
A multi-scale integrated analysis identifies KRT8 as a pan-cancer early biomarker 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An early biomarker would transform our ability to screen and treat patients with cancer. The large amount 
of multi-scale molecular data in public repositories from various cancers provide unprecedented 
opportunities to find such a biomarker. However, despite identification of numerous molecular biomarkers 
using these public data, fewer than 1% have proven robust enough to translate into clinical practice. One 
of the most important factors affecting the successful translation to clinical practice is lack of real-world 
patient population heterogeneity in the discovery process. Almost all biomarker studies analyze only a 
single cohort of patients with the same cancer using a single modality. Recent studies in other diseases 
have demonstrated the advantage of leveraging biological and technical heterogeneity across multiple 
independent cohorts to identify robust disease biomarkers. Here we analyzed 17149 samples from patients 
with one of 23 cancers that were profiled using either  DNA methylation, bulk and single-cell gene 
expression, or protein expression in tumor and serum. First, we analyzed DNA methylation profiles of 
9855 samples across 23 cancers from The Cancer Genome Atlas (TCGA). We then examined the gene 
expression profile of the most significantly hypomethylated gene, KRT8, in 6781 samples from 57 
independent microarray datasets from NCBI GEO. KRT8 was significantly over-expressed across cancers 
except colon cancer (summary effect size=1.05; p < 0.0001). Further, single-cell RNAseq analysis of 7447 
single cells from lung tumors showed that genes that significantly correlated with KRT8 (p < 0.05) were 
involved in p53-related pathways. Immunohistochemistry in tumor biopsies from 294 patients with lung 
cancer showed that high protein expression of KRT8 is a prognostic marker of poor survival (HR = 1.73, 
p = 0.01). Finally, detectable KRT8 in serum as measured by ELISA distinguished patients with pancreatic 
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cancer from healthy controls with an AUROC=0.94. In summary, our analysis demonstrates that KRT8 is 
(1) differentially expressed in several cancers across all molecular modalities and (2) may be useful as a 
biomarker to identify patients that should be further tested for cancer. 

     Keywords: Meta-analysis; Cancer; Diagnostic; Methylation 

1. Introduction 

Most of the public health burden of cancer results from our inability to detect tumors before they 
become untreatable1. For instance, non-small cell lung cancer (NSCLC), the leading cause of cancer 
deaths worldwide, progresses from early to advanced stages over a year2. Early detection of NSCLC is 
shown to substantially improve survival through surgical resection of the tumor3; however, after the 
cancer has metastasized, surgical intervention does not improve patient outcomes4. This critical need 
for early cancer biomarkers motivated the creation of consortiums like the TCGA5. Since the first 
TCGA data was released in 2006, there have been hundreds of putative molecular biomarkers proposed 
across all cancer types, with most focusing on gene expression biomarkers6,7.  However, most gene 
signature biomarkers were identified in only one cancer type or subtype, and very few ever proved to 
be viable for clinical use7,8. Many proposed signatures failed to translate into clinical practice because 
they could not be replicated in outside cohorts or performed poorly when clinical data was considered9.  
DNA methylation profiles have been shown to carry additional information to either genomic or 
expression data10,11. Yang et al. demonstrated that TCGA methylation data could identify clinically 
relevant subsets of patients with breast cancer that could not be classified by gene expression12. Others 
have documented the prognostic ability of other epigenetic signatures in colon, lung, and pancreatic 
cancer13-15. However, the bulk of putative methylation biomarkers are limited to a single disease and 
face the same clinical translation issues as gene expression biomarkers16. To increase the probability 
that a methylation biomarker is useful in clinical practice, it is critical to demonstrate a robust functional 
and translational relevance of the differentially methylated genes in multiple cohorts17. Additionally, 
the focus on single-cancer biomarkers has raised concerns about the potential to overlook common 
epigenetic drivers of cancer18. 

In this study, we performed a pan-cancer analysