Interestingly, cluster-2 covered a large fraction of dysregulated pathways and, cluster-4 was enriched
specifically for the AKT related pathways. However clusters 3 and 5 showed no pathway enrichment
which requires further analysis.

3.8 Survival Di↵erences of Patients Represented in PAM-Clusters

We have investigated the patient groups that correspond to each cluster identified using gene
expression and SNP datasets. Pairwise comparison of survival curves show high significance between
clusters (Fig.5). For example, cluster-8, which is represented mostly by BRCA patients, shows a
significant di↵erence when compared against clusters 1, 4, 5, 6 that are composed of mixed disease
types of OV, UCEC, HNSC, LUSC, LUAD, BRCA. Furthermore, the di↵erence between clusters
8 and 26 for BRCA patients only might represent subtype di↵erences as well. Similarly clusters 11
and 14 represent 2 distinct LGG patient clusters with significant survival di↵erences. Interestingly
however BRCA, LUAD, LUSC, HNSC, UCEC, and OV cancer types are heterogeneously divided
into di↵erent clusters suggesting common molecular mechanisms driving the diseases and requires
further investigation.

4 Discussion

We have applied frequent subgraph mining coupled with random walk with restarts to the pan-
cancer dataset. The application of the FSM with patient-level constraints allowed us to extract
interaction patterns functionally relevant to cancer progression. Identified patterns might prove
useful for novel targeting strategies especially patient-specific targets due to increased sensitivity
in regulatory pattern identification.

The approach proposed in the context of mining functionally important subgraphs is more
e�cient compared to our initial methodology published (23) both in terms of runtime and coverage.
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Biased random walks significantly decrease the search space by reducing the number of edges per
patient and applying the FSM separately for each patient as given above ensures that each sample
is represented. Furthermore, the use of biased random walks allowed us to increase the sensitivity
of our approach by considering the mutational signatures as a network. More specifically, each
graph database is obtained based on the mutated genes but frequent subgraphs do not necessarily
contain mutated genes but are associated with mutated genes. Additionally, as given above the
proposed approach is more comprehensive in comparison with other methods available since gene-
level enrichment-based methods or prior knowledge do not take into account the complex interaction
patterns relevant to cancer progression.

In comparison to previous methods and established biomarkers, the proposed method underlines
the complex interaction patterns present in defining di↵erent cancer groups. For example, SEMA3A
has been previously associated with breast cancer metastases through the promotion of osteoblast
di↵erentiation in MCF-7 cell lines (59). Colony-stimulating factor has also been associated with
glioma progression previously and identification of CSF2RA is an important observation (60).
p75 neurotrophin receptor also is a crucial regulator of glioma progression leading to cytoskeletal
modifications (61). Analysis of GBM patients only increased the sensitivity of frequent subgraphs.
PI3K/AKT is responsible for drug resistance for malignant glioma patients, suggesting a critical
biomarker in targeted therapies (62).

Furthermore, we have shown that the proposed approach is able to elucidate increased functional
relevance by strictly enforcing frequency requirements hence decreasing false positives in contrast
with previously established methods that either focus on gene-level approaches or do not consider
the underlying topology of the patient data.

Finally, our approach is able to stratify patients of individual cancers based on pancancer fre-
quent subgraphs. In this unsupervised approach, we were able to find significant survival di↵erences
in patient groups of LGG and Uterine Cancer. This further validates our approach and shows utility
for future cancer studies.
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Modeling the relationship between chemical structure and molecular activity is a key goal
in drug development. Many benchmark tasks have been proposed for molecular property
prediction, but these tasks are generally aimed at specific, isolated biomedical properties.
In this work, we propose a new cross-modal small molecule retrieval task, designed to force
a model to learn to associate the structure of a small molecule with the transcriptional
change it induces. We develop this task formally as multi-view alignment problem, and
present a coordinated deep learning approach that jointly optimizes representations of both
chemical structure and perturbational gene expression profiles. We benchmark our results
against oracle models and principled baselines, and find that cell line variability markedly
influences performance in this domain. Our work establishes the feasibility of this new task,
elucidates the limitations of current data and systems, and may serve to catalyze future
research in small molecule representation learning.

Keywords: Representation Learning, Therapeutics, Gene Expression, Deep Learning, Infor-
mation Retrieval

1. Introduction

Identifying molecules that are likely to have a specific biological effect is a cornerstone of
drug discovery and a key component of efforts to achieve precision medicine. Classically,
computational profiling of small molecules has centered on predicting affinities for specific
biological targets, using tools ranging from biophysics-driven techniques such as molecular
docking1 to literature-mined annotations.2 Small molecule modeling has also recently become
a major area of interest in deep learning, a trend catalyzed by graph neural networks3 and
benchmarking datasets.4 Graph neural networks allow for end-to-end modeling of molecular
graphs,5–8 and have yielded state-of-the-art performance on certain tasks.9,10 In addition,
deep learning approaches have been used at a more global scale modeling cross-molecule
relationships.11 To date, deep learning efforts in this space have generally focused on two
extremes: highly local, biochemical prediction problems, which test the model’s ability to
predict specific chemical properties, and more global, clinical modeling tasks, such as indication

c© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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or side effect prediction. Missing from the field, however, are benchmark tasks between these
two extremes, that test the ability of deep models to encode rich, general representations of a
molecule’s broad-spectrum effect on cellular biology.

In parallel to these developments, connectivity mapping has emerged as a alternative
approach for drug development.12 In connectivity mapping, compounds are foremost char-
acterized not by individual chemical properties or downstream targets, but by the broad
transcriptional effects they induce in cells. Connectivity mapping begins by first developing
a large dataset of perturbational signatures of molecules by physically treating cell lines with
these molecules, then measuring the resultant changes in gene expression. These datasets are
then compared to one or more query signatures, which are typically differential gene expres-
sion (GE) signatures representing disease states that investigators hope to reverse. Various
public datasets have been curated to enable these efforts,13,14 and researchers have sought to
use these for drug repurposing, precision medicine, and analysis of gene expression data in
general.15–22

Connectivity mapping is promising because it can be used to search for new indications
of drugs without making any specific a priori assumptions about their mechanism of action.
However, the typical framework for connectivity mapping is limited by the fact that it can
only query against drugs that have already been profiled using the transcriptional assay. In
other words, connectivity mapping is – in principle – very flexible with respect to the disease
signatures they accept as a query, but is transductive rather than inductive with respect
to the target small molecule signatures. This is the perfect complement to structure-based
computational chemistry, which is typically inductive to new drug structures but can only
make predictions for diseases with known targets.

In this work, we combine these two fields, by using deep chemical embedders to learn
the transcriptional space encoded by CMAP profiling. More specifically, we train coordinated
networks to jointly embed chemical structures and perturbational gene expression profiles such
that learned chemical representations are most similar to the encodings of the transcriptional
patterns they induce.a. Note that this task naturally fills the gap in inductive molecular
modelling identified previously; by tasking the model to produce highly similar embeddings
for chemical structures and the perturbational profiles they induce, we force the model to
learn a transcriptome-wide reflection of the drug’s action on the cell. We then evaluate these
chemical representations by using gene expression signatures as queries into the embedding
space and recovering their corresponding compounds. (See Figure 1). Crucially, the evaluation
is set up such that the validation and test set compounds and cell lines are not used in training,
which allows us to test the ability of the model to generalize to new drugs and cell lines.

In the rest of this work, we first offer some background on joint embedding alignment,
then detail the methods used in this work. Finally, we walk through the results and discus-
sion of these experiments, then close with concluding thoughts. A version of this work, with
supplementary material present, can be found here: https://github.com/sgfin/molecule_
ge_coordinated_embeddings/blob/master/paper_08_2020.pdf.

aCode available here: https://github.com/sgfin/molecule_ge_coordinated_embeddings
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Fig. 1. Our representation learning method. Neural networks are trained to embed gene expression
profiles close to the small molecule structures that induce them. Given a cross-modal alignment, gene
expression signatures can be used as queries to rank chemical structures by their likelihood to induce
such a signature.

2. Background

In multi-view representation alignment, embeddings of two associated data modalities are
learned separately but in a coordinated manner, such that the resulting embeddings are simi-
lar. These methods have been used in comparing images to text but also in other domains.23,24

In this work, we learn aligned representations such that small molecules are embedded in close
proximity to the differential gene expressions they induce. Multi-view representation alignment
can be achieved through a variety of methods, including classical methods, such as canonical
correlation analysis (CCA)25 and methods using distance, similarity, correlation, or ranking
based penalties during training.26 Ranking-based methods for multi-view representation align-
ment, such as that described by Deng at al,27 allow the incorporation of ranking information
into the training procedure, which may be important in tasks such as gene expression where
perturbation signals may be small relative to baseline state. In addition, the field of rank-based
embedding learning is intertwined with a broader literature of uni-modal embedding learn-
ing, which pioneered such architectures as Twin28,29 and Triplet networks,30 which optimize
embeddings to bring similar data together while driving dissimilar data apart. An analysis of
best practices of these architecture can be found in Wu et al.31

3. Methods

3.1. Dataset & Tasks

Data Acquisition and Subsetting All data in this study comes from the LINCS Consor-
tium/NIH Next-Generation Connectivity Map Level 3 L1000 data.14 This dataset features
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978-dimensional gene expression profiles from a variety of human cell lines treated with chem-
ical and genetic perturbations. To ensure support over possible drugs, our data cut uses the
most frequent 8 cell lines split into train, validation, and test sets such that no cell line or
drug in the train set appears in the validation or test sets. To mitigate non-random miss-
ingness, we included only drugs assayed in all cell lines, and limited experiments to those
incubated with small molecules for 24 hours at a dose of 10µm. Final statistics of these data
are shown in Table A1. For drug structures, we used the SMILES32 structures provided by
LINCS, canonicalized using RDKIT.33

Preprocessing and Feature Engineering Gene expression intensity values from the train-
ing, validation, and test sets were centered and scaled at the gene-level based on the mean and
standard deviation of each gene intensity across the training set. We augmented each gene
expression profile with three additional sets of features: the corresponding gene expression
intensities from a control signature on the same plate, the log2 fold-change between the per-
turbation and control signatures, and the difference between these gene expression signatures.
For use in our baseline and oracle models, we also computed numerical representations of each
small molecule: Morgan extended-connectivity fingerprints34 and the output of the ChemProp
network.6

Detailed Task Description Our goal is to learn embedders which map molecular structures
and gene expression profiles into a vector space such molecular structure embeddings are close
to the gene expression profile they induce while being far from other gene expression profiles
(Figure 1). Formally, given a collection of gene expression signatures G, chemical structures
M, and similarity function Sim : Rd × Rd → R, we seek to learn a gene expression embedder
Eg : G → Rd and chemical embedder Em : M → Rd to maximize Sim(Eg(gi), Em(mj)) while
simultaneously minimizing Sim(Eg(gi), Em(m¬j)), where gene expression gi was induced by
molecule mj. Unless otherwise specified, the similarity function can be assumed to be Pearson
Correlation in our experiments. Across our baseline and oracle methods, we realize many
variants of Eg and Em.

3.2. Baseline and Oracle Methods

Nearest Neighbor Baseline Nearest-neighbor (NN) methods have been previously shown
to establish strong baselines for machine learning tasks on the L1000 data.35,36 In our cross-
modal, information retrieval (IR) context, traditional NN methods are not applicable, so we
employ the following “double NN” baseline: given a gene expression profile as a query, we
first identify the nearest gene expression profile in the train set and look up its corresponding
small molecule. We then take this small molecule (from the train set) as a query, and return
the most structurally similar drug from the test set as our final prediction.

In particular, given a mapping G2M : G → M from gene expression profiles to the small
molecule that induced them, and a molecular embedding Em (which may include molecular
fingerprints, Chemprop embeddings, or embeddings learned from other models), we define em-
bedder Eg : gquery 7→ Em(G2M(arg maxgtr∈Gtrain Sim(gquery, gtr))). Then, we perform information
retrieval (IR) analyses with such embedders as usual.
Canonical Correlation Analysis Baseline Given training matrices of transcriptional Gtrain
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and molecular Mtrain encodings, we can learn a set of linear mappings Eg : Gtrain → Rd and
Em : Mtrain → Rd via d-dimensional CCA such that these mappings optimize the correlation
between elements of Gtrain and Mtrain.

Note that this procedure requires a default numerical representation for molecules, which,
as with other methods, can be either fingerprints, ChemProp embeddings, or learned em-
beddings by our learning model (described below). CCA can also be performed atop other
embedding systems to further optimize embedding results. CCA was performed using SciKit
Learn,37 using 50 components, chosen to optimize validation set performance via a grid-search
over a range of 5-125 components, run for 1000 iterations to ensure convergence.
Oracle Models The central objective of our task is to learn small molecule embeddings that
can stand in as surrogates for their corresponding gene expression signatures. To provide a
rough upper-bound for expected performance on this task, we also implemented two “oracle”
models, each of which queries test set GE signatures against pseudo-“chemical embeddings”
that are in reality the average GE signatures from each test set drug when it was measured
on either (1) the train set cell lines,b to simulate an embedder that perfectly associates all
structures to perturbational profiles, but cannot generalize beyond the train set cell lines, or
(2) the test set cell lines, which simulates a model of the same capabilities but able to generalize
perfectly to the test set as well. These oracle models are still dependent on the underlying gene
expression signature representation, so further innovation could offer improved upper bounds
for this task. Formally, given G2M mapping gene expression profiles to their corresponding
perturbing molecule, we define oracle embeddings Etrain

g : gquery 7→ Avg({gi ∈ Gtrain|G2M(gi) =

G2M(gquery)}), and Etest
g : gquery 7→ Avg({gi ∈ Gtest|G2M(gi) = G2M(gquery)}).

3.3. Deep Coordinated Metric Learning Approach

For our learned model, we realize Eg as a self-normalizing neural network (of size dictated by
hyperparameter search), and Em as a directed message-passing neural network (D-MPNN),
initialized by the Chemprop system, followed by a feed-forward output layer whose shape
was dictated via hyperparameter search.6 To train these architectures, we use a margin-based
quadruplet loss, building on Wu et al’s adaptive margin loss.31 The base of the adapted margin
loss is defined over two data points i and j as marα,β := (α+ yi,j(Dij − β))+, where D is distance
function (here euclidean distance), α defines a permissible margin of separation, β controls
the boundary between positive and negative pairs, and yi,j is an indicator variable equal to 1
if i and j are of the same class and 0 otherwise (α and β were tuned as hyperparameters).

Given two pairs of matching gene expression and molecular structure embeddings,
(gA,mA), (gB,mB), our quadruplet loss is defined as the sum of the margin losses between all
cross-modality pairs of embeddings: `quad = marα,β(gA,mA)+marα,β(gA,mB)+marα,β(gB,mA)+

marα,β(gB,mB). The network is thus optimized to bring the positive embedding within the
margin of the anchor and negative embedding outside the margin. For sampling these two

bNote that we can do this as we limited our choice of drugs to those that were measured in all 8 cell
lines, even though our actual data split prohibits training on any drug that appears in the validation
or test sets.
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pairs (an analog of negative sampling for a more traditional triplet network), we first sample
one matching pair, choose the molecular structure for the other pair based on the distance-
weighted negative sampling scheme described in Wu et al, which was successful with their
margin-based approach,31 then fill in the other gene expression profile to match the sampled
molecular structure. To make this process computationally efficient we pre-computed the av-
erage distance in average post-perturbational gene expression space between every pair of small
molecule structures in the dataset. We additionally tried other losses, including two varieties
of traditional triplet losses, and a quintuplet loss, but ultimately found the quadruplet loss to
be most performant via our hyperparameter search.
Training and Hyperparameter Selection Each model was trained on a Nvidia GeForce
GTX 1080 GPU. Early stopping was used to select the model with the best mean reciprocal
rank on the validation set. Hyperparameter tuning via the Bayesian Hyperopt library38 was
performed over a wide range of possible hyperparameters, including network depth and width
(parametrized by the size of the first hidden layer and a growth rate), learning rate, number
of epochs, batch size, margin and β parameters, triplet model orientation (i.e., gene first
or compound first), activation function/network type (e.g., SNNN vs. unconstrained fully
connected network), and dropout, with no early stopping for hyperparameter search runs.
The optimal hyperparameters from this search are shown in Appendix Section 7.2.

3.4. Experiments

We designed a range of experiments with two purposes: First, we sought to evaluate if and
how our deep coordinated representation learning method offers improvements over principled
baselines. This entails a quantitative performance comparison against baseline methods and
ablated versions of our model. Second, we introspect into the representations learned by train-
ing on this new task, to better understand the challenges and utility of the general framework.
This entails a quantitative performance comparison against oracle models, a statistical analysis
probing the ability of our models to generalize to new structures, and a qualitative exploration
of the changes in chemical representations that are induced by our training scheme.

Quantitative performance analyses began by computing the embeddings of gene expres-
sion signatures and chemical structures in the test set, using the baseline, oracle, and deep
coordinated methods defined in Sections 3.2 and 3.3. Using each embedded gene expression
signature as a query, we ranked all chemical structures in the test set based on their proximity
to that gene expression signature in the embedding space. These rankings were then used to
compute standard information-retrieval metrics (precision-recall curves, MR, MRR, and Hits
at/H@ 10 or 100). For our ablation analyses, we repeated the above experiments using various
combinations of raw and learned GE and chemical representations.

In addition to the information retrieval analyses, we probed the generalizability of our
representations by analysing the statistical relationship between the average retrieval perfor-
mance for each chemical structure and the structural similarity to the most similar chemical
in the training set. Similarity was measured via the Tanimoto distance between all pairs of
molecular fingerprints in the train and test set. We further examined performance vs. chem-
ical specificity, using the number of genes that a molecule, on average, affected as a measure
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of specificity. Finally, we visualized the latent space of our chemical embedder (versus their
pre-trained representations learned by ChemProp), and noted the relative position of drugs
with the same mechanism of action (MOA) in each latent space.

4. Results & Discussion

4.1. Quantitative IR Experiments

Baseline and Proposed Method Information retrieval results from the baseline and pro-
posed methods are reported in Figure 2. This figure shows that our model variants offer
significant performance improvements over either of the CCA or NN baselines, and even ap-
proach the performance of the train-set only oracle model. All models fall dramatically short
of the test-set generalizability oracle, which indicates that while our tasks offer significant im-
provement over baseline models here, there are still major gains possible, primarily by focusing
on improving the generalizability to the novel cell-types of the test set.

In addition, we show various ablation studies over the baseline models in Table 1 to probe
what gene or molecular representations would make them better or worse. Strikingly, we
can note that uniformly using aligned representations (meaning representations based on our
multi-view alignment neural network architecture) offers significant improvements over other
representations, indicating that even with a baseline approach such as the double nearest
neighbor (D-NN) model, improvements to the embedding quality translate to notable im-
provements to IR performance. Notably, this is true both for GE and Chemical embedders,
with Aligned-Aligned representations yielding optimal performance for both D-NN and CCA
query mechanisms. Additionally, it is also clear that CCA is the preferred query metric, over
either raw correlation (Corr) based lookups or D-NN based lookups.

Oracle Model Analysis Results from the oracle models are reported in Figure A1 and
Table 2. As expected, oracle models using GE signatures from the test cell line greatly out-
performed those using signatures from the train cell lines. This stark difference suggests that
one of the largest barriers to performance here is the generalization gap between different cell
lines. This further motivates for the curation of larger, cell-line heterogeneous datasets in the
future.

In addition, aligned embeddings modestly improved the performance of test set oracles,
and greatly improved the performance of train set oracles, consistent with the GE embedders
learning slightly more generalizable representations. Of note, our proposed model achieved
comparable results as the oracle model that leveraged raw GE signatures from the train cell
lines. More specifically, our approach yielded slightly worse than the oracle on metrics (MRR,
H@10) that emphasize early rankings, and slightly better on metrics (MR, H@100) that focus
on more aggregate results. This is also apparent in the precision-recall plot, which shows the
aligned embeddings curve starting out slightly below that of the raw/train oracle curve but
then moving rapidly above it as further results are considered.

4.2. Introspection Analyses

Figure 3A contains the results of our experiments comparing performance to distance from the
training set. Regardless of the measure of chemical similarity, compound retrieval performance
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Fig. 2. Precision Recall curves for drug identification given gene expression signatures, across various
baselines (dashed lines), oracles (dotted lines) and our model (solid lines).

Table 1. IR metrics across various configurations of the model/baselines.
‘Chemprop’ refers to pretrained model from Yang et al.6 ‘Aligned’
indicates representations learned from our method (see Section 3.3).
MR=median rank, MRR=mean reciprocal rank, H@K=Hit/Recall at K.

GE Chemical Method MR MRR H@10 H@100

Raw Morgan FP D-NN 206 0.025 0.037 0.240
Raw Chemprop D-NN 211 0.025 0.035 0.254
Raw Aligned D-NN 189 0.033 0.047 0.290
Aligned Morgan FP D-NN 214 0.025 0.041 0.256
Aligned Chemprop D-NN 196 0.022 0.037 0.278
Aligned Aligned D-NN 137 0.039 0.072 0.402

Raw Morgan FP CCA 180 0.027 0.045 0.303
Raw Chemprop CCA 184 0.024 0.040 0.294
Raw Aligned CCA 134 0.039 0.076 0.412
Aligned Morgan FP CCA 177 0.027 0.050 0.319
Aligned Chemprop CCA 163 0.028 0.051 0.334
Aligned Aligned CCA 130 0.048 0.093 0.425

Aligned Aligned Corr 126 0.042 0.085 0.432

was inversely correlated with distance from the training set. As can be seen in Supplementary
Figure A2, the same trend held with learned gene expression embeddings, and was present
but much weaker using raw gene expression profiles.
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Table 2. IR metrics for the various oracle methods.

Oracle Model MR MRR H@10 H@100

Oracle - Train Cell Lines (Raw GE) 138 0.057 0.101 0.400
Oracle - Train Cell Lines (Embed) 110 0.064 0.128 0.466
Oracle - Test Cell Line (Raw GE) 82 0.076 0.147 0.565
Oracle - Test Cell Line (Embed) 79 0.093 0.160 0.568

Our Approach 126 0.042 0.085 0.432

Fig. 3. Left: Performance (lower is better) vs. structural distance to the nearest compound in the
training set. This plot demonstrates that compounds more structurally dissimilar to the train set show
mildly worse performance than those that are more similar. See Appendix Figure A2 for analogous
plots for four additional measures of distance from the training set. Right: Average Performance vs.
# of Genes deferentially expression following treatment with the molecule of interest, showing that
compounds that have broader transcriptomic effects are better retrieved by this method.

Figure 3B depicts the relationship between the transcriptional specificity of a compound
and its ability to be retrieved using our analysis. As can be seen, there is a mild negative
correlation, implying that molecules that affect the expression of many genes are easier to
retrieve using this approach. Note that this observation is concordant with our findings on
the difficulty of generalizing to new cell lines – drugs that affect a small, targeted set of genes
are more likely to be cell line specific, and as our model is forced to surmount a significant
generalization gap in evaluation, such cell-line specific signals are largely wiped out.

In addition, our analysis of the changes induced in the embedding space, shown in Supple-
mentary Figure A4, reveal that our model’s embeddings of molecules appear to better cluster
shared MOAs than do the raw ChemProp embeddings, from which our model is initialized.
This suggests that, as hypothesized regarding the nature of this task, our model is learning
rich representations of the underlying molecules, though additional work remains to investigate
this effect more thoroughly.
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4.3. Future Work

We see several opportunities for further work on this task. First, expanding our data cover-
age, across molecules, cell lines, dosages, and treatment durations will allow us to measure
and improve generalizability here. Second, exploring additional strategies to use the over-
sampled nature of these data (e.g., ensembling together control and perturbational signatures
to reduce variance) could be beneficial. Third, a more robust exploration of model architec-
tures, losses, and deep metric learning/negative sampling methods, could offer improvements
here.26 Additionally, other styles of multimodal embedding could be explored, such as the
use of cycle generative adversarial network, which in particular would enable us to adopt a
semi-supervised approach.39,40 The use of interpretability methods, particularly those used
for graph analyses,41 as well as additional studies interrogating how our model’s performance
changes with the amount of available training data could also be insightful here. Fourth, we
recommend exploring methods to improve cell-line generalizability, e.g. incorporating infor-
mation across many cell lines when forming predictions. Finally, we also note that while our
analyses only examine small-molecule therapeutics, similar methods could also be applied to
other modalities, such as RNA-based therapies.

5. Conclusion

We present a new task: cross-modal multi-view alignment between drug structures and pertur-
bational gene expression profiles, which links molecular structure to an objective, functional
readout of drugs with very broad biomedical relevance. We profile state-of-the-art representa-
tion learning methods on this new task, and inspect the learned chemical embeddings. We find
that this modeling task induces an embedding space reflective of drug mechanism of action –
which is not explicitly included in the training regime – and see modest generalization to both
new structures and a new biological environment. Our oracle experiments demonstrate major
performance gaps when trying to generalize to new tissues. We hope that this new bench-
mark task will catalyze future research and ultimately help enable a rapid, in silico compound
prioritization methods.
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Whole-slide images (WSI) are digitized representations of thin sections of stained tissue from various 
patient sources (biopsy, resection, exfoliation, fluid) and often exceed 100,000 pixels in any given spatial 
dimension. Deep learning approaches to digital pathology typically extract information from sub-images 
(patches) and treat the sub-images as independent entities, ignoring contributing information from vital 
large-scale architectural relationships. Modeling approaches that can capture higher-order dependencies 
between neighborhoods of tissue patches have demonstrated the potential to improve predictive accuracy 
while capturing the most essential slide-level information for prognosis, diagnosis and integration with 
other omics modalities. Here, we review two promising methods for capturing macro and micro 
architecture of histology images, Graph Neural Networks, which contextualize patch level information 
from their neighbors through message passing, and Topological Data Analysis, which distills contextual 
information into its essential components. We introduce a modeling framework, WSI-GTFE that 
integrates these two approaches in order to identify and quantify key pathogenic information pathways. 
To demonstrate a simple use case, we utilize these topological methods to develop a tumor invasion score 
to stage colon cancer. 

Keywords: Topological Data Analysis; Graph Neural Networks; Whole Slide Images; Tumor Invasion; 
Uncertainty 
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1.  Introduction 

Large-scale architectural motifs and repetitive patterns of functional tissue sub-units (eg. cells, 
connective tissue, extracellular matrix) form the basis of histopathology. While normal tissue is 
relatively homogenous, cancer contains disordered structures / phenotypes that reflect driving 
genetic alterations. As neoplastic transformation progresses, the extent of infiltration and 
destruction of normal tissue is used to grade and stage cancers. Practitioners of histopathology 
are thus highly sensitive to disruptions in normal structure. A wide variety of computational 
methods have been developed to augment traditional histological inspection1 by reducing time 
and personnel costs associated with manual slide screening. These emerging techniques have 
also demonstrated the potential for identifying novel disease pathways and previously 
unrecognized morphologies.  

     Deep learning has been particularly successful in digital pathology 2. In comparison to prior 
modeling techniques that use handcrafted features, deep learning applies parameterized filters 
and pooling mechanisms via convolutional neural networks (CNN) to capture and integrate 
lower level image features into successively higher levels of complexity 3. These approaches 
have been used to automatically stage liver fibrosis 4, identify morphological features 
correspondent with somatic alterations5, assess urine slides for bladder cancer6, and circumvent 
costly chemical staining procedures7,8, amongst many others9. Many research groups are 
developing high-throughput clinical pipelines to take advantage of these healthcare 
technologies. Validating and scaling these technologies is essential for successful deployment10. 

     As a result of the gigapixel resolution of Whole Slide Images (WSI), which contain a diverse 
range of tissue and morphological features, researchers typically must partition the WSI into 
smaller sub-images. These sub-images are then evaluated separately via the deep learning model 
for classification or segmentation tasks, from which their results may be aggregated for slide-
level inferences. Aggregation via a CNN incorporates excessive whitespace and places 
unnecessary dependence on the orientation and positioning of the tissue section11. Alternatively, 
a ‘bag of images’ approach can be taken, in which patch representations are aggregated using 
autoregressive or attention-based mechanisms to generate a whole slide representation, ignoring 
non-tissue regions12–14. These integrative approaches may be highly stochastic and insufficiently 
reproducible / reliable to be properly integrated into the clinic or with other omics-based 
modalities. These methods may additionally undervalue the higher order context between a 
patch and its immediate neighbors which may be vitally important to the targeted prediction.  

     Graphs are mathematical constructs that model pairwise relationships between entities. 
Accordingly, graphs are well suited to model dyadic relationships between single patches 
(nodes) in a WSI as defined by their spatial distance/correlation (edges). Graph Neural Networks 
(GNN) have been developed to encapsulate information from adjacent tissue regions/cells in 
order to inform the representation of the current patch of interest. GNN naturally capture the 
intermingling of various tissue sub-compartments while remaining permutationally invariant 
(the ordering/rotation of patches on slides does not impact prediction). While square-grid 
convolutions over WSI sub-images propagate information within a fixed neighborhood of 
patches and require consistent ordering of patches 11, GNN relax the convolutional operator to 
aggregate information across an unfixed number of neighbors to update the patch-level 
embedding15. 
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     Prior GNN research on WSIs center graph nodes on cells under the assumption that cell-cell 
interactions are the most salient points of information16. However, this approach 
underappreciates the diagnostic/prognostic information conveyed by tissue macro-architectural 
structures. Constructing cell-centered graphs are limited by cell detection accuracy (a 
surprisingly difficult problem) and more importantly, incorporating all cells in a graph model is 
subject to complexity constraints. Despite these potential limitations, there remain numerous 
techniques to study WSI using GNN at various scales 17. Here, we seek methods to explain graph 
convolution results post-hoc to elucidate mechanisms by which tissue regions interact.  

     Topological Data Analysis (TDA) quantifies the underlying shape and structure of data by 
collapsing persistent topological structures 18. TDA is well-suited for summarizing Whole Slide 
Graphs (WSI fitted by a GNN; e.g. WSG) to identify and relate key tissue architectures, regions 
of interest, and their intermingling. However, the sheer quantity, complexity, and dimensionality 
of histology data makes interpretation challenging. A recently developed TDA-tool, Mapper18, 
alleviates this issue by providing a succinct summary of high-dimensional data to  elucidate 
obscured relationships. Mapper projects the data to a lower dimensionality, packs the data into 
overlapping sets, which are then clustered to form a simplified, easily interpretable graph. Unlike 
pooling approaches that are built into the deep learning model and must be pre-specified, Mapper 
is generalizable and can be configured to study WSI information at multiple resolutions after 
fitting a GNN model. These models have the capacity to provide higher order descriptors of 
information flow for any GNN model, greatly simplifying analysis. Abstractions can then be 
analyzed to learn new disease biology through interrogation of patch-level embeddings. While 
TDA methods have previously been applied to high dimensional omics data19–21 and 
histopathology images22,23, to our knowledge, there have been no applications of TDA methods 
to GNN models fit on histological data, where these methods may be of great benefit. 

     Colorectal Cancer (CRC) is a common cancer with approximately 150,000 new cases 
annually in the United States and an estimated 63% 5-year survival rate. CRC most commonly 
arises from dysplastic adenomatous polyps with somatic alterations in the APC pathway or the 
mismatch repair (MMR) pathway24. The Colon is divided into distinct layers including 
epithelium, lamina propria, submucosa, muscularis propria, pericolic fat, and serosa (in certain 
anatomical locations). Tumor staging comprises tissue and nodal stages with higher numerals 
indicating a greater depth of invasion and greater number of lymph nodes (LN) involved by the 
tumor, respectively.  

     We present a Whole Slide Image GNN Topological Feature Extraction workflow (WSI-
GTFE)*, for applying topological methods to interrogate a WSI GNN fit and demonstrate its 
utility in determining colon cancer stage. As a simple use case for these methods, we apply 
Mapper to quantitate the degree of tumor invasion into deeper sub-compartments of the colon 
and corroborate these tumor invasion scores (TIS) with disease staging to form an interpretable 
predictive score. The demonstration featured in this paper outlines some of the many potential 
applications of topological methods in the analysis of WSI GNN models. 

 
* Software available on GitHub at the following URL: https://github.com/jlevy44/WSI-GTFE  
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2.  Materials and Methods 

2.1.  Data Acquisition and Processing 

We selected Colon (n=172) and accompanying Lymph Node (n=84) resection slides from 36 
patients at Dartmouth Hitchcock Medical Center. Briefly, samples were grossed, embedded in 
paraffin blocks, sliced into five-micron sections and scanned using the Leica Aperio-AT2 scanner 
at 20x, stored in SVS image format, from which our in-house pipeline PathFlowAI10 was utilized to 
extract and preprocess the slides into NPY format. A board-certified pathologist provided coarse 
segmentation maps in the following categories: 1) epithelium, 2) submucosa, 3) muscularis propria, 
4) fat, 5) serosa, 6) debris, 7) inflammation, 8) lymph node, and 9) cancer. We extracted 2.69 million 
256x256 pixel patches correspondent to these slides. 

2.2.  Overview of Framework 

 
Fig. 1. WSI-GTFE Framework: a) patch-level CNN embeddings extracted using PathFlowAI form graph via 

their spatial adjacency; b) targets (eg. colon sub-compartments) predicted using successive applications of 
graph convolutions; c) highly uncertain regions (middle) from noisy prediction map (left) may be reassigned 

(right); d) Mapper summarizes GNN embeddings over WSI as a graph; e) Meaningful histology (ROI) 
captured as Mapper graph nodes; f) Functional relationships between Cancer and other ROI, weighted edges 
Mapper graph, mined to form TIS vector; g) TIS used in prediction model to form interpretable staging score 
(odds ratios and log-odds probability), demonstrates type of relationships that may be extracted using TDA  

The WSI-GTFE framework (Figure 1), provides methods to summarize the intermingling of tissue 
sub-compartments via a two-stage CNN-GNN model, followed by utilization of TDA methods:  
1. Learning patch-level CNN embeddings and constructing spatial adjacency graph (Figure 1A) 
2. Contextualizing patch level embeddings via an unsupervised or supervised GNN (Figure 1B) 
3. Optionally refining the patch level embeddings through estimation of uncertainty in patch-level 

classification tasks (Figure 1C) 
4. Applying Mapper to pool patches into overlapping Regions of Interest (ROI)  (Figure 1D-E) 
5. Estimating the degree of information flow and intermingling between the regions (Figure 1F) 
6. Optionally using measures of information flow as additional markers for clinical or molecular 

associations (Figure 1G) 
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2.2.1.   Estimation of Patch-Level Embeddings 

A WSI (an RGB array on the order of 100,000 pixels in any spatial dimension) �⃗�, is comprised of 
a collection of sub-images, {𝑥%&&&⃗ }. A neural network maps each sub-image to a low dimensional 
embedding or representation, 𝑧%&&⃗ , via the following mapping 𝑓:	𝑋 → 𝑍, 𝑧%&&⃗ = 𝑓(𝑥%&&&⃗ ). Patch-level 
features may be extracted using pretrained CNNs such as ImageNet, which has learned a huge 
collection of convolutional filters and features correspondent to 1000 common objects such as dogs, 
cats and birds 25. Features may also be acquired using unsupervised approaches such as variational 
autoencoders (VAE)26 or self-supervised techniques such as contrastive predictive coding (CPC)14 
or SimCLR27. Finally, patch-level features may be learned after pretraining on histology targets of 
interest, such as classified objects or ROI. We utilized both an ImageNet-pretrained CNN as well as 
a CNN we pretrained for tissue sub-compartment classification task, generating two separate sets of 
patch-level embeddings for comparison.  

2.2.2.  Contextualizing Patch-Level Embeddings via GNN 

Graphs are represented via following expression 𝐺 = (𝑉, 𝐸, 𝐴, 𝑋). The set of nodes/patches or 
vertices 𝑉 are related to each other via edgelist 𝐸. Alternatively, the edgelist may be represented by 
a sparse adjacency matrix 𝐴, of which binary indicators 𝐴67 depict a relationship between node 𝑖 and 
node 𝑗. Node/patch-level embeddings or features are represented by attribute matrix 𝑋. A WSI may 
be encoded as a graph by storing patch level embeddings ({𝑧%&&⃗ }, index	𝑖 for select patch) in the 
attribute matrix 𝑋 (m patches by n embedding dimensions) and recording spatial adjacency (via a k 
or radius nearest neighbors) of all patch coordinates as 𝐴. GNN utilize message passing operations 
to update the embeddings of nodes by their neighbors via the following convolution operation 28: 

                                         𝑧%∗&&&⃗ = 𝑧%&&⃗ ∗ 𝑔 = 𝛾 >𝑧%&&⃗ , SCATTER7∈F𝜙H𝑧%&&⃗ , 𝑧I&&⃗ JK  (1) 
     The embeddings of the neighbors of patch 𝑖, in neighborhood 𝑁, are themselves updated via 
some parameterized functional ϕ, which is scattered in parallel across GPUs, and then aggregated 
to update the embedding of patch 𝑖 via the parameterized operation γ. Information from neighboring 
patches are passed as such. Multiple applications of these convolutions expand the neighborhood 
from which information is propagated. Additional pooling mechanisms, AGG, such as DiffPool or 
MinCutPool29,30, serve to aggregate the patch level representations into cluster or slide-level 
representations: 
                                                                  𝑧 = 𝐴𝐺𝐺H{𝑧%∗&&&⃗ }J       (2) 
     There exist multiple modeling objectives for updating these embeddings, which include: 1) node-
level classification, where �⃗� = 𝑓H𝑧%∗&&&⃗ J, trained via the cross-entropy loss, 2) unsupervised node-level 
measures such as Deep Graph Infomax31 and spectral clustering objectives, and 3) graph-level 
supervised, eg. �⃗� = 𝑓(𝑧), or 4) graph-level self-supervised objectives. For demonstration purposes, 
we learn patch-level classification of colon sub-compartments and predict these sub-compartments 
on held-out slides after initialization of an adjacency matrix of patches, which could be used to 
pretrain whole-slide level objectives. From the fitted GNN model, intermediate patch-level or 
cluster-level (when applying pooling operations) embeddings may be extracted for further analysis. 
While we constructed WSG from the spatial adjacency of patches in this work, this WSI-GTFE 
method is agnostic of WSG creation approach. These graphs also may be built using cell / nucleus 
detection methods, though such methods are beyond the scope of this work.  
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2.2.3.  Optional Refinement of Patch-Level Predictions 

Graph convolutions aim to contextualize patches with their neighbors and as such are able to smooth 
the map of predictions across a slide. However, small deformities in an otherwise homogenous 
decision map, (for instance, pockets of inflammation that were not captured by the pathologist’s 
relatively coarse annotations), may be a source of signal noise. To further smooth the classification 
map of patches across a slide, assigned patch-level labels may be refined using label propagation 
techniques. Dropout32 methods randomly set predictors at a particular neural network layer to 0 with 
a certain probability, while DropEdge33 randomly prunes edges of a graph, which in this case 
corresponds to the adjacency matrix of the WSI. While both of these techniques have been utilized 
to improve the generalization of graph neural networks through perturbations to the input data and 
intermediate outputs, applications of these techniques during prediction may be used to make 
multiple posterior draws of a patch-level categorial distribution for class label assignment. Both the 
variance of the predictive posterior distribution after numerous posterior draws and the entropy in 
the class labels after averaging the results for a sample after application of SoftMax layer may be 
used as estimates of uncertainty in prediction34. Nodes that exhibit high uncertainty may be pruned 
and the remaining class labels may be propagated to the unlabeled patches. 

2.2.4.  Application of Mapper to Extract Regions of Interest 

Once a GNN model has been fit, post-hoc model explanation techniques such as visualization of the 
attention weights or the use of GNNExplainer35 to identify important subgraphs for classification 
can be performed. However, these may be difficult to interpret because they attempt to summarize 
complex interactions between high-dimensional data at the scale of thousands of patches per WSI. 
The complexity of such visualizations makes them difficult to understand and highlights the need 
for a simplified visualization.  
     Because similarity-based distances between patch-level GNN embeddings reflect higher-order 
connectivity and perceptually similar histological information, topological methods (such as 
Mapper) can compress this data to its essential structures while revealing the most salient aspects.  
For a given WSI, Mapper operates on the resulting point cloud of the patch-level GNN embeddings 
to first project the points to a lower dimensional space via techniques such as PCA, UMAP or NCVis 
36 (referred to as Projecting, 𝑓). Once the data is projected, it is separated into overlapping sets 
(Covering, 𝑈), the number of which determines the resolution of the data summary. In each set, a 
Clustering algorithm (e.g. hierarchical clustering) is applied to the datapoints. The output of 
applying Mapper to this structure is a graph, where a node represents a cluster of WSI patches and 
an edge represent the degree of shared patches between the clusters37. This Mapper graph 
summarizes higher-order architectural relationships between patches and their shared histological 
information. In our framework, we refer to the nodes (collection of patches) as ROI, and the 
topological connectivity between the ROIs as their functional connectedness or “intermingling”. For 
instance, if a tumor ROI was connected to an ROI of the submucosa, we would say that the tumor 
has invaded (intermingled with) the submucosa. The degree of intermingling is quantified by the 
amount of overlap as defined by covering U and weighted by the incidence of cancer in each ROI. 
The expressiveness of this summary graph may be modified by selection of different Filter, Cover, 
and Cluster parameters which allows the user to interrogate ROIs in the WSI at different scales (a 
degree of flexibility beyond that of currently existing GNN pooling operations). We implemented 
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Mapper using the Deep Graph Mapper implementation; however, python-based Kepler-Mapper and 
giotto-tda also present software solutions that may be readily employed 37–39. 

2.2.5.  Associating ROI Connectivity with Clinical Outcomes 

Once ROIs have been extracted using Mapper, measures of functional relatedness between the 
regions may be correlated with slide-level clinical outcomes. In our simple use case, we developed 
a Tumor Invasion Score (TIS) that measures the degree of overlap between the tumor and an 
adjacent tissue region. To construct this score, we first decompose each ROI into a vector encoding 
the frequency of each predicted tissue sub-compartment, 𝑐%&&⃗  (counts of patch class assignment). The 
amount of overlap, as learned by Mapper’s Cover operation, between two ROI (𝑅𝑂𝐼6 and 𝑅𝑂𝐼7, 
frequency vectors 𝑐%&&⃗  and 𝑐I&&⃗  respectively) is 𝑤67. The intermingling between different tumor sub-
compartments for a pair of ROI may be expressed as 𝐴67 = 𝑤67𝑐%&&⃗ ⨂ 𝑐I&&⃗ . Given Mapper graph 𝐺, with 
edge-list 𝐸, (𝑒67 ∈ 𝐸), the final pairwise associations between the regions are given by: 𝐼 =

∑
YZ[\YZ[

]

^_∈` . To measure tumor invasion/infiltration of the surrounding sub-compartments, we select 

the row of this matrix corresponding to the tumor: 𝑇𝐼𝑆 = 𝐼cdefg&&&&&&&&&&&&⃗ . These vectors may be stacked 
across patients to form a design matrix, 𝑋, which may be associated with binary or continuous 
outcomes, �⃗�. Here, we utilize Logistic Regression to associate 𝑇𝐼𝑆 with cancer staging greater than 
2 for the Colon samples, and positive Lymph Node status for Lymph Nodes. 

2.3.  Experimental Details 

As proof of concept, we first pre-trained colon (comprised of epithelium, submucosa, muscularis 
propria, fat, serosa, inflammation, debris and cancer) and lymph node (fat, lymph node, cancer) 
classification networks with 10-fold cross validation (partitioning 10 separate training (82%), 
validation (8%) and test (10%) sets), evaluated using the area under the receiver operating curve 
(AUC/AUROC) and a weighted F1-Score. We extracted features from the penultimate layer of a 
ResNet50 neural network for about 2.7 million images per fold (26.9 million embedding extractions 
across 10-folds), using the pretrained network and separately from an ImageNet-pretrained model. 
After extraction of image features, we constructed graph datasets through calculation of the spatial 
adjacency (k-nearest neighbors) between the patches and storing node level embeddings into the 
attribute matrix. We created and trained a GNN that featured four graph attention layers, 
interspersed with ReLU activation functions 40 and DropEdge layers, followed by one layer of 
DropOut and finally a linear layer with SoftMax activation for node level prediction (Figure 2A). 
Models were generated using the pytorch-geometric 28 framework and trained using Nvidia v100 
GPUs. For each cross-validation fold, we updated the parameters of our GNN through 
backpropagation of Cross-Entropy loss for node level classification on the training slides, while 
evaluating the potential to generalize on the validation set of Whole Slide Graphs (WSG) through 
evaluation of the F1-score. We saved the model parameters correspondent to the training epoch with 
the highest validation F1-score and extracted graph-node level embeddings and predictions on the 
validation and test sets of slides for each cross-validation fold. We refined patch-level predictions 
for all validation and test slides for the models with ImageNet-pretrained image features. To evaluate 
node-level tissue sub-compartment classification, we then calculated AUROC and F1-Score fit 
statistics across test slides. Finally, we applied Mapper to extract ROIs and 𝑇𝐼𝑆 for all test slides 
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(Figure 2B), of which 10-fold cross validation was applied over a non-penalized Logistic 
Regression model to estimate concordance with tumor stage and lymph node status. We also fit 
similar models to the frequencies of assignment of tissue sub-compartments for each case and 
combined relative frequencies of tissue sub-compartments with their TIS values to yield a final 
model. To evaluate the parsimony of the logistic regression model for alignment with our 
expectation that tumor infiltrating the fat corresponds to a high stage, we fit a generalized linear 
mixed effects model to the TIS scores, clustered by patient, and inspected the regression coefficients 
for quantitating the nature of these functional relationships. 

 
Fig. 2. Methods: a) Neural network architecture for node classification experiment; 1000-d patch-level embeddings 

pass through graph attention convolutions, ReLU and DropEdge layers which alter dimensionality of patch 
embeddings while routing information from neighbors; attention between blue node and neighborhood is 

characterized using red curves; pruned edges are portrayed using red lines; b) once GNN classification model has been 
fit, GNN embeddings are extracted; lens function projects them to lower-dimensionality; patches are covered and 

clustered to reveal high-level measurable relationships between muscularis propria, fat and cancer 

3.  Results 

3.1.  Patch-Level Classification and Embeddings 

 
Fig. 3. UMAP projection of penultimate layer of neural network for one select colon slide; nodes colored by true sub-
compartment; a) ImageNet-pretrained CNN embeddings of patches; b) colon-pretrained CNN embeddings of patches; 

c) updated GNN patch embeddings after ImageNet extraction; d) updated GNN patch embeddings after colon-
pretrained CNN extraction 

An acceptable patch-level classification performance indicates room to further interrogate the slides 
for functional relationships between patches. In Table 1, we present 10-fold CV AUROC and F1-
Score statistics on held-out test slides for patch level classification. The pretrained CNN for colon 
segmentation yielded moderately low performance metrics, while pretraining for lymph node 
yielded much higher scores. After feature extraction and training of the GNN taking into account 
the information from neighboring patches, scores increased substantially. Pretraining the CNN on 
Colon-specific targets had little impact on the classification model after fitting the GNN, suggesting 
that information contained from the patch surroundings is sufficient to contextualize that particular 
patch, or that the pretrained ImageNet is generalizable enough to histology images. Inspection of 
the patch-level embeddings (Figure 3), further corroborate that the original CNN does little to 
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delineate the different classes of colon tissue, while the GNN embeddings demonstrate clear 
separation between these sub-compartments. 
Table 1. GNN node classification results for colon (n=172 slides; 2,116,396 images) and LN (n=84; 570,326 images); 

averaged across slides; confidence assessed via 1000-sample non-parametric bootstrap 
10-Fold CV (n=256) Node Classification AUC ± SE F1-Score ± SE 

Colon CNN-Only 0.75±0.0054 0.43±0.0079 
Colon GNN ImageNet 0.95±0.0026 0.81±0.006 
Colon Prediction Refinement n/a 0.83±0.0063 
Colon GNN Pretrained 0.96±0.0031 0.82±0.0074 
LN CNN-Only 0.91±0.0069 0.8±0.013 
LN GNN ImageNet 0.96±0.0067 0.89±0.014 
LN GNN Pretrained 0.97±0.0049 0.9±0.014 

3.2.  Tumor Staging via Mapper Derived Invasion Scores 

Figure 4 illustrates the extracted Mapper graph of representative low stage and higher stage slides. 
As compared to the lower stage slide, the 𝑇𝐼𝑆 score derived for the higher stage indicates higher 
intermingling of tumor with regions of fat and is confirmed by pathologist annotations. We extracted 
an average of 32 ROIs from each WSI (range 5 – 155 ROI). Inspections of ROIs indicated some 
with clusters of tissue finely localized to histological tissue layer, and a few ROI that went 
undetected by the initial pathologist inspection (e.g. pockets of inflammation and tumor seeding in 
the fat). 

 
Figure. 4. Example Topological Feature Extraction on two Colon slides; a) Mapper visualization of WSG of a stage 3 

tumor; each vertex corresponds to an ROI, placement of the vertex reflects center of mass and thickness of edge 
connecting two points reflects topological overlap; b) example of four ROIs from the stage 3 slide; image patches are 
stitched back together; location is depicted in slide; composition of ROI is denoted with word clouds, where size of 

word is proportional to percentage makeup of ROI; c) actual TIS score for slide, prevalent invasion in the submucosa, 
fat and muscularis to reveal deep invasion; actual score from classifier gives 99% probability of advanced stage; d) 
Mapper visualization for stage 1 slide; e) left-most ROI demonstrates epithelial crypts with inflammation in lower 

right pocket; f) actual reported TIS score denotes invasion of epithelium with 6% probability of advanced stage 
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Table 2. Ten-Fold AUROC statistics for unpenalized logistic regression prediction model on held out test data across 
all slides for colon (n=172) and LN (n=84); three head columns indicate whether advanced staging was predicted 

using aggregates of colon sub-compartment assignments (Region Counts); invasion (Tumor Invasion Scores); or Both 
to lend complementary information; models with main effects and interactions were considered; confidence assessed 

via 1000-sample non-parametric bootstrap 
AUC (10-Fold CV) Region Counts Only Tumor Invasion Scores Only Both 

Stage > 2; LN Positive Main 
Effects 

Second Order 
Terms 

Main 
Effects 

Second Order 
Terms 

Main 
Effects 

Second Order 
Terms 

Colon GNN Pretrained 0.89±0.028 0.85±0.031 0.84±0.032 0.89±0.028 0.91±0.022 0.85±0.031 
Colon GNN Not Pretrained 0.89±0.027 0.88±0.028 0.86±0.029 0.89±0.027 0.91±0.023 0.88±0.028 

LN GNN Pretrained 0.76±0.077 0.88±0.046 0.88±0.046 0.76±0.077 0.88±0.046 0.88±0.046 
LN GNN Not Pretrained 0.89±0.051 0.92±0.039 0.92±0.034 0.89±0.051 0.92±0.037 0.92±0.039 

Table 3. Taking into account clustering on the patient level, odds-ratios derived from GLMM (ICC=0.21, n=172) fit 
on TIS scores derived from GNN that utilized colon-pretrained CNN embeddings; odds ratios indicate risk of 

advanced progression given tumor invasion of region 
 𝑺𝒕𝒂𝒈𝒆	 ≥ 𝟑 

Predictors Odds Ratios CI p 
(Intercept) 0.52 0.29 – 0.93 0.027 

TIS: Epithelium 0.82 0.43 – 1.56 0.539 
TIS: Fat 7.54 2.93 – 19.38 <0.001 

TIS: Muscularis 1.68 1.02 – 2.77 0.043 
TIS: Serosa 1.43 0.33 – 6.28 0.632 

TIS: Submucosa 1.23 0.57 – 2.63 0.597 

     TIS scores correlated very well with Tumor staging. Ten-fold CV AUC was 0.91 for advanced 
Colon cancer staging and 0.92 for positive Lymph Nodes (Table 2). The frequency of sub-
compartment instance and tumor invasion was also able to predict cancer stage when considered in 
isolation. Taken together, TIS and compartment localization achieved a higher AUC score, which 
speaks to the complementary information that each approach was able to provide to form a more 
complete picture of tumor progression. From the TIS scores, we were able to derive odds ratios (OR; 
measure of association between exposure and outcome, greater than one indicates adverse risk) as 
to their relation to tumor staging using linear mixed effects models (clustered on individual). As 
expected, fat interaction was highly associated with progression to a stage 3 or higher. Importantly, 
invasion of the muscularis propria, an adjacent and superficial region to the fat, had a statistically 
significant odds ratio commensurate with its depth in the colon. 

4.  Discussion 

Graph Neural Networks are increasingly promising approaches for studying WSI (and other 
gigapixel scale images) at multiple scales of inference through propagation of patch-wise 
information. However, when employing GNNs, the route of propagation often becomes obfuscated 
by the sheer quantity of patches being studied. This, in turn may make it difficult for researchers, 
clinicians or biologists to accept or understand these graph neural network technologies and their 
predictions. However, the compartmentalized and repetitive nature of tissue means that histology 
images can be greatly simplified via grouping of spatially adjacent subimages with perceptually 
similar and complementary input features. We have introduced methods from TDA to capture and 
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reduce these motifs. In colon histology, we distilled information across WSI to better quantitate how 
the intermingling of different tissue sub-compartments inform disease stage. These results warrants 
investigation of other spatially driven processes, such as identifying ROIs correspondent to spatial 
transcriptomics41 and integration with high-dimensional omics data types. 
     Mapper has proven to be a useful TDA tool for elucidating high-level topology of the WSI. 
However, Mapper is highly dependent on the Filter function, Cover and Cluster parameters and 
algorithms to generate a topological map. While these features offer flexibility to study the WSI at 
multiple resolutions, which includes expanding the large range of ROI extracted, full exploration of 
the parameter space to identify an ideal range of parameters for Mapper graphs for the slide in study 
are beyond the scope of this work. 
     We also assessed the impact of domain-specific pre-training of a CNN on the resulting GNN 
predictions. Our preliminary results showed negligible impact on GNN accuracy. Integration of 
signal from the surrounding tissue context via GNNs may therefore be sufficient to overcome 
domain differences between histology images and real-world images (ImageNet). Further 
experimentation is needed on more nuanced examples to test this hypothesis.  
     There are a few limitations to our study. We assumed that GNNs are able to adequately capture 
patch-level information and their surrounding tissue architecture.  The accuracy of our model was 
constrained by relatively coarse physician annotations that tended to ignore small structures like 
veins in the fat region of the lymph nodes, or small pockets of inflammation bounded by other tissue 
compartments, thereby reducing the accuracy of the model. However, inspection of regions with 
high uncertainty and label propagation allowed for correction of some of these issues. We also 
acknowledge the possibility of bias in given cross-validation folds. While we stratified the slides by 
whether they were representative of high or low stage, slides may contain different 
macroarchitectural features, and may, for instance, be completely devoid of serosa (which is only 
present in certain regions of the abdomen), which made it difficult to predict its presence. The colon 
WSI sections were analyzed from 36 patients (representing 256 slides). We acknowledge that there 
were repeated measurements taken across different slides from the same patient, the results of these 
sections may be correlated. While in our final inference on the TIS scores we account for this using 
mixed effects modeling, extracting samples from different patients would have been preferred to 
reduce cluster-level effects (data and pathologist time allowing). Due to the number of free 
parameters, we did not perform robust hyperparameter scans over the GNN.   

In the future, we intend to utilize extracted GNN features contained within our ROIs to better 
identify the core topological structures that form a pathologist’s understanding of a slide18. 
Simplicial complexes represent series of points, lines, triangles and higher-dimensional tetrahedra. 
Persistence diagrams discover topological features in the form of simplicial complexes that persist 
over wide changes in proximity between points. These approaches can be readily applied to GNN 
embeddings to establish “barcodes” of various ROIs contained within the slide42,43, which may be 
used to supplement existing efforts to hash WSI to further assess the composition of other slides by 
the presence of characteristic topologies44. In addition to utilizing persistence based TDA methods, 
we aim to apply the aforementioned methods to GNN embeddings after applying graph pooling 
layers to identify topology and ROIs which may be related to molecular targets of interest, dense 
omics profiles and unlabeled clusters of tissue. 
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5.  Conclusion 

As multimodal deep learning approaches become increasingly important, GNNs are emerging as an 
attractive modeling tool for WSI representation where proper integration and association with slide-
level outcomes is required. Conveniently, these approaches learn to identify key information 
pathways which may be simplified and visualized using TDA tools such as Mapper. Our method, 
WSI-GTFE, presents a framework from which to flexibly summarize the key insights acquired from 
fitting any GNN model to histological data. We hope that topological methods continue to see usage 
and integration with their deep learning graph counterparts for WSI level histological analyses given 
the benefits they provide in terms of model interpretability, quantitation of tissue compartment 
interaction, and potential for new biological discovery and disease prognostication.  
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A multi-scale integrated analysis identifies KRT8 as a pan-cancer early biomarker 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An early biomarker would transform our ability to screen and treat patients with cancer. The large amount 
of multi-scale molecular data in public repositories from various cancers provide unprecedented 
opportunities to find such a biomarker. However, despite identification of numerous molecular biomarkers 
using these public data, fewer than 1% have proven robust enough to translate into clinical practice1. One 
of the most important factors affecting the successful translation to clinical practice is lack of real-world 
patient population heterogeneity in the discovery process. Almost all biomarker studies analyze only a 
single cohort of patients with the same cancer using a single modality. Recent studies in other diseases 
have demonstrated the advantage of leveraging biological and technical heterogeneity across multiple 
independent cohorts to identify robust disease biomarkers. Here we analyzed 17149 samples from patients 
with one of 23 cancers that were profiled using either  DNA methylation, bulk and single-cell gene 
expression, or protein expression in tumor and serum. First, we analyzed DNA methylation profiles of 
9855 samples across 23 cancers from The Cancer Genome Atlas (TCGA). We then examined the gene 
expression profile of the most significantly hypomethylated gene, KRT8, in 6781 samples from 57 
independent microarray datasets from NCBI GEO. KRT8 was significantly over-expressed across cancers 
except colon cancer (summary effect size=1.05; p < 0.0001). Further, single-cell RNAseq analysis of 7447 
single cells from lung tumors showed that genes that significantly correlated with KRT8 (p < 0.05) were 
involved in p53-related pathways. Immunohistochemistry in tumor biopsies from 294 patients with lung 
cancer showed that high protein expression of KRT8 is a prognostic marker of poor survival (HR = 1.73, 
p = 0.01). Finally, detectable KRT8 in serum as measured by ELISA distinguished patients with pancreatic 
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cancer from healthy controls with an AUROC=0.94. In summary, our analysis demonstrates that KRT8 is 
(1) differentially expressed in several cancers across all molecular modalities and (2) may be useful as a 
biomarker to identify patients that should be further tested for cancer. 

     Keywords: Meta-analysis; Cancer; Diagnostic; Methylation 

1. Introduction 

Most of the public health burden of cancer results from our inability to detect tumors before they 
become untreatable2. For instance, non-small cell lung cancer (NSCLC), the leading cause of cancer 
deaths worldwide, progresses from early to advanced stages over a year3. Early detection of NSCLC is 
shown to substantially improve survival through surgical resection of the tumor4; however, after the 
cancer has metastasized, surgical intervention does not improve patient outcomes5. This critical need 
for early cancer biomarkers motivated the creation of consortiums like the TCGA6. Since the first 
TCGA data was released in 2006, there have been hundreds of putative molecular biomarkers proposed 
across all cancer types, with most focusing on gene expression biomarkers7,8.  However, most gene 
signature biomarkers were identified in only one cancer type or subtype, and very few ever proved to 
be viable for clinical use8,9. Many proposed signatures failed to translate into clinical practice because 
they could not be replicated in outside cohorts or performed poorly when clinical data was considered10.  
DNA methylation profiles have been shown to carry additional information to either genomic or 
expression data11,12. Yang et al. demonstrated that TCGA methylation data could identify clinically 
relevant subsets of patients with breast cancer that could not be classified by gene expression13. Others 
have documented the prognostic ability of other epigenetic signatures in colon, lung, and pancreatic 
cancer14-16. However, the bulk of putative methylation biomarkers are limited to a single disease and 
face the same clinical translation issues as gene expression biomarkers17. To increase the probability 
that a methylation biomarker is useful in clinical practice, it is critical to demonstrate a robust functional 
and translational relevance of the differentially methylated genes in multiple cohorts18. Additionally, 
the focus on single-cancer biomarkers has raised concerns about the potential to overlook common 
epigenetic drivers of cancer19. 

In this study, we performed a pan-cancer analysis of TCGA DNA methylation data from 9855 tissue 
samples across 23 cancers to inform subsequent gene expression, proteomic, and clinical outcome 
analyses. The methylation samples were divided into discovery (2019 samples across 10 cancers) and 
validation (7836 samples across 21 cancers). KRT8 was the most significant differentially methylated 
gene across cancers. We next examined the gene expression profile of KRT8 in 6781 samples from 57 
independent microarray datasets in five solid tumor cancers (breast, colon, pancreatic, ovarian and lung) 
from NCBI GEO20, and found KRT8 to be universally overexpressed. Our analysis of intra-cellular 
gene-KRT8 expression correlations in 7447 single cells derived from lung tumor biopsies found KRT8 
is correlated with genes involved in p53-related pathways. We validated these correlations in gene 
expression microarrays of 1276 tissue biopsies from patients with lung cancer. We examined the 
prognostic relevance of tumor KRT8 protein in 294 tissue microarrays (TMAs) from patients with lung 
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cancer. We then calculated the prognostic value of tumor KRT8 gene expression in pancreatic cancer 

with data from Protein Atlas. Finally, we validated the potential of KRT8 as non-invasive biomarker 
with serum KRT8 in 32 pancreatic patients and 6 healthy controls from Stanford Hospital. An overview 
of this analysis is displayed in Figure 1. 

2 Methods 

2.1. Data Collection from Public Repositories – TCGA and GEO 

All methylation and transcriptome data used in our analyses are publicly available. We downloaded all 
available DNA methylation data the TCGA data portal (https://tcga-
data.nci.nih.gov/tcga/tcgaHome2.jsp) irrespective of cancer on May 19, 2018. We excluded data for 
cancers where less than two non-cancerous samples were profiled, which resulted in DNA methylation 
data for 9855 samples across 23 cancers. For DNA methylation profiling, samples from these 23 cancers 
were profiled using either the Infinium HM27 array (27,578 CpG site targeting probes) or Infinium 
HM450 array (485,577 CpG site targeting probes). All data was generated and processed by The Cancer 
Genome Atlas research network as described previously6,19. We used data profiled on the HM27 array 
as our discovery cohort (10 cancers, 2019 samples) and data profiled on the HM450 array (21 cancers, 
7836 samples) as validation.  

For gene expression, we downloaded whole transcriptome data for 6,781 tumor biopsies across 57 
independent datasets profiled using microarrays from the NCBI GEO. All datasets were required to 
measure gene expression in a minimum of two non-cancerous tissue samples. These tumor biopsies 
came from a patient with breast, lung, pancreatic, ovarian or colon cancer. 

 
Figure 1. Analysis overview. (A) DNA methylation data from TCGA for 10 cancers comprising 2019 samples 
profiled using the Illumina 27 platform were used for discovery. (B) Validation data comprised of 15,124 samples 
profiled using either DNA methylation, bulk and single cell gene expression, or tumor and serum protein. 
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2.2. Data Processing and Effect Size Estimation 

We ensured all downloaded gene expression data was log2-transformed. For each gene, we calculated 
chaQge iQ e[SUeVViRQ iQ a WXPRU biRSV\ aV HedgeV¶ g with adjustment for small sample size because it 
captures both the fold change and variance. We have previRXVO\ XVed HedgeV¶ g WR geQeUaWe URbXVW geQe 
signatures with diagnostic and prognostic value21,22. We used the random-effects inverse variance meta-
analysis using Dersimonian-Laird method to calculate a summary effect size (ES) across datasets for 
each gene23. We chose Dersimonian-Laird as our previous work has shown it to be a good compromise 
between more conservative meta-analysis methods (Sidik±Jonkman, Hedges±Olkin, empiric Bayes, 
restricted maximum likelihood) and lenient methods (Hunter±Schmidt)23. If multiple probes mapped to 
a gene, the effect size for each gene was summarized via the fixed effect inverse-variance model. We 
corrected p-values for summary effect-sizes for multiple hypotheses testing using Benjamini-Hochberg 
false discovery rate (FDR) correction.24 We removed one cancer at a time and applied both meta-
analysis methods at each iteration to avoid influence of a specific cancer with a large sample size on 
the results. 

2.3. Survival Analysis and Modeling  

We used a right-censored model to fit survival data with the survival package in the R statistical 
computing environment (Version 3.5.1). We fit univariate and multivariate Cox proportional hazards 
models onto survival data using the coxph function. We confirmed the proportional hazard assumption 
with the cox.zph function.  

2.4. Human Plasma Samples  

Our study includes 32 human EDTA blood plasma samples collected between January 2007 and 
October 2011 from identically staged patients with advanced pancreatic ductal adenocarcinoma treated 
at Stanford University Medical Center under an institutional review board-approved protocol. All 
plasma samples were collected from untreated (de novo) patients with biopsy- proven pancreatic 
adenocarcinomas. Median age at blood collection was 68 years (range 37-84 years). All patients were 
treated with gemcitabine-based chemotherapy and the majority also received radiotherapy. As a control 
group, 6 additional plasma samples were collected from age- matched, healthy volunteers under an 
IRB-approved protocol. Immediately after acquisition, blood samples were centrifuged and aliquots of 
plasma stored at -80°C.  

2.4. Enzyme-linked immunosorbent assay (ELISA) 

The serum biomarker concentration was measured with a commercially available human protein 
sandwich enzyme immunoassay kit with two mouse monoclonal antihuman antibodies (R&D Systems, 
Inc., Minneapolis, MN, USA). All serum samples from patients and standards were incubated in 
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microplate wells coated with the first mouse monoclonal anti-human biomarker antibody. After 
washing, a second antihuman biomarker antibody labeled with peroxidase (HRP) was added for 
subsequent incubation. The reaction between HRP and substrate (hydrogen peroxide and 
tetramethylbenzidine) resulted in color development and the intensities were measured with a 
microplate reader at an absorbance of 450 nm. Concentrations of serum biomarkers were determined 
against a standard curve. 

2.5. Single cell data collection and processing 

We downloaded count matrices of 52,698 single cells from the tumor microenvironment of five lung 
cancer patient samples from Array Express (E-MTAB-6149)22. Of the total 52,698 cells, 7,447 
originated from the tumor. We calculated the Pearson correlation between expression of KRT8 and all 
other measured genes within each tumor cell. For each KRT8-gene correlation, we required non-zero 
expression of both genes in a minimum of 25 cells. We removed correlations with a p-value t 0.05.  

2.6. KRT8 Expression in Patients with Pancreatic Cancer from The Protein Atlas 

We downloaded prognostic information for 176 pancreatic cancer patients stratified by tumor KRT8 
expression from The Protein Atlas23 (https://www.proteinatlas.org/ENSG00000170421-
KRT8/pathology/tissue/pancreatic+cancer). We stratified patients based on median KRT8 expression 
of the cohort. Patient samples originated from the TCGA data repository. All counts are reported as 
Fragments Per Kilobase of exon per Million reads (FPKM).  

2.7. TMA cohort, and immunohistochemistry 

Patient samples were retrieved from the surgical pathology archives at the Stanford Department of 
Pathology and linked to a clinical database using the Cancer Center Database and STRIDE Database 
tools from Stanford. Patients who had surgically treated disease and paraffin embedded samples from 
1995 through June, 2010 were included. Surgical specimens that contained viable tumor from slides 
were reviewed by a board-certified pathologist (RBW) to build the Stanford Lung Cancer TMA as 
described previously. The area of highest tumor content was marked for coring blocks corresponding 
to the slides using 0.6 mm cores in duplicate arrays as previously described24. These cores were aligned 
by histology and stage and negative controls included a variety of benign and malignant tissues that 
included normal non-lung tissue, abnormal non-lung tissue, placental markers, and normal lung24. 
Normal lung consisted of a specimen adjacent, but distinct, from tumor over the years 1995 through 
2010 to assess the variability of staining by year. OligoDT analysis was performed on the finished array 
to assess the architecture of selected cores and adequacy of tissue content prior to target 
immunohistochemistry (IHC) analysis. Serial 4 µm sections were cut from FFPE specimens and 
processed for IHC using the Ventana BenchMark XT automated immunostaining platform (Ventana 
Medical Systems/Roche, Tucson, AZ). Rabbit monoclonal anti-Cytokeratin 8 (phospho S431) antibody 
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was obtained from Abcam (ab109452, Burlingame, CA). Mouse monocolonal Anti-Cytokeratin 8 
antibody was also obtained from Abcam (ab9023, Burlingame, CA). The intensity of KRT8 
immunostaining was graded from 1-4 as determined by an independent pathologist who was blinded to 
patient outcome. 

3. Results 

3.1. Integrated analysis of TCGA data identifies KRT8 as hypomethylated across cancers 

We identified 23 cancers that had methylation data and at least two healthy controls per cancer from 
TCGA. We split the resulting 9855 samples into discovery cohorts (2019 samples from 10 cancers 
profiled using the Illumina 27 platform) and the validation cohorts (7836 samples from 21 cancers 
profiled using the Illumina 450 platform) for validation. In order to avoid the potential influence of a 
single cancer on the results due to unequal sample sizes or other unknown confounding factors among 
cRhRUWV, Ze SeUfRUPed a µµOeaYe-one-cancer-RXW¶¶ aQaO\ViV. We h\SRWheVi]ed WhaW Whe UeVXOWiQg VeW Rf 
methylation sites, irrespective of the set of cancers analyzed, would constitute a robust methylation 
signature across cancers. We identified 1,801 differentially methylated genes (1,081 hyper- and 720 
hypomethylated, FDR < 5%) across all cancers (Figure 1A and Supplementary Figure 1A). We did 
not remove differentially methylated sites with significant heterogeneity for two reasons. First, 
heterogeneity is expected due to known heterogeneity within and between cancers. Second, we have 
previously shown that when combining across multiple datasets, filtering by heterogeneity removes 
higher proportion of true positives than false positives21. In the validation cohorts, which used Illumina 
450 platform, we found 1083 out of 1,801 sites were differentially methylated across all cancers (FDR 
< 5%; Figure 1B and Supplementary Figure 1B). 

Our discovery analysis found several previously reported differentially methylated genes. The 
hypomethylated genes across all cancers in the discovery cohort included CLDN425 (discovery ES = -
1.86, p = 8.0e-7; validation ES = -0.56, p = 1.55e-06) and SFN26 (discovery ES = -0.96, p = 2.01e-7; 
validation ES = -0.94, p = 9.4e-10) that have been previously shown to promote cancer cell proliferation 
(Ehrlich 2009), whereas the hypermethylated genes included known tumor suppressors such as SOX127 
(discovery ES = 1.05, p = 3.4e-08;  validation ES = 1.08, p = 4.4e-22), TWIST28 (discovery ES = 0.89, 
p = 1.5e-5; validation ES = 0.59, p = 4.3e-16), and GATA429 (discovery ES = 0.92, p = 1.7e-6; validation 
ES = 0.38, p = 3.77e-12). KRT8 was the most statistically significant hypomethylated gene after 
multiple hypothesis correction (discovery ES = -1.71, p = 3.2e-7, FDR=9.15e-6), but was unchanged 
in renal clear cell carcinoma. KRT8 was also hypomethylated in the validation cohorts across all cancers 
except pheochromatoma/paraganglioma and melanoma (validation ES=-0.69, p = 3.3e-15, FDR = 4.0e-
14).  

3.2. Multi-cohort gene expression analysis demonstrates KRT8 is over-expressed in five cancers 
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Hypomethylation and hypermethylation typically lead to over- and under-expression of the 
corresponding gene, respectively.30 Therefore, we hypothesized that hypo- or hyper-methylated genes 
across multiple cancers will be over- or under-expressed across multiple cancer compared to control 
samples. Arguably, we could use gene expression data for the same samples from TCGA. However, we 
decided to use gene expression data from completely independent cohorts from a different source to 
increase stringency of our analysis. Therefore, to test this hypothesis, we downloaded 57 microarray 
gene expression datasets from the NCBI GEO20 comprising of 6781 samples (4870 cases, 1911 
controls) obtained from human tissue biopsies of five cancers: breast, colon, lung adenocarcinoma, 
ovarian, or pancreatic. These 57 datasets included broad biological and technical heterogeneity, such 
as treatment protocols, demographics, collection year, and microarray platforms to further increase the 
stringency of our analysis and identify robust signals that persist despite these potential sources of noise.  
Differential gene expression meta-analysis across all 6781 samples identified overexpression of known 
oncogenes such as ERBB2 (ES =0.51, p = 6.22e-13), KRAS (ES =0.43, p = 2.90e-9), CCND1 (ES = 
0.25, p = 7.34e-3), and VEGFA (ES = 0.42, p = 2.19e-06). Housekeeping genes did not show a change 
xin expression between control and cancer, such as B2M (ES = 0.12, p = .25), HBS1L (ES = -0.08, p = 
0.15), or EMC7 (ES = 0.18, p = 0.09)31,32.  
Next, we calculated the Spearman correlation between the discovery methylation ES and gene 
expression ES in the 1,801 differentially methylated genes as -0.21 (p=1.27e-19), which in line with 
previous studies33 that examined intra-sample methylation-expression correlation (Supplementary 
Figure 2). Finally, we found that hypomethylation of KRT8 led to overexpression in multiple cancers 
compared to healthy samples (ES=1.05, p=2.8e-27, FDR=2.0e-24). KRT8 was over-expressed in 
pancreatic cancer (ES=0.69, p=4.02e-08), ovarian cancer (ES=1.61, p=1.93e-03), lung cancer 
(ES=1.55, p=1.95e-13), and breast cancer (ES=0.88, p=7.82e-10), but not in colon cancer (ES = 0.14, 
p = 0.38).  

3.3. KRT8 overexpression is associated with a chemotherapy-resistant phenotype in vitro 

Chemotherapy resistance is responsible for more than 80% of cancer-related mortality. We investigated 
whether increased KRT8 expression is associated with chemotherapy resistance. We downloaded 100 
samples in seven datasets from NCBI GEO across six cancers that contained both chemotherapy-
resistant and chemotherapy-sensitive cell lines. KRT8 was consistently overexpressed across all chemo-
resistant cancer cell lines (summary effect size=0.76, p=0.035; Supplementary Figure 3). This result 
demonstrates a consistent association between KRT8 expression and chemotherapy resistance in vitro.   

3.4. Single cell analysis of KRT8 expression  

Single cell gene expression data has allowed researchers to probe intra-cellular gene-gene correlations, 
which in turn suggest gene interactions or a common regulator. We analyzed intra-cellular correlations 
between every gene and KRT8 with single cell RNA sequencing data of 7447 cells from tumor biopsies 
of five lung cancer patients. To calculate intra-cell gene-gene correlations, we correlated the expression 
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of each gene to KRT8 expression in every cell. Several other keratin genes were positively correlated 
with KRT8. For example, KRT18 and KRT7 had Pearson correlation of 0.59 and 0.55, respectively, 
with KRT8. Next, we preformed pathway analysis of the 100 most positively and negatively correlated 
genes with KRT8 using the Reactome Knowledge Database34. Thirty out of the 100 genes were not 
annotated in the Reactome Knowledge Database. We identified six significantly enriched pathways, 
each of which has been previously implicated in cancer progression (Figure 2A). The top three 

 
 

Figure 2. Intracellular Pearson correlations of six genes with KRT8 calculated from 
7447 tumor cells in five lung cancer patients. (A) Contour maps of correlation for the 6 
most correlated genes. Level defines the density of cells found in each contour layer. X axis 
is the expression of the respective gene in log2 counts per million (CPM) within each cell. Y 
axis is KRT8 expression in the corresponding cell. (B) Bulk gene-KRT8 Pearson correlations 
in 12 lung cancer datasets. (C) Differential expression of the 6 most correlated genes with 
KRT8 in the 12 lung cancer cohorts compared to control samples. Effect size was computed 
aV HedgeV¶ g in log2 scale.  
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significantly enriched pathways were comprised of six unique genes: GSTP1, PRDX5, GPX2, TXNRD1, 
SFN, COX6A1 (Supplementary Table 1). Each of these six genes had an intra-cellular correlation with 
KRT8 expression t0.30 (Figure 2A). All genes except GSTP1 are annotated in Reactome as involved 

in p53 signal transduction (Supplementary Table 1). However, GSTP1 is known to be a direct 
transcriptional target of p5335, further supporting the association between KRT8 and genes involved in 
the p53 pathway. 
We next examined the correlation between the six genes and KRT8 in bulk lung adenocarcinoma gene 
expression data from microarrays of 1276 lung biopsy samples from 12 datasets. All genes were 
significantly correlated with KRT8 at sample level (Figure 2B). All genes except PRDX5 were 

 
Figure 3. Protein measurement of KRT8 in cancer. A. IHC of lung adenocarcinoma TMAs for KRT8. B. Cox 
proportional hazard of 294 lung cancer samples stratified by KRT8 concentration. C. Survival of 176 patients with 
pancreatic cancer stratified by KRT8 expression relative to the median of the cohort. D-E. Violin (D) and ROC (E) 
plots of serum KRT8 as measured by ELISA in patients with pancreatic cancer and healthy controls. Dashed line 
represents the ELISA detection threshold. Width of a violin plot indicates density of samples, where each dot 
represents a sample.   
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overexpressed in lung adenocarcinoma compared to healthy patients (Figure 2C). The majority of these 
six genes were additionally overexpressed across 5505 microarray samples from four cancers (breast, 
colon, ovarian, and pancreatic; Supplementary Table 2). 

3.5. Protein expression of KRT8 is associated with mortality in patients with lung adenocarcinoma 

Given robust hypomethylation of KRT8 across 9,855 samples from 23 cancers, over-expression across 
6,781 biopsies from 5 cancers, strong association with chemo-resistance, and sustained correlation with 
p53-regulated genes both at single-cell and sample levels, we investigated whether KRT8 is also 
expressed at protein-level in tumor biopsies, and whether it is associated with survival in patients with 
either lung adenocarcinoma or lung squamous cell carcinoma. We stained tissue microarrays (TMAs) 
containing 294 lung tumors (228 lung adenocarcinoma, 66 lung squamous cell carcinoma) resected 
from patients at Stanford Hospital for KRT8 protein (Supplementary Table 3). An expert pathologist 
(MO) rated the maximum intensity of cancerous cell KRT8 staining in each TMA (Figure 3A).  Out of 
the 294 samples, 5 (1.7 %) scored as 1+, 35 (11.9%) as 1-2+, 55 (18.7%) as 1-3+, 8 (2.72%) as 2+, 85 
(28.9%) as 2-3+ and 106 (36.1%) as 3+. In a multivariable cox regression model, KRT8 intensity was 
a significant predictor of mortality after adjusting for sex and age at diagnosis in lung adenocarcinoma 
(Hazard Ratio = 1.49, 95% CI = 1.06 ± 2.10, p=0.02), but not in squamous cell (Hazard Ratio = 1.19, 
95% CI = 0.57 ± 2.52, p=0.65; Figure 3B). 

3.6. Elevated RNA expression of KRT8 is associated with mortality in patients with pancreatic cancer 

Next, we investigated whether KRT8 tumor gene expression is a prognostic marker of survival. We 
downloaded KRT8 expression and corresponding survival data for 176 patients with stage I-IV 
pancreatic cancer from Human Protein Atlas (Supplementary Table 4). We classified patients as either 
³High KRT8´ RU ³LRZ KRT8´ if WheiU KRT8 expression was above or below the median KRT8 
e[SUeVViRQ Rf Whe cRhRUW (363.5 FPKM), UeVSecWiYeO\. PaWieQWV iQ Whe ³High KRT8´ gURXS had aQ 
increased risk of mortality (cox proportional hazard ratio = 1.73 p = 0.01 Figure 3C).  

3.7. Serum KRT8 discriminates between healthy and pancreatic patients  

Finally, we explored the potential of KRT8 as a minimally invasive biomarker. We measured KRT8 
concentration in serum of 32 biopsy-confirmed patients with pancreatic ductal adenocarcinoma and 
six healthy controls by enzyme-linked immunosorbent assays (ELISA). Samples were collected from 
Stanford Hospital (Supplementary Table 5). The mean KRT8 concentration was significantly 
higher in the pancreatic cancer patients compared to that of healthy controls (p = 7.7e-4; Figure 3D).  
Samples were considered KRT8+ if they had a measured KRT8 value about the detectability limit 
of the ELISA (0.06 RLU). KRT8+ status distinguished patients with pancreatic cancer from healthy 
controls with an area under the curve (AUC) of 0.94 (Figure 3E) and an area under the precision 
recall curve (AUPRC) of 0.99 (Supplementary Figure 4).  
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4. Discussion 

Only a fraction of molecular cancer biomarkers published in academic literature are reproducible in 
follow-up studies. The first step to identifying a robust biomarker is to ensure that the discovery phase 
has included a heterogeneous set of samples, platforms, and measurement technologies. Here, we 
identified KRT8 as such a biomarker by integrating DNA methylation profiling of 2019 samples across 
10 cancers from the TCGA. We then validated that KRT8 is a robust biomarker on 7836 samples in 21 
cancers measured with a different DNA methylation platform within the TCGA. We next analyzed the 
diagnostic and prognostic value of tumor KRT8 gene and protein expression as well as serum KRT8 
using ELISA in over 7000 samples spanning 10 years, multiple platforms, and data repositories. 
Pan-cancer methylation findings have been hindered by questions about batch effects and platform 
bias36. In this work, we used samples run on Illumina 27 platform as our discovery data and Illumina 
450 as validation. KRT8 was significantly hypomethlyated in both platforms, suggesting it is robust to 
platform bias. While TCGA has gene expression data, we chose to use microarray samples from the 
NCBI GEO to ensure that our findings would be robust to data type, batch effect, and platform.  
Single cell analysis has broadened our understanding of tumor heterogeneity, but it can be difficult to 
interpret the immediate translational value of a single time point scRNA-seq analysis. Here, we show 
that intra-cellular gene-gene correlations can suggest overlooked gene functions. Additionally, by 
replicating the correlations found at the single cell level in bulk tissue microarrays, we propose a 
strategy for validating expression patterns seen in the single cell level.   

Our study has several limitations. First, it does not include the entirety of all cancer data available 
in the public sphere, and thus presents an incomplete picture of KRT8 across all data. However, this 
study used 17149 samples across 23 cancers, which still includes significant amount of biological, 
clinical, and technical heterogeneity in the real-world patient population. Further, we have previously 
shown that 4-5 independent datasets with a total of approximately 200-250 samples substantially 
increases the probability of validation in independent cohorts23. Second, we only required two control 
samples in the methylation discovery analysis, which could have led to false positive or patient-specific 
effects within a dataset. However, the integration of all the discovery cohorts and independent 
validation using Illumina 450 methylation platform substantially mitigated the effect of a single cancer 
outlier. In addition, our rigorous downstream analysis of gene expression from 6781 samples in 57 
datasets from 5 cancers provide strong evidence of the robustness of our analyses. Third, we chose only 
the top gene and validated it here. It is possible that other genes may provide equal or greater prognostic 
value than KRT8. However, our aim is to demonstrate the value of the framework we propose here and 
thus we explored only the most promising gene, KRT8. Forth, we do not provide any indication of the 
mechanism underlying the prognostic value of KRT8. It may be as straightforward as increasing 
epithelial cancer cell numbers results in more KRT8 released into the bloodstream, or perhaps there is 
a more complex biological phenomenon at work. These questions can only be answered with follow-
up hypothesis-driven research. 
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Previous studies have highlighted the contribution of KRT8 in the progression of gastric and kidney 
cancer. KRT8 has also been proposed as a biomarker in lung cancer. However, KRT8 has never been 
shown to be overrepresented across cancers in a multi-omic analysis. One GEO dataset (GSE15932) 
contained expression from peripheral blood samples. In this dataset, KRT8 expression was able to 
differentiate cancerous from healthy patients, suggesting that circulating KRT8 RNA may be a 
candidate for a diagnostic blood biomarker. Biomarkers not only have diagnostic and prognostic 
implications, but are also helpful for measurement of treatment responses, surveillance for tumor 
recurrence and guiding clinical decisions. For many cancers, there is not a single blood biomarker; 
others like pancreatic cancer have one or two unreliable screening biomarkers.  CA19-9 is used as a 
biomarker in pancreatic cancer, but due to its limitations and the low prevalence of pancreatic cancer is 
only used to monitor for reoccurrence. Here we show the potential use of serum KRT8 protein as a 
blood biomarker in pancreatic cancer. Given that we identified KRT8 as overexpressed across cancers, 
it stands to reason that KRT8 may be useful as a peripheral biomarker in other cancers as well.  

Most importantly, this work demonstrates a strategy to translate large molecular analyses into 
specific, clinically relevant hypotheses. Omics sciences enable complex biological systems to be 
visualized in a holistic and integrative manner. Application of systems biology to interpret large 
multidimensional omics data across cancer types will enable the robust identification of biomarkers that 
share common pathophysiology, which can potentially be further explored for pan-cancer interventions 
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The environment plays an important role in mediating human health. In this session we consider 

research addressing ways to overcome the challenges associated with studying the multifaceted and 

ever-changing environment. Environmental health research has a need for technological and 
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methodological advances which will further our knowledge of how exposures precipitate complex 

phenotypes and exacerbate disease. 

Keywords: Environment; Health Outcomes; Multi-omics. 

 

1.  The complexities of environmental health research 

The environment is increasingly seen as a casual or moderating factor that governs aspects of 

complex disease etiology (Hall, Moore, & Ritchie, 2016; Manrai et al., 2017). Since there is a great 

breadth of environmental risk factors, researchers classify exposures into three categories: 

(Stingone, Buck Louis, et al., 2017; Wild, 2012) internal exposures arising from endogenous 

processes (e.g. metabolism, inflammation), intrinsic qualities (e.g. body morphology), or 

microorganisms living in or on an individual (e.g. microbes colonizing the gut) that affect the body’s 

cellular environment (Wild, 2012). Specific external exposures are extrinsic and “target” the body 

directly. Examples include infectious agents, diet and substance use, pollutants, and occupational 

exposures (Martin Sanchez, Gray, Bellazzi, & Lopez-Campos, 2014; Wild, 2012). Lastly, general 

external exposures are broad characteristics, such as which geography and climate a person resides 

in, socioeconomic indicators, or psychosocial exposures, that affect both the individual and, to a 

degree, the experience of internal and specific external exposures (Wild, 2012). Household income, 

work-life balance, healthcare access, or home rurality are general external exposures.  

A comprehensive assessment of environmental risk factors remains challenging as the 

environment is dynamic. Exposure presence and intensity change over time. Environmental risk is 

a cumulative measure acquired throughout the lifespan and beginning from conception (Manrai et 

al., 2017; Stingone, Buck Louis, et al., 2017). Longitudinal investigation of exposures is crucial for 

research investigating vulnerability periods, such as the prenatal period, where exposures impart 

their most salient effects on health. The within-person heterogeneity of exposures is a major 

limitation in the field of human exposure research, as timing and intensity may be difficult to capture 

without consistent monitoring (Manrai et al., 2017; van Tongeren & Cherrie, 2012). Sources of 

environmental data are diverse. Environmental data may be obtained from surveys or can rely on a 

collection of ‘omics level data, such as the metabolome and the microbiome, when quantifying 

measures such as exogenous chemical exposure, internal metabolism, or gut microbial diversity. 

Other sources of information about environmental circumstances may come from purchasing 

history, food expenditures, mobile phones, social media, or home sensors (Martin Sanchez et al., 

2014; van Tongeren & Cherrie, 2012). 

Another limitation in environmental health research is the relative dearth of data analytic tools, 

databases and ontologies, and standardized practices which would aid in the assessment of high-

dimensional exposure data (Bocato, Bianchi Ximenez, Hoffmann, & Barbosa, 2019; Manrai et al., 

2017; Martin Sanchez et al., 2014; Stingone, Buck Louis, et al., 2017). Researchers seeking to utilize 

big environmental data would benefit from the development of methods and infrastructure to 

investigate environmental underpinnings of disease. This includes the curation of high-information 

environmental datasets (e.g. the HELIX study (Vrijheid et al., 2014)), analytical techniques to assess 

multivariate, longitudinal data or environmental mixtures (Manrai et al., 2017; Patel, 2017), and 
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curation of database/development of ontologies for known environmental risk factors and their 

associations (Manrai et al., 2017; Martin Sanchez et al., 2014). 

2.  Progress made in environmental health research  

Environmental health research is a multidisciplinary field and its past successes have utilized 

various approaches and data types. A study of gene-by-environment interaction found that subjects 

sharing regional ancestry but living in different regions, showed many differentially expressed 

genes, whose expression was correlated with fine-scale air pollution (Favé et al., 2018). In a closer 

look, they identified four quantitative trait loci where transcription was moderated by pollution level 

(Favé et al., 2018). Other approaches have leveraged environment-wide datasets and found 

associations between exposures and phenotypes. For example, an environment-wide association 

study (EWAS) found that blood serum antioxidants, vitamin D, and intense physical activity were 

associated with abdominal obesity in both sexes (Wulaningsih et al., 2017), and a meta-analysis of 

EWAS performed on the National Health and Nutrition Examination Surveys from 1999-2012 

identified alcohol consumption and urinary cesium as associated with systolic and diastolic blood 

pressure respectively (McGinnis, Brownstein, & Patel, 2016). The microbiome is increasingly seen 

as a player in human health (Young, 2017). An investigation of Type I Diabetes onset in infants 

found that prior to diagnosis, gut microbial diversity decreased and microbe metabolite production 

reflected a shift towards nutrient transport rather than biosynthesis (Kostic et al., 2015). Machine 

learning (ML) methods have been applied to probe how pollutant exposures within urban areas 

affect academic performance (Stingone, Pandey, Claudio, & Pandey, 2017). Another study used  

ML to create environmental risk scores for oxidative stress which were associated with 

cardiovascular phenotypes (Park, Zhao, & Mukherjee, 2017). 

Metabolomics is useful when assessing environmental risk factors as it can detect both internal 

exposures (e.g. proinflammatory molecules) and chemicals or toxins (Bloszies & Fiehn, 2018). 

Computational tools to enable untargeted metabolomics studies, which will aid researchers seeking 

to agnostically profile the environment, are emerging (Domingo-Almenara et al., 2019; Pirhaji et 

al., 2016). Other open-source software developed for the quality-control, analysis, and visualization 

of general environment-wide data (Hernandez-Ferrer et al., 2019; Lucas et al., 2019) are also 

becoming available to researchers. Future projects will benefit from the curation of environment-

wide databases for blood (Barupal & Fiehn, 2019), urine (Jia et al., 2019), and the indoor built 

environment (Dong et al., 2019) as guides for future, larger-scale metabolomics projects. Finally, 

the most comprehensive assessment of environment may be achieved through rigorous 

biomonitoring. Jiang and colleagues (2018) conducted an impressive study by fitting participants 

with wearable devices which collected longitudinal data on climate, biotic, and abiotic factors. They 

found the human environment of microbial and chemical exposure varied widely across 

geographical location and season, even within the same individual (Jiang et al., 2018). 

There is much evidence that the environment impacts human health, with disease risk arising 

from many sources: pollutants, industrial chemicals, lifestyle habits, social climate, etc. Yet the 

challenges of collecting and analyzing environmental data remain. Different sources of 

environmental data may need different methodological standards and techniques for effective 
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research. Thus, researchers need user-friendly tools to handle pre-processing, quality assessments, 

and analysis of various data types. There also remain the questions of which environmental data are 

most informative when predicting health outcomes, and how we can integrate these various sources 

of data to define environment-wide risk. There are many opportunities for researchers to develop or 

improve existing methodologies and advance environmental health research.   
 

3.  In this session 

Demonstrating the breadth found within environmental health research, our selected 

publications address key areas of environmental health research: (1) metabolomic profiling and 

pipeline development and (2) the role of sociodemographic in the prediction of complex health 

outcomes. 

Aguilar, McGuigan, and Hall have developed a semi-automated pipeline for processing and 

analyzing NMR data. Their method uses open-source software, making it accessible to researchers 

and easy to document, thereby improving reproducibility and replication capabilities. After applying 

their pipeline to assess how smoking perturbs human metabolism, they identified associations 

between various metabolites which past research suggests are implicated in cardiac, pulmonary, and 

neural diseases. Furthermore, metabolites showing ostensibly differential concentrations between 

smokers and non-smokers were used as input for a random forest model. This technique found 

metabolic heterogeneity between and within smoking classes, identifying several unique metabolic 

profiles which distinguished subsets of smokers and non-smokers. Their study emphasizes how a 

single exposure, such as smoking, may precipitate complex phenotypic outcomes. Furthermore, it 

leveraged the metabolome in a joint assessment of the internal and external environment. Smoking 

was linked to changes in the internal environment, which may in turn affect physiology. 

Additionally, profiling the metabolome identified within smokers an exogenous pollutant absorbed 

by tobacco plants. Aguilar et al. highlight how multiple sources of environmental risk may act in 

concert to develop complex phenotypes.  

While the former study evaluates how an acute environmental risk factor is associated with 

multiple metabolic phenotypes, the environment also exerts influence at a societal and geographical 

level. Makridis, Strebel, and Alerovitz assessed how different geographic granularities of 

sociodemographic data affect prediction of mortality in veterans hospitalized due to COVID-19. 

Their social variables included ZIP-code-level, county-level, or state-level population density, 

healthcare access, and distributions of age, race/ethnicity, occupation, and education. They noted 

that in linear models using comparable demographic variables measured county-level or state-level, 

demographics differed in the effect sizes and significance in association with COVID-19 cumulative 

cases and deaths. When predicting veteran mortality attributed to COVID-19 using a linear 

XGBoost algorithm, county-level and ZIP-code level data had negligible differences in prediction 

accuracy, yet outperformed state-level prediction. Yet interestingly, the features most important in 

the county-level model differed from that of the ZIP code-level model. The granularity of the 

environmental data is important when predicting outcomes in a region. Social environmental data 

may be collected at multiple hierarchies – e.g. state, county, ZIP code – and the demographics at 
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each level may carry different information pertaining to health outcomes, which may be important 

when trying to design and implement public health policies. 

Together, these papers highlight the nuanced relationship the environment has with human 

disease. The environment has an unavoidable influence on life yet remains difficult to characterize 

and quantify. It has many dimensions (e.g. internal, specific external, general external), a 

hierarchical organization (e.g. environment at the individual, home, neighborhood, county, etc. 

levels), and is dynamic which makes parsing the relevant components which contribute to disease 

risk challenging. Answering what, when, and how environmental factors affect health requires 

collecting data that reflects environmental diversity. This may be achieved by collecting 

environment-wide data covering multiple domains, capturing exposures longitudinally, or, as 

Makridis et al. imply, considering environmental data at different organizational hierarchies. 

Simultaneously, researchers must develop and evaluate ways to handle data heterogeneity, model 

environmental mixtures and interactions, and assess risk at various levels.  
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Environmental exposure pathophysiology related to smoking can yield metabolic changes that are 
difficult to describe in a biologically informative fashion with manual proprietary software. Nuclear 
magnetic resonance (NMR) spectroscopy detects compounds found in biofluids yielding a metabolic 
snapshot. We applied our semi-automated NMR pipeline for a secondary analysis of a smoking study 
(MTBLS374 from the MetaboLights repository) (n = 112). This involved quality control (in the form 
of data preprocessing), automated metabolite quantification, and analysis. With our approach we 
putatively identified 79 metabolites that were previously unreported in the dataset. Quantified 
metabolites were used for metabolic pathway enrichment analysis that replicated 1 enriched pathway 
with the original study as well as 3 previously unreported pathways. Our pipeline generated a new 
random forest (RF) classifier between smoking classes that revealed several combinations of 
compounds. This study broadens our metabolomic understanding of smoking exposure by 1) notably 
increasing the number of quantified metabolites with our analytic pipeline, 2) suggesting smoking 
exposure may lead to heterogenous metabolic responses according to random forest modeling, and 
3) modeling how newly quantified individual metabolites can determine smoking status. Our 
approach can be applied to other NMR studies to characterize environmental risk factors, allowing 
for the discovery of new biomarkers of disease and exposure status. 

Keywords: Environmental Exposure; Metabolomics; Cigarette Smoke; Bioinformatics 

 
1. Introduction 
 
Cigarette smoke (CS) is made of harmful constituents that cause many diseases.1 Additionally, there 
are many indicators that CS exposure has led to increased medical costs and loss of productivity 
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over a lifespan.2 The thousands of reactive oxidative species (ROS) generated from burning 
cigarettes are found in the gaseous state and are responsible for CS related pathogenesis.3 The ROS 
damage epithelial cell linings by disrupting oxidative-sensitive metabolism and triggering DNA 
damage.4 The effects of CS on immunity can be both pro-inflammatory and suppressive.5 CS 
derived ROS can lead to neuronal damage6, atherosclerosis, increases predisposition of 
cardiovascular events7 and inhibit tumor suppressive mechanisms.1 Metabolomic interrogations of 
CS exposure may help investigators further understand the pathogenesis of several diseases strongly 
associated with CS exposure. Metabolomics studies the small molecules from biological samples 
that can reveal metabolic changes following environmental exposures.8,9 With respect to the 
genome, transcriptome, and proteome, metabolomics generally involves the small molecule 
compounds that are metabolized by enzymes; the metabolome can act synergistically with other “-
omic” layers as well.10 Unlike other “-omics,” metabolomics reveals biochemical states and best 
represents the molecular phenotype.8 Additionally, metabolomic studies of disease can reveal new 
biomarkers, understudied pathways, and prognosis measures to improve risk stratification.11,12  
 

A previous metabolomic study of CS that incorporated NMR and MS data derived from human 
blood serum found metabolites associated with chronic obstructive pulmonary disease, 
cardiovascular disease and cancer.6,7,13 This study by Kaluarachchi et al. is unique because it is the 
only study to date that used 1D 1H NMR on human blood serum for CS exposure from which 3 
metabolites were reported.13 The raw NMR data for this human blood serum CS exposure study (n 
= 112) is publicly available on the MetaboLights repository as MTBLS374.8,13 The raw MTBLS374 
data was originally analyzed with proprietary software to identify and quantify metabolites. 
 

Although commercial software are popular, they often lack advanced editing, require iterative 
steps, and involve arbitrary adjustments based on subjective user judgement.14 Previous studies 
indicate that this manual method is prone to false positive metabolite identification that increases as 
more metabolites are quantified.15,16 The NMR analysis described here incorporates several R and 
Python packages to aid in the detection of additional metabolites that were previously unreported. 
We created novel random forest classification (RF) models from the quantitative metabolite data 
and the unprofiled spectra to classify smoking status. Furthermore, our RF classification decision 
trees reveal the statistical importance of the detected biomarkers, and findings were supported by 
pathway enrichment analysis. 

Here we demonstrate how an environmental exposure like smoking and its metabolic effects can 
be quantified and modeled with NMR data via open source packages. With our pipeline, we 
quantified 79 previously undetected metabolites in this dataset. With the metabolite quantification 
data generated from our pipeline, we developed 2 high fidelity models that classified between the 
smoking classes. Our pipeline increases transparency of user set analysis parameters and unifies 
existing open source packages for spectral processing and multivariate analyses.  

 
2. Methods 
 
2.1. Data Set 
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The MTBLS374 dataset that was used for this study was acquired from the MetaboLights repository  
and contains 1D 1H NMR spectra of human blood serum from 112 participants.8,13 The original 
study also incorporated mass spectroscopy and lipoprotein fraction data in addition to NMR data to 
identify biochemical differences in smoking classes.13 They found that the metabolites they detected 
indicated that smoking exposure impacted glutathione, bilirubin and lipids. The authors suggested 
that their metabolic enrichment pathways were related to chronic obstructive pulmonary disease, 
cardiovascular diseases, and cancer.13 There were 55 (27 females, 28 males) smoker class samples 
and 57 (28 female, 29 male) never smoker class samples. The participants were from Hamburg, 
Germany who had a body mass index (BMI) within a healthy range and no clinical history of heart, 
lung diseases and chronic diseases. The MTBLS374 data set sample labels were limited to gender 
and smoking status (smoker/never smoker) due to adherence of participant privacy policies; 
however, the original study included BMI, age, and drug intake in their confounding analysis. The 
1H 1D NMR spectroscopy data was generated with the Carr-Purcell-Meiboom-Gill pulse sequence 
with the following parameters: relaxation delay of 4 s, a mixing time of 0.01 s, a spin–echo delay of 
0.3 ms, 128 loops and a free induction 3.067 s of decay acquisition time, total of 32 scans recorded 
into 96 thousand data points with a spectral width of 20 ppm.13 
 
2.2. Pipeline 
 
The innovation of the pipeline lies in its capability of extracting metabolomic data from raw data 
NMR data in a semi-automated fashion (i.e., the arduous task of metabolite 
identification/quantification has been made automated, yet some parameter choices are still needed 
by the user). Open-source packages are unified to promote analysis reproducibility for the complex 
multistep analytical process of quantifying metabolic effects of environmental exposures. Typically, 
proprietary graphical user interface (GUI) software requires one set of software to edit the raw data 
to remove instrumental artifacts, a separate GUI application for metabolite quantification, and a 
separate statistical analysis software. These software do not record the repetitive and arbitrary user 
decisions to manipulate the data which is not conducive to analysis reproducibly. The proprietary 
software offers limited automation tools thereby constraining the user to iterative processes. The 
pipeline we describe here addresses the multiple steps data processing (Figure 1) and analysis 
challenges in environmental exposure metabolomics. We uploaded scripts to this pipeline to GitHub 
(github.com/HallLab/MTBLS374_smoking_study_secondary_analysis). We will describe the 
application of our pipeline to cigarette smoke exposure below. 
 
2.2.1 Preprocessing and Spectral Analysis 
 
Before metabolites are identified and quantified, the first step in our pipeline is to preprocess the 
NMR data (i.e., data editing to enhance signal-to-noise ratio and minimize instrumental artifacts). 
This preprocessing is accomplished with the PepsNMR14 R package. A user may set parameters 
before bulk preprocessing of NMR data. As shown in Figure 1a, the raw NMR data was first pre-
processed so that the NMR data can be interpreted by subsequent analysis packages. The NMR 
spectra were zero-filled, Fourier transformed, zero phase corrected, first phase corrected, warping, 
binning, and normalized semi-autonomously by using the PepsNMR presets.14 We corrected for pH-
induced chemical shifts with the warping and binning functions provided by PepsNMR. The NMR 
spectra were normalized with constant sum normalization which is recommended for sera.14 The 
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regions corresponding to the water peak at 4.5 - 5.1 ppm were removed. The resulting output was 
pre-processed NMR data (Figure 1b) that can be utilized as input for subsequent analyses. Data 
clustering was observed with multivariate principal components analysis (PCA) analysis including 
samples who were categorized as smoking classes, and quality control class. The pre-processed 
binned spectral data was also used to generate random forest classification models with k-fold 
(k=10) validation with the Scikit-learn (0.22.1) python package.17  

 
2.2.2 Identification and Quantification 
 
The binned spectral data were tested for significant spectral differences between the smoking 
classes. Between classes, each corresponding bin had a non-normal distribution thus warranting the 
Wilcoxon Rank Sum Test and Bonferroni adjustment (α =0.05) (Figure 1c).18 The spectral positions 
of the significant bins (Figure 1c) were cross referenced from a pure metabolite standard from 
HMDB to build a list of compounds that rDolphin19 (a profiling tool for 1H-NMR-based studies) 
automatically detects and quantifies within the preprocessed NMR data according to metabolite 
multiplicity and chemical shifts (Figure 1d).  
 
2.2.3 Analysis 
 
The metabolite identification and quantification data output from rDolphin (Figure 1e) were used 
for t-tests and as features to train a second random forest classifier with k-fold (k=10) validation. 
The metabolite data was piped to the MetaboAnalyst R package (3.0.3) for data transformation such 
as normalization by sum, log transform and pareto scaling for t-tests (Figure 1f).20 Finally, the 
transformed metabolite data were used for metabolic pathway enrichment based on ontologies from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Data Base and conducted via 
MetaboAnalyst. The enrichment analysis had 2-fold filter criteria.  
 

 
Fig 1. Semi-automatied pipeline for NMR based environmental exposure studies. The pipeline 
connected open source packages (white boxes). Outputs are represented in gray boxes. 
 

3. Results 
 
A PCA was conducted on the pre-processed NMR spectral data to reveal clustering patterns based 
on smoking status and gender (Figure 2). Results from the PCA with the smoking classes indicate 
that the clusters overlap more so than the gender-based classes. PC1 and PC2 explain 77.0% and 
13.3% of the variance for the gender and smoking status groups. The PCA results suggest that the 
gender classes may be a confounding factor. Logistic regression to test if gender was a significant 
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predictor of smoking status in our data set yielded a non-significant (p-value: 0.40) predictor of 
smoking status. 
 
 

 
Fig. 2. PCA Clustering of Smoking Status (A) and Gender Classes (B). PC 1 and PC2 are represented 
on the x-axis and y-axis, respectively. A) The PCA plot clustered the data points according to the 
female (green) and male (blue) classes according to PC 1 and PC 2. B) The PCA plot clusters the data 
points according to the smoker class (blue) and never smoker class (red). Both plots have a quality 
control class (red in subplot A and green in subplot B) to gauge technical variance.  

 
To assess which NMR peaks warrant metabolite identification and quantification, the NMR 

spectral bins from 0.0 ppm to 10.0 ppm between the smoking classes were tested for significant 
differences in 467 spectral bins. For the Wilcoxon Rank Sum test, each bin was compared to its 
corresponding position in the NMR spectra between classes, i.e., the bin at position 1 ppm from the 
smoking class was only compared to the bin at position 1 ppm for the never smoker class. Each of 
the 467 non-normal spectral bins were tested for significance with the Wilcoxon Rank Sum test and 
32 bins were significant when Bonferroni-adjusted (α: 0.05) (Figure 3). Spectral bins passing this 
threshold were investigated for metabolite identification and quantification via the rDolphin peak 
aligner. 
 

 
Fig. 3. Manhattan plot of spectral bin associations with smoking status. The NMR spectrum for each 
sample was represented on the x-axis from 0 – 10 ppm and divided into bins with widths of 0.02 ppm 
and the y-axis represents the -log (10) of the p-value. The red line represents the Bonferroni 
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significance threshold (alpha: 0.05, 467 tests). The absence of data points between at 4.5 - 5.1 ppm 
was expected due to the removal of the water signal. 

 
After metabolite quantification, the 79 putatively identified metabolites and their relative 

concentrations were sum normalized, log transformed and pareto scaled for univariate two tailed t-
tests. When the smoking classes were compared, 6 compounds were significant after Bonferroni 
adjustment (Figure 4). The significant metabolites include: Indole-3-propionicacid (p-value: 5.24× 
10-6), Indoxyl sulfate (p-value: 6.57 × 10-6), N-Acetyl-L-aspartic (p-value: 1.27 × 10-5), xanthine (p-
value: 3.36 × 10-5), L-tryptophan (p-value: 7.36 × 10-5) and L-histidine (p-value: 0.00010336). 
. 

 
Fig. 4. Manhattan plot of metabolite associations with smoking status. The Manhattan plot displays 
the metabolites on the x-axis and their -log(10) p-values on the y-axis. The red line represents the 
Bonferroni corrected significance threshold. The blue and yellow triangles represent increased and 
decreased metabolites. 

 
Two types of RF models were generated and were trained with either spectral data or quantitative 

metabolic data (Figure 5). For smoking status, the models demonstrated an AUC of 0.76 (SD:  0.15) 
for spectral bins (Figure 5a) and an AUC of 0.86 (SD: 0.14) for quantified metabolites (Figure 5c). 
For gender, the models demonstrated an AUC 0.70 (SD:  0.15) for spectral bins (Figure 5b) and 
AUC of 0.41 (SD: 0.13) for quantified metabolites (Figure 5d).  
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 Smoking Class Prediction Gender Class Prediction 
 

  

 

 

 

 

 
Fig. 5. Smoking classes and gender classes prediction from spectral bins and metabolites. The ROC 
curves represent the RF models’ ability to discriminate between case and control and characterizes 
the model’s true positive and false positive rates. The plots also depict the model for every k-fold 
cross validation and the thick blue line represents the mean ROC curve derived from the cross 
validated models. A set of RF models were created by using the NMR spectral bins (467 per sample) 
as features. Another RF model set was created using the quantified metabolite data generated from 
the compound detection. 

 
We created the decision tree from the RF model trained on the quantitative metabolic data that 

predicted smoking classes (Figure 6). When the RF model was trained it iteratively split the smoking 
classes into two branches but not all splits are perfect. Gini impurity represents the quality of the 
split between smoking classes at a node and a perfect split between classes at a node has a value of 
0 like the terminal nodes in (Figure 6). 2,4-dichlorophenol (Figure 6a), 3-nitrotyrosine (Figure 6b), 
and xanthurenic acid (Figure 6c) have a gini impurity of 0.1, 0.36, and 0.23, respectively. The gini 
impurity at the 3-nitrotyrosine node indicates that the metabolite is not always perturbed for the 
smoking class which reveals smoking exposure metabolic heterogeneity. Also, at each node the 
percent of samples in the dataset that fulfill the quantitative threshold is given for each metabolite 
in the tree. The multivariate RF model indicates how combinations of metabolic perturbations occur 
depending on CS exposure which is more representative the highly interconnected metabolic 
biology of humans. 
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Fig. 6. Metabolite random forest model for smoking classes prediction. This metabolite-based RF 
model has a decision tree that places each metabolite at a node and branches according to a Boolean 
quantitative threshold; when a condition was true the node branches upwards and if the condition was 
false the node branches downwards. Notable metabolites in the tree include A) 2,4-dichlorophenol, 
B) 3-nitrotyrosine, and c) xanthurenic acid. The decision tree emphasizes that several unique 
combinations of biomarkers differentiate smoking classes. 
 

To determine which metabolic pathways were significantly perturbed, we performed enrichment 
tests on the 79 metabolites we quantified (that were found in the statistically significant spectral 
bins) and were mapped to known metabolic pathways from the KEGG database.  The top 15 
metabolic pathways that were perturbed between smoking classes are listed (Figure 7). The 
Bonferroni-adjusted significant pathways were aminoacyl-tRNA biosynthesis, histidine 
metabolism, purine metabolism, and beta-alanine metabolism. At most, the significantly enriched 
pathways have two metabolite hits which means that 2 of the metabolites we newly quantified are 
known to participate in that metabolic pathway. 

 

  
Fig. 7. Metabolite enrichment overview. Metabolite enrichment analysis—with a 2-fold change 
criterion—from the KEGG Pathways data base reveals pathways that are enriched due to smoking 
status. The metabolic pathways above the black dashed line represents statistical significance after 
Bonferroni adjusted (α = 0.05) multiple test correction.  
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4.  Discussion 
 
Environmental exposures can perturb the complex human metabolome, and it is difficult to quantify 
the numerous metabolic pathways with NMR data using proprietary software with limited 
automation features and no record of data transformation.  We demonstrated the technical feasibly 
of describing the metabolome when affected by an environmental exposure like CS by unifying 
open source NMR packages. The MTBLS374 NMR data set was originally used to quantify 3 
specific metabolites; however, the NMR spectra of each human blood serum sample was 
representative of thousands of metabolites that are expected to be found.21 We demonstrated our 
pipeline’s potential to increase the number of quantified metabolites. 
 

To understand the global metabolomic differences between the smoking status classes and the 
gender classes, PCA was performed. The PCA cluster based on spectral data indicated more distinct 
separation between the gender-based classes than smoking exposure classes. The female and male 
groups have clusters that overlap with one another (Figure 1a), which suggests there may be more 
spectral differences related the metabolic sexual dimorphism which has been demonstrated 
previously.22 The pooled quality control classes clustered more tightly relative to the gender and 
smoking based classes, and we expected the quality control samples to display very little variance 
between one another and the variance that that we do detect likely came from variance from the 
NMR instrumentation.  
 

We found 6 significant metabolites, all of which were not previously identified in the data set, 
however, we did only detect 1 out of the 3 metabolites the original authors found in the NMR data. 
We used a new computational approach involving semi-automated pre-processing and automated 
metabolite quantification open source packages as opposed to proprietary software like the original 
authors. Therefore, we did not necessarily expect to detect the same metabolites from the NMR data. 
Of the significantly perturbed metabolites from Figure 3, Indole-3-propionicacid is known to be 
neuroprotective antioxidant23 and more likely to be affected in smokers with atherosclerosis.24  
Indoxyl sulfate is a known cardiotoxin and uremic toxin.25 A previous study found that indoxyl 
sulfate is lower in smokers’ blood serum, while here we found it was elevated.26 N-Acetyl-L-aspartic 
acid is one of the most concentrated compounds in the brain for myelin27 and a previous study found 
that this metabolite is decreased in the left hippocampus tissue in smokers.28 In our analysis we 
found that N-Acetyl-L-aspartic acid was elevated in blood serum. Xanthine is involved in the purine 
degradation pathway.29 The xanthine oxidase enzyme is elevated in smokers and it produces uric 
acid by consuming xanthine as a precursor molecule.30 We found that xanthine was significantly 
decreased in blood serum which might be due to its consumption of elevated xanthine oxidase. L-
Tryptophan is an amino acid that is a precursor to hormones and neurotransmitters31 and has been 
found to be downregulated in those attempting to quit smoking.32 In our study we found that L-
Tryptophan was significantly elevated which might play a role in cigarette smoking related 
behavior. L-Histidine is an essential amino acid and is a precursor to an inflammatory agent, 
histamine.33 L-Histidine is depressed in smokers without chronic obstructive pulmonary disease 
(COPD) versus those with COPD suggesting its consumption for histamine production thereby 
increasing inflammatory response.34 In our study, L-Histidine is significantly decreased suggesting 
that we might detect markers of inflammation in blood serum due to CS exposure. The significant 
perturbations of these 6 metabolites reinforces how CS exposure contributes to pathologies relating 
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to ROS metabolism, cardiac damage, neural toxicity, and inflammatory response. Given that CS 
exposure perturbs individual metabolites it follows that it was possible to classify smoking exposure 
classes based on these perturbations. 
 

The metabolite-based RF model that predicted smoking status has a decision tree that found 
novel relationships between metabolites. 2,4-Dichlorophenol (Figure 6a) is a known hazardous air 
pollutant and is a soil pollutant that tobacco plants can absorb.35,36 Within the context of other 
metabolites, 2,4-dichlorophenol is a necessary smoking class decision node. Smoking is associated 
with a decrease in 3-nitrotyrosine levels of plasma proteins and vascular endothelial dysfuction.37 
3-Nitrotyrosine (Figure 6b) was not significant within our univariate t-tests but in a multivariate 
context 3-nitrotyrosine was a necessary decision node for smoking classes. Although there is an 
inverse metabolic relationship between xanthine and neuronal uptake of xanthurenic acid38 on the 
path towards the terminal node (Figure 5c), there is no documented relation of these two metabolites 
with respect to smoking exposure. The root nodes in the decision tree (Figure 6) begin with a high 
gini impurity and terminate with 0 impurity. This means that each terminal node is dependent on 
the node path leading back to the root metabolite in the tree. In other words, these metabolite changes 
were dependent on one another to yield a metabolic profile indicative of the smoking classes. The 
combinations of these metabolites have not been previously documented and suggests a 
heterogenous response to a smoking exposure. These metabolite combinations used to classify 
smoking exposure status may be indicative of interconnected perturbations of metabolic pathways. 
Nevertheless, the decision tree found a statistical relationship and did not relate metabolites to 
mapped metabolic pathways. 
 

We conducted a pathway enrichment analysis to relate how the metabolic perturbations we 
quantified relate to previously empirically derived metabolic pathways. In the enrichment analysis 
we included the 79 putatively identified compounds we quantified from NMR data. The original 
study found that the aminoacyl-tRNA biosynthesis was one of the top significantly enriched 
pathways which we replicated in this automated analysis. Another smoking exposure blood serum 
based mass spectroscopy study also corroborated the enrichment of aminoacyl-tRNA biosynthesis.39 
Nonetheless we found purine, histidine, and biotin pathways to be enriched which was not 
previously described for human samples with CS exposure. These three pathways that we newly 
derived from NMR data is supported by a previous mass spectrometry blood serum based smoking 
study in a mouse model.40 A smoking exposure NMR study on mouse lung tissue extracts also found 
purine and histidine pathway perturbations likely due to cell injury.41 In particular the purine 
pathway perturbation might be due to CS related DNA damage and cell injury.4 The original study’s 
enrichment analysis was supplemented by mass spectroscopy data, which may contribute to 
divergence in enrichment results. 
 

Although this study demonstrates that our pipeline can reveal more NMR generated 
metabolomic information about environmental exposures, we did not uncover all of the possible 
metabolic perturbations. The significant results from the univariate analysis described here provided 
a limited viewing window into the CS exposure metabolome because it does not describe the 
interconnected reality of human metabolism. The RF decision tree begins to describe interconnected 
metabolism and suggests that multiple combinations of metabolites are associated with the smoking 
classes. However, these combinations are not to be interpreted as being the only metabolites that are 
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perturbed. Given that the public repository did not include the BMI, age, and drug intake data from 
the original study, we were not able to do additional confounder tests. Scalability of the pipeline 
becomes limited with data sets larger than MTBLS374 given that the preprocessing package 
(PepsNMR) and peak alignment package (rDolphin) where not coded with multicore support. Next 
steps include testing this pipeline on other NMR based environmental exposure studies to classify 
disease status, replicating major findings, and describing novel findings. Nonetheless, our unified 
pipeline overcame the limitations of manual NMR pre-processing and quantification and has 
enabled us to extract valuable metabolomic findings regarding smoking exposure. 
 
5.  Conclusion 
Here we demonstrate how an environmental exposure like smoking and its metabolic effects can be 
quantified and modeled with NMR data. Our approach of filtering spectral bins via multiple tests 
informed which metabolites were automatically quantified. The RF modeling reveals how several 
unique combinations of metabolites are associated with smoking classes. This suggests there are 
more than one combination of metabolite perturbations associated with smoking and a heterogenous 
response to smoking exposure. Several of the metabolites that belong to these combinations have a 
known relationship to smoking and/or cellular damage. The novelty of our analysis approach lies in 
breaking from the conventional manual analysis methods and promoting study reproducibility. 
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While the coronavirus pandemic has affected all demographic brackets and geographies, certain 
areas have been more adversely affected than others. This paper focuses on Veterans as a potentially 
vulnerable group that might be systematically more exposed to infection than others because of their 
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especially for vulnerable groups, like Veterans, and they should be investigated further. 
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1.  Introduction 

Following months of the coronavirus (“COVID-19”) pandemic, a large body of research has 
emerged quantifying the contribution of individual characteristics towards exposure of the virus 
(Britton et al., 2020; Martin et al., 2020). Moreover, there is also increasing evidence that certain 
vulnerable groups have been affected more adversely than others, especially minorities (Pan et al., 
2020). However, researchers have struggled to obtain bias-free, reliable, and externally-valid 
predictions on representative datasets (Wynants et al., 2020). 

 

 
* All replication files are available here: https://github.com/amudide/COVID-Sociodemographics-AI 
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The majority of studies have focused on the role of individual-level factors, but a separate vein 
of research in computational social science has found that socio-economic factors also play an 
important role in mediating the spread of the virus (Makridis and Wu, 2020; Ding et al., 2020; 
Barrios et al., 2020). For example, the Joint Economic Committee (JEC) in the United States 
Congress has focused on quantifying social capital and its important implications for economic 
outcomes and well-being (JEC, 2018). Moreover, social capital has also been associated with 
community-level health outcomes (Gordeev and Egan, 2015; Kolak et al., 2020). 

 
We use machine learning (ML) and artificial intelligence (AI) methods on a combination of 

socio-demographic and social capital data to investigate the importance of local factors in explaining 
coronavirus health outcomes among Veterans. Given that Veterans are a vulnerable group and 
exhibit more mental and physical health challenges than non-Veterans, even within the same 
organization (Schult et al., 2019), community characteristics may play an important role in 
mediating the effects of the pandemic. For example, Veterans in communities with greater social 
capital may engage in more preventative health investments, which would bolster their immunity 
and recovery to viruses. 

 
Using three different estimators—naïve ordinary least squares (OLS), ridge with cross validation 

(CV), and least absolute shrinkage and selection operator (LASSO) with ridge and CV—we predict 
coronavirus case and mortality outcomes using data on 122 Veteran Healthcare Systems (HCS). 
While our OLS specification performs well in-sample, it exhibits weak out-of-sample behavior. 
Instead, the ridge regression with LASSO for feature selection performs the best with an R-squared 
of 0.617 (0.471) when we predict coronavirus cases (deaths). We show that socio-demographic 
features matter more than any standard hospital features, such as its patient satisfaction or the 
number of services provided. These results are important for at least two reasons. First, we can 
obtain reasonable model accuracy on such a small sample. Second, we show that socio-demographic 
features matter even more than hospital features. This suggests that further research and predictive 
modeling on infectious diseases must incorporate socio-demographic and social capital 
characteristics if these models are going to be useful for policymakers and clinicians. 
 

This paper contributes to a growing literature about the importance of socio-economic factors 
for understanding health outcomes for the spread of infectious diseases (Amarasingham et al., 2010; 
Navathe et al., 2018; Bejan et al., 2018; Makridis et al., 2020). The inclusion of socio-demographic 
variables at a geographic-level can improve the performance of otherwise standard ML models of 
the virus, but disaggregating between county and ZIP code does not make much of a difference. 
However, disaggregating between state and county does make a significant difference. The result is 
evidence that the community and the resulting healthcare infrastructure is determined at more of a 
county-level, rather than a ZIP code-level. Even if residential decisions take place at a more granular 
level, public health interventions may reside at a more aggregate level. 

 
Our paper also contributes directly to an existing and timely research agenda on the effects of 

COVID-19 and the identification of individuals who are more exposed to it than others. For 
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example, age has emerged as one of the most important comorbidities (Zhou et al., 2020; Richardson 
et al., 2020). Similarly, Makridis and Wu (2020) show that social capital---that is, measures that 
describe the quality and strength of ties and relationships within a community---plays an important 
mediating role over the duration of the pandemic: counties with higher social capital have 
systematically lower infections and a slower spread of infection even after controlling for 
demographic characteristics and population density. 

2.  Data and Measurement 

2.1.  Location-specific demographic characteristics 

Our socio-demographic data comes from the Census Bureau's 2014-2018 American Community 
Survey. The Census provides demographic characteristics, e.g.: the race distribution, the population 
density, the share male, the age distribution (the share under age 18, age 25-44, age 45-64, and 65+), 
the share married, the education distribution (the share with less than a high school degree, some 
college, and college or more), the income distribution (the share with less than $15,000, $15-29,000, 
$30-39,000, $40-49,000, $50-59,000, $60-99,000, $100-149,000, over $150,000), and the poverty 
rate (the share of people living in poverty under age 18, age 18-64, and 65+).a 

2.2.  Hospital coronavirus cases, mortality, and features 

We use the Department of Veterans Affairs (VA) Facilities API.b We observe the number of services 
that a hospital provides for Veterans and the average satisfaction. We also observe the logged 
number of coronavirus cases and deaths within an HCS.c While we observe 1,297 VA health 
facilities, our coronavirus cases and deaths are available at only 122 HCS, which consist of multiple 
VA medical facilities. We map VA health facilities into an HCS by taking the weighted average of 
features in each health facility in an HCS using the number of Veterans in the area as our weight.  

3.  Methods 

We use three standard statistical estimators: naïve ordinary least squares (OLS), ridge with cross 
validation (CV), and least absolute shrinkage and selection operator (LASSO) with ridge CV. A 
ridge estimator is given by the following: 

 
𝛽"!"#$% = argmin{(𝑦 − 𝑋𝛽)& + 𝜆2|𝛽|2&} (1) 

 
This, unlike a standard OLS estimator, which only minimizes the sum of square error, inserts an 
additional term, 𝜆, that biases certain features over others in the regression. While this will lead to 
“biased” parameter estimates, the fit is better because more important features are given additional 
weight. Moreover, the regularization term, 𝜆, prevents overfitting since the model cannot adjust too 

 
a We also include county data from the Joint Economic Committee (JEC) social capital index (JEC, 2018). 
b See: https://developer.va.gov/explore/facilities/docs/facilities. 
c See: https://www.accesstocare.va.gov/Healthcare/COVID19NationalSummary. 
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many feature weights without the 2|𝛽|2& term getting too big. We also experiment with a LASSO 
estimator for feature selection followed by ridge. 

4.  Results 

We begin by reporting the performance of our ridge regression with CV and ridge regression 
with LASSO feature selection and CV in Table 1. We omit the performance of our OLS regression: 
since we did not do CV on it, the in-sample fit is artificially high because of the common problem 
of overfitting. Note that our measure of model performance is R-squared, rather than the more 
common Regression Receiver Operating Characteristic (RROC) curve plot that is more common for 
predicting continuous variables (Hernandez-Orallo, 2013). We find that the models for predicting 
mortality perform worse than for infections. One reason for this stems from the fact that deaths are 
relatively infrequent, so there is less variation available for prediction. 

 
We also observe that the combined LASSO and ridge CV regression performs better than a 

standard ridge CV regression regardless of the performance metric that we focus on. For example, 
Panel A shows that the R-squared for LASSO and ridge is 0.617 and it is 0.564 for ridge both when 
the outcome variable is logged coronavirus cases. The R-squared values for logged deaths for our 
two respective models are 0.471 and 0.401. Turning towards Panel B, the RMSE for the LASSO 
and ridge CV regression is 6.6% (7.1%) lower when predicting cases (deaths). Note that since we 
are predicting log&(𝑐𝑎𝑠𝑒𝑠), being 0.9 off, for example, translates to being a factor of 2'.) = 1.86 
off. We find similar patterns in Panel C, which shows the MAE by model. 
 

These differences between the two estimators emerge because of at least two reasons: (i) our 
sample of HCS is small (𝑁 = 122), (ii) and we have a large and multi-dimensional feature set, 
especially for demographic characteristics. Although ridge regressions allow features to contribute 
differently to the RMSE, it may still not perform optimally when there are nearly as many variables 
as there are observations. By applying LASSO, we can select only the most predictive variables and 
include them in a subsequent ridge regression. This performs the best. 

 
Table 1: COVID-19 Model Performances 

Outcome Variable = log(Coronavirus Cases) log(Coronavirus Deaths) 
Panel A: Coefficient of Determination (R-squared) 

Ridge CV 0.564 0.401 
LASSO + Ridge CV 0.617 0.471 

Panel B: Root Mean Square Deviation (RMSE) 
Ridge CV 0.958 1.115 

LASSO + Ridge CV 0.895 1.035 
Panel C: Mean Absolute Error (MAE) 

Ridge CV 0.770 0.903 
LASSO + Ridge CV 0.707 0.838 
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Given that the LASSO and ridge CV regression performs the best, we now treat this model as 
the baseline and examine the most important features for the coronavirus cases and deaths prediction 
problems in Figures 1 and 2, respectively. Note that all variable importance coefficients are 
measured in absolute value so that we can focus on the relative magnitudes.  

 
We find that the share of the population between ages 55 and 64 is the most predictive, followed 

by the share of the population working in professional services and in sales occupations. The poverty 
rate for those over the age of 65, the male unemployment rate, the employment share in construction, 
agriculture / mining, and the employment share in education / health all enter as important predictors 
too. We find similar results when our outcome variable is coronavirus deaths, but several notable 
differences emerge. While certain variables, like dropping out of high school, were highly associated 
with deaths, they were not with cases (see Figure 1 and 2). There may be hidden variables associated 
with this, and other social capital variables, that lead to such worse health outcomes for such 
individuals. 
 
 

 
 

Fig. 1.  Predicting log cases with Lasso + Ridge Regression: Top 10 Features. 
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Fig. 2.  Predicting log deaths with Lasso + Ridge Regression: Top 10 Features. 
 

5.  Conclusion 

While there are now many predictive models aimed at understanding the role that co-morbidities 
play in explaining coronavirus outcomes, there is little research that explores the outcomes among 
Veterans and the specific role that social capital and other socio-economic local factors play as 
mediating forces. We estimate three predictive models for coronavirus cases and deaths at a 
healthcare system (HCS) level, aggregating across 1,297 VA medical facilities. We find that the 
combined LASSO and ridge with CV regression performs the best. Importantly, while HCS 
characteristics matter, socio-demographic characteristics also matter greatly and are more important 
than any of the hospital features. This suggests that public health interventions, especially towards 
vulnerable groups, must account for the role of an individual’s environment and surrounding.  
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Coral reefs are home to over 2 million species and provide habitat for roughly 25% of all
marine animals, but they are being severely threatened by pollution and climate change.
A large amount of genomic, transcriptomic and other -omics data from different species
of reef building corals, the uni-cellular dinoflagellates, plus the coral microbiome (where
corals have possibly the most complex microbiome yet discovered, consisting of over 20,000
different species), is becoming increasingly available for corals. This new data present an
opportunity for bioinformatics researchers and computational biologists to contribute to a
timely, compelling, and urgent investigation of critical factors that influence reef health and
resilience. This paper summarizes the content of the Bioinformatics of Corals workshop,
that is being held as part of PSB 2021. It is particularly relevant for this workshop to occur
at PSB, given the abundance of and reliance on coral reefs in Hawai‘i and the conference’s
traditional association with the region.

Keywords: coral reefs, coral holobiont, non-model organisms, functional genomics, genotype
to phenotype, genome and environment, workshop.

1. Introduction, Background and Motivation

Corals are important natural resources that are key to the oceans’ vast biodiversity and provide
economic, cultural, and scientific benefits. Coral colonies are comprised of clonal cnidarian
polyps that depend on a symbiotic relationship with algae in the family Symbiodiniaceae.1 The
dinoflagellate algae harvest light and synthesize nutrients in exchange for shelter and nitrogen
sources.2 Coral reefs cover only 0.1% of the ocean floor, but are home to the largest density

c© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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of animals on earth, rivaling rain forest habitats in species diversity.3 The symbiosis, which
was originally thought to primarily include endosymbiotic algae, is now known to extend to a
much more complex community than anticipated with thousands of bacteria, bacteriophages,
viruses and fungi, in addition to Symbiodiniaceae.4,5 Thus, corals are more like cities than
individual animals, as they provide factories, housing, restaurants, nurseries, and more for an
entire ecosystem, both at the micro and macro levels. The entirety of the organism community
in a coral is referred to as a holobiont.

The environmental sensitivity and symbiotic biological complexity of corals makes under-
standing the genomic variability that influences vulnerability and resilience of local coral reef
systems very challenging.2 However, improving this understanding has taken on increasing
urgency, as coral reefs are declining rapidly due to the consequences of climate change. For ex-
ample, mass coral bleaching, or the expulsion of the symbiotic algae due primarily to thermal
stress driven by marine heatwaves, is resulting in substantial coral mortality.6 Fortunately,
a large amount of genomic, transcriptomic and other omics data from different species of
reefbuilding corals (e.g.,7), the uni-cellular dinoflagellates,8 and the highly diverse coral mi-
crobiome,9 is becoming increasingly available for corals.10–14 This is a terrific opportunity for
bioinformatics researchers and computational biologists to contribute to a timely, compelling
and urgent investigation of critical factors that influence reef health and resilience.15

We have recruited some of the premier experts who are working on bioinformatics of
coral reefs to participate in our workshop already. We will introduce this exciting topic to
the PSB community, with the goal of energizing collaborations and approaches to address the
compelling problems in this captivating and complex system. It is particularly relevant for this
session to occur in Hawai‘i given the abundance of and reliance on coral reefs in the region.
Coral genomes from this location show some of the highest complexity to date,16 exemplifying
the bioinformatic challenges faced by the field in the study of the coral metaorganism. This
convergence of complex multi-organism data and critical need to address this globally declining
ecosystem provides a timely and impactful topic for a Workshop at PSB 2021.

2. Workshop Presenters

The workshop consists of four invited presentations, and then short contributed talks. The
invited speakers are:

• Christian Voolstra, Ph.D. (Professor of Genetics of Adaptation in Aquatic Systems, De-
partment of Biology, University of Konstanz, Germany)

• Ross Cunning, Ph.D. (Research Scientist, John G. Shedd Aquarium, Chicago, USA)
• Zachary Fuller, Ph.D. (Postdoctoral Fellow, Dept. of Biological Sciences, Columbia Univer-

sity, USA)
• Cheong Xin (CX) Chan, Ph.D. (Senior Research Fellow, Australian Centre for Ecogenomics,

School of Chemistry and Molecular Biosciences, The University of Queensland, Australia)

3. Invited Presenters’ Abstracts

The abstracts of the invited presentations appear below.
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The metaorganism frontier - we are not alone
Christian Voolstra (University of Konstanz, Germany)
Recent years have brought a changing imperative in life sciences sparked by the revolution of
genomic tools to study the molecular composition and functional organization of organisms.
The development of next-generation sequencing changed our understanding of microbial di-
versity associated with organisms and environments. There are now a multitude of studies
that support the notion that a host-specific microbiome associates with multicellular organ-
isms and provides functions related to metabolism, immunity, and environmental adaptation,
among others. Consequently, interactions and communication mechanisms of members in this
metaorganism presumably play a major role in maintaining host health, organismal homeosta-
sis, and resilience to environmental disturbance. The seminar will highlight and discuss recent
efforts to investigate coral metaorganism function and evolution using a suite of ecological,
physiological, and molecular approaches.

Genotype by genotype by environment interactions in the conservation of reef
corals
Ross Cunning (Shedd Aquarium, Chicago, USA)
Current conservation goals for reef-building corals under climate change involve boosting de-
sirable traits like heat tolerance and fast growth in natural and restored coral populations.
This may be accomplished through a number of interventions including symbiotic manipula-
tion, selective propagation and breeding, and assisted gene flow. However, the success of these
interventions depends on understanding how the desired traits are controlled by the genes of
the coral host, its algal symbionts, and the environment (i.e., genotype by genotype by envi-
ronment interactions). Here I will describe research aimed at characterizing these interactions
in the growth and thermal tolerance phenotypes of several Caribbean coral species through
both laboratory and field approaches. In experimental manipulations of algal symbionts in
the coral Montastraea cavernosa, different symbiont taxa modulated host gene expression,
contributing to differences in thermal tolerance. In the endangered staghorn coral Acropora
cervicornis, variability in thermal tolerance was linked to specific alleles for coral genes asso-
ciated with the heat stress response. In the field, large-scale reciprocal transplant experiments
in partnership with reef restoration practitioners are also revealing genotype by environment
interactions, which, along with new technologies to quantify thermal tolerance, are being used
to identify high-performing and resilient individuals across whole managed coral populations.
This phenotypic catalog, combined with whole genome sequencing and analysis, will help de-
termine the genomic basis of key performance traits, and guide effective intervention strategies
for coral conservation under climate change.

Genome-wide association study (GWAS) of bleaching tolerance in a Great Barrier
Reef coral
Zachary Fuller (Columbia University)
Although reef-building corals are rapidly declining worldwide, there is considerable variation
in bleaching response and heat tolerance within populations, which is in part heritable. To map
the genetic basis of this variation and develop individual predictors of bleaching in the wild,
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we conducted a genome-wide association study (GWAS) of bleaching in Acropora millepora
from the Great Barrier Reef. We first generated a chromosome-scale genome assembly and
obtained whole genome sequences for over 200 phenotyped samples collected at 12 reefs, across
which we found little population structure. We show that we can reliably impute genotypes
in low-coverage sequencing data with a modestly sized reference haplotype panel to obtain
millions of high confidence single nucleotide polymorphism (SNP) calls. Testing 6.8 million
SNPs for association with bleaching, we show that no single variant reaches genome-wide
significance. However, we show a polygenic score constructed from the GWAS estimates is a
significant predictor of bleaching. We then demonstrate the feasibility of such an approach by
scaling up our GWAS to an increased sample size of more than 1000 whole-genome sequenced
and phenotyped individuals. These results thus set the stage for the use of genomic-based
prediction in coral conservation strategies.

Understanding genome evolution of coral symbionts
Cheong Xin Chan (University of Queensland, Australia)
The ecological success of corals in nutrient-poor waters relies on photosynthetic algal sym-
bionts (Symbiodiniaceae) for supply of fixed carbon as energy, and nutrients. The evolution of
these algae and its implications on coral evolution remains little known. Genomes of Symbio-
diniaceae present a bioinformatics challenge, because of their large sizes ( 1-5 Gbp) and highly
idiosyncratic features. In this talk, I will present our recent effort to generate de novo genome
assemblies from diverse Symbiodiniaceae species and their free-living relative, and to develop
a customised computational workflow for predicting genes from these genomes. Comparative
analysis reveals high sequence and structural divergence, and conserved lineage-specific gene
families of unknown function. I will also present the use of an alignment-free approach to
capture comprehensive phylogenetic signal from these whole-genome sequences. Our results
highlight the rapid evolution of coral symbionts that comprise an extensive phylogenetic di-
versity, and elucidate how selection acts within the context of a complex genome structure
to facilitate local adaptation. These outcomes provide an important reference for research of
coral holobionts and their resilience in changing environments.
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As rich biomedical data streams are accumulating across people and time, they provide a              
powerful opportunity to address limitations in our existing scientific knowledge and to overcome             
operational challenges in healthcare and life sciences. Yet the relative weighting of insights vs.              
methodologies in our current research ecosystem tends to skew the computational community            
away from algorithm evaluation and operationalization, resulting in a well-reported trend           
towards the proliferation of scientific outcomes of unknown reliability. Algorithm selection and            
use is hindered by several problems that persist across our field. One is the impact of the                 
self-assessment bias, which can lead to mis-representations in the accuracy of research results. A              
second challenge is the impact of data context on algorithm performance. Biology and medicine              
are dynamic and heterogeneous. Data is collected under varying conditions. For algorithms, this             
means that performance is not universal -- and need to be evaluated across a range of contexts.                 
These issues are increasingly difficult as algorithms are trained and used on data collected in the                
real-world, outside of the traditional clinical research lab. In these cases, data collection is              

© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed 
under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0License.
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neither supervised nor well controlled and data access may be limited by privacy or proprietary               
reasons. Therefore, there is a risk that algorithms will be applied to data that are outside of the                  
scope of the intent of the original training data provided. This workshop will focus on               
approaches that are emerging across the researcher community to quantify the accuracy of             
algorithms and the reliability of their outputs.  

Keywords: benchmarking; algorithm assessment; open science; translational research 

1. Introduction

Despite intensive efforts to utilize this data to optimize healthcare, relatively few methods have              
been adequately validated and clinically deployed. The reasons for this are technical, scientific,             
social and business related. On the technical side this includes inaccessibility of gold-standard             
datasets for robust validation, heterogeneity in data collected from distributed sources, contextual            
relevance of biological observations across samples, poor algorithmic reproducibility and          
community-acceptance of biased approaches for assessing methods. Reproducibility and         
transparency are two methods which support development of reliable biomedical claims that can             
both generate new knowledge and apply it to advance health care. Although these approaches              
have become firmly established and increasingly practiced over the past decade, they do not fully               
address the question of transferability in biomedical research findings or algorithms. This topic             
builds from the types of work described in the PSB 2017 Session on Methods to Ensure                
Reproducibility in Biomedical Research, which was developed in reaction to both the            
announcement of the data sharing initiatives of the Biden Cancer program and the NEJM data               
parasite commentary, focused on methods that individual researchers were taking to assure            
reproducibility within their own work. This session will discuss general methods for open             
community-based methods to benchmark algorithms, including the use of crowd-sourced          
challenges1-3 as a tool for the unbiased assessment of tools and algorithms.  

The public health, economic, and social justice crises that have occurred in 2020 have brought an 
urgency to the question of rapid, reliable algorithm assessments.  The global COVID-19 
pandemic has provided an urgent need to rapidly optimize healthcare practices, establish public 
health practices for prevention and monitoring, and identify drugs and vaccines to use in 
prevention and treatment. The urgency of this situation is at odds with the typical pace through 
which scientific knowledge is developed, established and integrated into care. Further, the social 
justice crisis underlies the known issues with medical algorithms that initiate biases or may 
propagate those established in the underlying data.  

2. Workshop goals and organization
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This workshop, Establishing Reliability in Algorithms, at the 2021 Pacific Symposium on 
Biocomputing is designed to stimulate conversation around mechanisms that our community can 
use to objectively establish the reliability of algorithms. This will include community 
mechanisms for evaluation as well as mechanisms for use by individual researchers within the 
context of independent research programs. The workshop will provide three examples of existing 
approaches and then stimulate an open discussion that will be actively guided and moderated by 
the organizers. The conversation should extend to a discussion of potential mechanisms for 
establishing standards that enforce greater accountability across the community. 
 
Topics to be covered in the presented materials will include: 
 
Predictive analytics in healthcare: The COVID-19 pandemic has highlighted an urgent need for             
healthcare systems to learn from and with each other. Clinical analytics teams are implementing              
predictive analytics methods that use algorithms trained on electronic health record (EHR) and             
other data to improve patient care and lower costs. While these methods have the promise of                
being impactful in delivering on precision medicine and managing population health, their real             
world accuracy over time is not well understood4-7. It is the case in most areas of biomedicine                 
that the evaluation of methods across multiple data sets should be transparent and used to               
establish their replicability and reliability. Due to differences across clinical sites in practice,             
population, and data capture, the question of reliability may be less evident and requires an               
understanding of the context - and potential impact - of deploying an algorithm within a               
particular system.  
 
Regulatory Science: Another area where analytical methods are directly impacting health care is             
in support of regulatory filings for new drugs and devices. Data derived from both EHR and                
from remote monitoring devices are increasingly utilized in this capacity. Recognizing the need             
to objectively assess the accuracy of methodologies used in the development of regulatory             
filings, the FDA introduced PrecisionFDA8, an objective benchmarking program in 2015, which            
has built from an original focus on genomic processing methods. The proprietary nature of this               
work introduces barriers to data collection or sharing that make traditional approaches to             
algorithm assessment unsatisfying. Approaches that can support objective evaluation of results           
arising from closed data sources are required. Acknowledgement of these needs are represented             
from the FDA by their Spring 2020 solicitation for community input towards the modernization              
of their data strategy9.  
 
Molecular Modeling and Analytics: Biomedical researchers are routinely generating genomic,          
proteomic, epigenomic, imaging, and other emerging molecular data types comprising billions of            
data-points. Community benchmarking approaches such as the DREAM Challenges or the           
Critical Assessment experiments have predominantly focused in this domain10-14, where fewer           
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commercial interests impact the sharing of data or knowledge. An evaluation of benchmarking             
practices within this domain can help to identify lessons from the successes, current gaps in               
practice, and the development of sustained standards for community-based algorithm assessment.  
 
A moderated discussion will follow that will cover the following topics:  

- successes and lessons learned to-date from community benchmarking practices - 
indicating what impact these approaches to establish reliable outcomes have had on 
subsequent research or translation practices 

- early lessons learned from healthcare method implementation 
- emerging approaches in data sharing and in algorithm development and assessment that 

are addressing the issue of appropriate algorithm interpretation 
- community needs and potential solutions for addressing algorithm reliability 
- Development of better gold standards in biomedicine and approaches to overcome 

sub-optimal gold standards 
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User-Centered Design (UCD) focuses on deeply understanding the needs of users and ensuring these 
needs are met by tools and software. UCD methodology aims to make tools easier to use, reduce time 
spent in development and the need for user support, as well as make it easier to create and maintain 
documentation. The goal of UCD is to ultimately make a tool that meets user needs and is a pleasure 
to use. This workshop will give an overview of UCD and several examples of how UCD practices 
are already being used at several institutions. Attendees will leave with ideas of how to incorporate 
UCD into their tool development as well as general resources to get started.  

Keywords: User Centered Design, User Experience, UX/UI, Usability 

 

1. Introduction, Background, and Motivation 

Effective software tools are needed in computational biology to help understand the results of 
computational analyses, visualize multi-scale datasets and mathematical models, and generate 
insights1. As progress in artificial intelligence in the biomedical space is manifesting itself primarily 
in the form of augmented intelligence, it is becoming even more important to design approaches 
that enable efficient interactions between powerful software and human experts. Additionally, users 
of computational biology tools are diverse, often with particular needs unique to their area of 
research. Developing tools that address the specialized needs of practitioners, either a few 
individuals or a larger given field, is commonly known as User-Centered Design (UCD)2. The goal 
of UCD is to create a product that satisfies users’ needs, has an interface that is easy-to-use, and, in 
general, is a tool that people want to use.  

User-Centered Design is design based upon an explicit understanding of users, tasks, and 
environments, and is driven and refined by iterative user-centered evaluation2. While UCD increases 
the number of users and their satisfaction with a tool, UCD also can reduce development costs/time 
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as well as the effort required for user support and documentation3. UCD can be applied to tools that 
are simple or complex, that are made for only a few users or a few thousand users, or that are 
interacted with via a graphical user interface (GUI), command line interface (CLI), or application 
programming interface (API). 

While UCD has been broadly applied across many industries, it typically has not been applied 
in computational biology and bioinformatics research, where the focus tends to be more on the 
optimization of underlying algorithms and the computational core of the software4-6. This approach 
often neglects a tool's usability, in the interface components of the tool as well as in user’s workflow 
both inside and outside the tool.  

This workshop will be an overview of how UCD has been successfully applied to computational 
biology tools and bioinformatics resources. Speakers will discuss how they have incorporated 
various aspects of this discipline into their tool development, including tips for success and lessons 
learned. Attendees will leave with an understanding of common UCD practices as well as models 
of how they might apply them to their own tools. 

1.  Workshop Presenters 

The three-hour workshop will begin with an overview presentation of User-Centered Design, 
and will followed by four presentations. The workshop will conclude with a panel discussion 
session, which will be moderated by Nils Gehlenborg and Mary Goldman. 

1.1 Workshop Speakers 
 
Ljubomir Bradic (Sage Bionetworks) 
Ljubomir is the Director of Design at Sage Bionetworks, where he leads the design of Sage 
Bionetwork’s data sharing and collaboration platform, as well as the Digital Health platform. He 
specializes in complex problem spaces in environments with fluid requirements, particularly early 
startups. His deep understanding of the software development life cycle comes from being a 
startup founder and previous experience as a product manager and developer.  
 
Jeremy Kriegel (Audible, Inc)  
Jeremy was previously the UX Lead for the Broad Institute and is currently the Director of User 
Experience at Audible, Inc. Over the past two decades, he has worked on user experience 
problems as a consultant and as a part of internal teams at organizations that range from start-ups 
to Fortune 100 companies. 
 
Zinaida Perova (EMBL-EBI) 
Zinaida Perova is a Project Lead at the European Bioinformatics Institute. Her work is aimed to 
further expand the PDX Finder resource to cover other patient-derived cancer models, such as 
cancer cell lines and organoids. She has a PhD and postdoctoral experience in Biological Sciences. 
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Galabina Yordanova (EMBL-EBI) 
Galabina is a User Experience Architect at the European Bioinformatics Institute. She is currently 
working on the Data Submission process for the Human Cell Atlas and on the COVID-19 Data 
Portal: covid19dataportal.org. She has worked in the field of product management and user 
experience design for the last 15 years, bringing her expertise to a variety of online products and 
services. 
 
1.2 Panel Moderators 
 
Nils Gehlenborg (Harvard Medical School) 
Nils has over 15 years of experience in applying user-centered design approaches in biomedical 
data visualization tool development and has played a central role in the establishment of the 
VIZBI and BioVis meetings. 
 
Mary Goldman (UC Santa Cruz Genomics Institute) 
Mary has been working in genomics for ten years, both for the UCSC Genome Browser and 
UCSC Xena. She began her role in User-Centered Design five years ago and leads the User 
Centered Design Working Group at the UC Santa Cruz Genomics Institute. 

2.  Speakers Abstracts 

Systems Design Methods for Building Bioinformatics Applications  
Ljubomir Bradic 
This talk will introduce Systems Design principles for creating long lasting and scalable 
ecosystems of bioinformatics applications. Based on methods used at Sage Bionetworks, we will 
demonstrate how commercial software industry design techniques and methodologies have been 
adapted to deliver software that supports open science initiatives. We will also cover design and 
organizational best practices for working in resource constrained environments. 
 
User-Centered Design for the Broad Institute 
Jeremy Kriegel 
User-Centered Design recognizes that all tool development starts with an understanding of the 
user and a real-world problem they experience. Good design needs an in-depth understanding of 
users' tasks, motivations, goals, and steps they take, as well as an overall grasp of the context in 
which they use a tool and what other technologies they rely on. UCD can be applied at any stage 
of development of a project but is ideally incorporated through the entire process. I will talk about 
several User-Centered Design practices that can be applied to development of a computational 
biology tool, from inception to launch and ongoing efforts. Applying these methods helps ensure 
that a tool fits well into a user’s workflow, addresses their needs, and is a pleasure to use. 
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User centric development of the PDX Finder database 
Zinaida Perova  
PDX Finder is an open and comprehensive global database of patient derived xenograft models 
and data. PDX Finder was developed using User-Experience Design methods through iterative 
collaboration between users and developers from the start thorough the entire life of the project. 
We worked as a multi-disciplinary team to understand the user’s problems, needs and general 
scope of the project. This talk will lay out the UX methods that were used from conception to 
development to release, including defining user personas, identifying stakeholders, outlining the 
user journey, as well as how we used various workshops to refine standards, needs and database 
design before implementation. Finally, this talk will end with the usability sessions and metrics we 
developed and measured to ensure that PDX Finder met user needs. 
 
User research - how discovery and evaluation helps guide the development of our data 
portals  
Galabina Yordanova  
In the field of bioinformatics software development, there is sometimes a tendency to quickly 
move on with system architecture specification of what looks like the obvious solution for a tool 
or a service. It is rare to dedicate time on understanding the workflows and needs of the intended 
users of those tools or systems. Building knowledge about user needs and getting feedback on 
whether suggested solutions will help teams build tools and services which help researchers do 
their work in a more efficient way. Sharing the insights of those findings helps to align multi-
disciplinary or international teams, so that everyone is working towards a common outcome.  

I will talk about the user research methods we applied for two of our projects - the Human Cell 
Atlas data platform and the COVID-19 Data portal. I will share our experience and how these user 
research activities helped align the team, improve our understanding of user needs and guide the 
development of those portals. 

3.  Conclusion 

This workshop will highlight a number of User-Centered Design methods, strategies, and tools 
currently being used to help design and create computational bioinformatics tools and resources. 
By supporting scientists with better tools, that are easy-to-use and fit well within a user’s 
workflow, we enable them to focus on their research and advancing science. 
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Research into AI implementations for healthcare continues to boom. However, successfully 
launching these implementations into healthcare clinics requires the co-operation and 
collaboration of multiple stakeholders in healthcare including healthcare professionals, 
administrators, insurers, legislators, advocacy groups, as well as the patients themselves. The 
co-operation and collaboration of these interprofessional groups is necessary not just in the 
final stages of launching AI based solutions in healthcare, but along each stage of the 
research design and analysis. In this workshop, we solicited talks from researchers who have 
embraced the idea of interprofessional collaboration across many different stakeholder 
groups at multiple stages of their research. We specifically focus on projects which included 
heavy collaborations from healthcare professionals, embraced the research subjects’ 
communities as critical research partners, as well as included researchers who are advocating 
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for systemized changes to include interprofessional stakeholders as evaluators of AI research 
in healthcare. 

Keywords: Artificial Intelligence, Socio-technical systems, Interprofessional Collaboration, 
Translational Science.

 
1. Introduction 
 
Artificial intelligence (AI) and other computational and bioinformatic approaches have become a 
critical component of biomedical research. The wealth of available medical data and pertinent 
research questions have driven experts across many scientific fields to begin developing 
computational methods to drive innovation in medical research. However, AI in healthcare is often 
labelled as “disruptive,” a word simultaneously embracing its innovative nature, while warning 
against its turbulent impact on a broad range of health-care related disciplines. As a result, many 
healthcare stakeholders continue to be reserved, and even outright resistant, to AI advances for 
clinical outcomes.  
 
Healthcare stakeholders include researchers across a variety of disciplines, clinicians, patients, 
insurers, legislators, lawyers, economists, UN agencies, government, private and non-profit 
organizations, to name a few. Reservations regarding AI healthcare research from any stakeholder 
group creates both hard barriers (restrictive legislation) and soft barriers (aversion to data sharing) 
in conducting, validating, and implementing AI approaches in the clinic. Ford et al., note 
“(r)esearchers who work in cultural silos are unlikely to maximize the potential of patient data”1 
and recommend meaningful stakeholder involvement is necessary at every stage of research in 
order to remove barriers for clinical translation.  
 
However, there is no straightforward strategy for creating meaningful involvement mechanisms 
across many healthcare stakeholders. In this workshop, we aim to invite talks focusing on AI 
approaches in biomedical research from diverse and inclusive research teams, with expertise that 
spans different academic and professional disciplines, or who have collaborated with or studied 
the perspective of various stakeholders of computational healthcare research. Specifically, talks 
will emphasize both lessons learned from collaborative research and how the collaboration 
influenced the design, interpretation and overall positioning of the results, as well as provide 
advice for how other researchers can engage in their stakeholder community.  
 
2.  Effective medical research requires active involvement of medical professionals 
 
Research into AI tools aimed at improving clinical outcomes needs to evaluate not only technical 
performance, but socio-technical performance outcomes. It is inevitable that the introduction of AI 
technologies to clinics will cause breaks and necessitate changes to existing systems.2  Medical 
professionals are essential to include as active participants in AI biomedical research to design 
tools that minimize these breaks but also to act as diplomats and repairmen to bring AI to its full 
medical potential.2 This socio-technical approach to AI research is exemplified by the ‘Sepsis 
Watch’ project led by Dr. Mark Sendak and other researchers at Duke University.3 One of the 
critical factors influencing the potential of Sepsis Watch to improve septic patient outcomes was 
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the integration of the tool into existing social and professional dynamics – and active involvement 
from rapid response team nurses was essential for this to occur.2 Following observations of Sepsis 
Watch during its first two years of implementation, these researchers posed four key values 
necessary for the translation of biocomputing research into medical practice: rigorously defining 
the problem, building relationships with key stakeholders, respecting professional discretion, and 
creating an ongoing feedback loop with stakeholders.3  
 
3. Study subjects and their communities must also be treated as research partners 
 
Beyond the inclusion of medical professionals in AI research, study subjects themselves are 
critical collaborators whose experiences and communities influence the ability of AI driven tools 
to improve clinical outcomes. Dr. Lisa Vizer recently published a qualitative study which 
investigated the friction points of tracking health indicators of chronic disease. Vizer proposed a 
Conceptual Model of Shared Health Informatics (CoMSHI) that specifically identifies that 
tracking tools need to consider the social context of the person with chronic illness, including not 
only health professionals but also informal carers. They recommend that tools need to be reflective 
of the shared work of many community members in the tracking and monitoring of chronic illness 
and need to be designed to easily be used by multiple members in the participants’ community as 
well as the participants themselves.4 

 
The Wall Lab at Stanford University has embraced the idea of creating tools aimed at serving 
various stakeholders of the autism community. They have developed ‘SuperpowerGlass,’ a 
product based off Google Glass, as a wearable device for children with Autism Spectrum Disorder 
(ASD) which in real-time classifies the emotions of their family and peers while also recording 
interactions for additional insight. As well, they have launched a therapeutic mobile-device game 
called ‘Guess What?’ which tests children’s abilities to act out and identify emotions while 
recording their play time as a long-term data source from which behavioral improvement can be 
measured. A critical aspect of both of these technologies is that insights and data are visible to 
parents and carers so they can also review and learn from their child’s interactions. Moreover, the 
Wall lab has developed a crowd sourced ASD screening tool using home videos of children which 
alleviates the long wait times for official ASD diagnoses and allows critical early intervention for 
behavioral improvement. The Wall lab has also used machine learning algorithms to identify the 
most important questions used by clinicians in diagnosing ASD so that questionnaires and time-to-
diagnosis can be shortened.5 
 
Dr. Dan Gillis works as part of a team that is building computational infrastructure for the Inuit 
community in Rigolet, Nunatsiavut, Canada. A critical aspect of this research is working in 
partnership with the community to develop Inuit-led monitoring systems to understand and 
respond to not only classic metrics of climate change, but also to intangible losses that are 
priorities for the Inuit people. Involving the Inuit perspectives in the design, maintenance, and use 
of the monitoring system allows them to understand and mitigate the impacts of climate change in 
their community. Furthermore, they advocate for community-specific priorities in terms of public 
health and how climate change influences the health of the community considering the 
perspectives of researchers, public health officials, and the Inuit community itself.6  
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4. Precision medicine has accelerated the need for systems that evaluate the promise of AI 
research from multiple stakeholder perspectives 
 
AI has become a critical driver of biomarker discovery and precision medicine, but there are few 
systems in place to evaluate the efficacy and make appropriate recommendations for these 
discoveries.6 Dr. John Carethers, in partnership with the National Academies of Sciences, 
Engineering, and Medicine, co-authored a report proposing a roadmap to address the lack of 
systems for evaluating precision medicine research. The team interviewed federal regulators, 
insurers, developers of biomarker tests, medical professionals, and advocacy groups to identify 10 
goals for establishing systems for the evaluation of precision medicine research including 
standardizing patient and provider information, studying different demographic groups, 
developing evidence-based guidelines for clinical practice, and maintaining a robust database to 
share findings.7  
 
Dr. Amar Das has proposed an interdisciplinary, phased research framework to better evaluate AI 
tools and applications in healthcare, similar to the multi-phase system used to approve novel 
drugs. They propose the following phases: discovery and invention, technical performance and 
safety, efficacy and side effects, therapeutic efficacy, and safety and effectiveness. Critically, at all 
stages of their research framework user feedback and continuous monitoring is essential in 
evaluating and updating AI implementations for clinical practice.8 
 
5. Conclusion 

Given the current state of biocomputing, it is inevitable that AI will be a critical driver of 
biomedical innovation. However, it is of utmost importance that researchers engage with and 
secure the trust of healthcare stakeholders to maximize the potential of AI in improving patient 
outcomes. As Obermeyer & Lee stated, “machine learning in medicine will be a team sport, like 
medicine itself. But the team will need some new players […] who can contribute meaningfully to 
algorithm development and evaluation.”10 It is our hope that this workshop will galvanize 
computational researchers to engage with stakeholders in meaningful ways and move AI from 
being “disruptive” to “progressive.”  
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Translational bioinformatics (TBI) is focused on the integration of biomedical data science and 
informatics. This combination is extremely powerful for scientific discovery as well as translation into 
clinical practice. Several topics where TBI research is at the leading edge are 1) the clinical utility of 
polygenic risk scores, 2) data integration, and 3) artificial intelligence and machine learning. This 
perspective discusses these three topics and points to the important elements for driving precision 
medicine into the future. 

Keywords: translational bioinformatics, precision medicine, data integration, artificial intelligence, 
machine learning, electronic health records, biobank, polygenic risk scores 

1. Introduction

Translational bioinformatics (TBI) is a multi-disciplinary and rapidly emerging field of biomedical 
data sciences and informatics that includes the development of technologies that efficiently 
translate basic molecular, genetic, cellular, and clinical data into clinical products or health 
implications. TBI involves applying novel methods to the storage, analysis, and interpretation of 
a massive volume of genetics, genomics, multi-omics, and clinical data; this includes diagnoses, 
medications, laboratory measurements, imaging, and clinical notes. TBI bridges the gap between 
bench research and real-world applications to human health. Many health-related topics are 
increasingly falling within the scope of TBI, including rare and complex human disease, cancer, 
biomarkers, pharmacogenomics, drug repositioning, genomic medicine, and clinical decision 
support systems. 

TBI in precision medicine attempts to determine individual solutions based on the genomic, 
environmental, and clinical profiles of each individual, providing an opportunity to incorporate 
individual genomic data into patient care. While a plethora of genomic signatures have 
© 2020 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed under the terms 
of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
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successfully demonstrated their predictive power, they are merely statistically significant 
differences between dichotomized phenotypes (for example cases and controls of a specific disease) 
that are in fact severely heterogeneous phenotypes. Despite many translational barriers, connecting 
the molecular world to the clinical world and vice versa will undoubtedly benefit human health in 
the near future. 

Due to the rapid pace of TBI, we assembled diverse perspectives to review the state of the art in 
translation bioinformatics including the clinical utility of polygenic risk scores, data integration, 
and artificial intelligence in medicine. We provide perspective on where the current efforts are 
focused and where the future is headed for biobanks in different disciplines, especially about the 
utility of polygenic risk scores. Additionally, special attention will be given to data integration. In 
particular, radiogenomics or imaging genomics is one of the primary areas that focus on the 
relationship between imaging phenotypes and genomics. We also discuss artificial intelligence and 
machine learning and how these are being used now for integrating electronic health record (EHR) 
and omics data as well as how we anticipate they will be used in the future. Translational 
bioinformatics is a fast-moving field and we believe that integrating the basic science community 
from genomics, bioinformatics, computer science, and statistics together with the translational 
community including clinical/medical informatics, pharmacogenomics, and genomic medicine 
will be mutually beneficial to accelerate the translational of biomedical research into precision 
medicine. 

2. The clinical utility of polygenic risk scores

Many research programs have capitalized on these population-based registries with 
complementary biobanks for research linkage to the health registry including UK Biobank 1, 
FinnGEN 2, and deCODE 3. EHRs and national health registries have both been adopted as clinical 
data sources for genetic and genomic analyses for a wide variety of diseases/conditions. The utility 
of these clinical data linked with genetic and genomic data has enormous potential for disease gene 
discovery. Much research is ongoing to identify risk factors for complex disease, evaluate the 
potential repurposing medications for multiple phenotypes, and the identification of novel 
therapeutic targets. In particular, the development of polygenic risk scores (PRS) as well as 
genomic risk assessments, which integrate PRS with known clinical risk factors, are an emerging 
area of research in large scale biobanks linked with clinical data sources. PRS is a value 
accumulated based on the effect sizes of multiple genetic variants across the genome and has 
shown great promise in the prediction of risk for many diseases 4. Furthermore, recent studies for 
many diseases suggest that our knowledge of the common variants underlying diseases or 
phenotypes has improved to a point where polygenic risk profiling provides personal and clinical 
utility by identifying groups of individuals who could benefit from the knowledge of their 
probabilistic susceptibility to disease 5. As more health systems and academic medical centers 
continue to build large scale biobanks, the opportunities for discovery in biobanks linked to clinical 
data sources will continue to explode. 

3. Data integration

While individual analysis of omics datasets is valuable for identifying omic-phenotype 
associations, analyses using only one data type are not sufficient to fully elucidate complex 
diseases because such diseases are the end point of events cumulating with multiple variations 
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through multi-omics biology. To better understand the genetic architecture of complex diseases, 
relevant strategies for integrating multi-omics data are required. Many studies have shown that an 
integrative systems genomics approach and addressed the idea that integration of multi-omics data 
can be substantially more informative than separate analyses of each single dimension of genomic 
data 6. Data integration methods can be broadly categorized into two types of approaches, as 
follows. In multi-staged analysis, models are constructed using only two different scales at a time, 
in a stepwise, linear, or hierarchical manner. A multi-staged analysis would be applicable when 
the relationship between genotype and phenotype can be modelled in a linear manner (e.g. 
association of SNPs with DNA methylation) and subsequently associated with phenotypes. 
However, this approach is difficult to apply simultaneously to more than two types of -omics data. 
An alternative approach is meta-dimensional analysis (i.e. fusion of scales), which simultaneously 
combines all scales of data to produce complex, meta-dimensional models with multiple variables 
from different data types. The scale and richness of these ever-increasing data sets hold great 
promise, yet the complexity presents an urgent need to find effective ways to integrate diverse data 
from different levels of technologies to fully exploit the potential informativeness of big data. One 
particularly rich source of information contained in medical records are imaging data, such as MRI, 
CT scan, fundoscopic images, or histopathology slides. Radiogenomics or imaging genomics is 
one of the primary areas that focus on the relationship between imaging phenotypes and genomics. 
With state-of-the-art deep learning approaches, radiogenomics might offer a practical way to 
leverage limited and incomplete data to generate knowledge that could lead to improved decision 
making, and as a result, improved patient outcomes 7. 
 

4. Artificial intelligence in medicine  
 
The integration of genomics data with EHR data opens the door to numerous research question 
about the role of genomic variation in human health. Artificial intelligence and machine learning 
have an important role to play in answering these questions. An important challenge that 
computational methods are well-suited to is the definition of phenotypes that are more accurate 
than those provided by disease diagnoses captured in billing codes. The challenge here to find a 
mathematical function of laboratory measures, medication, and other information that can be used 
to make a more accurate diagnosis. Machine learning is ideally suited to building models of disease 
phenotypes. Once accurate phenotypes are derived, the next step is to perform association analysis. 
Genome-wide association studies in epidemiologic studies have focused almost exclusively on 
statistical tests of each genetic variant independent of their genomic or environmental context. This 
has benefits such as speed and interpretation. However, genetic variants are likely to have effects 
that are context-dependent and thus not captured by univariate models. Machine learning can 
complement statistical methods by modeling non-additive effects among multiple factors. Further, 
machine learning can capture heterogeneity of genetic effects that can also be quite common. The 
development and application of machine learning methods in biobanks is an active area of research 
and very much in its infancy. Issues such as choosing the right machine learning methods for the 
data, interpreting the results, and developing actionable validation and implementation strategies 
are complex and in need of future work. An emerging area addresses the first issue is automated 
machine learning (AutoML) that focuses on optimization algorithms for choosing the right 
methods for a given data set. Automated machine learning is a step towards artificial intelligence 
with the goal of developing algorithms that solve problems the way human analysts do. It is 
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important to remember that the goal of machine learning is to identify those unexpected results 
that would be missed by parametric statistical methods. 
 
5. Discussion  
 
Translational bioinformatics (TBI) lives at the intersection of informatics and biomedical data 
science. Due to the explosion of data in molecular and cellular technologies in the ‘omics era 
paired with the rapid increase in the access and availability to clinical information and imaging 
data from EHRs, the possibilities for discovery and rapid translational into clinically and 
biologically meaningful outcomes are tremendous. To all of these rich data, add the powerful 
technologies being developed in artificial intelligence and machine learning, this leads to a unique 
opportunity for biomedical data science to elevate in ways that are unprecedented. The future of 
precision medicine will be led by translational bioinformatics. 
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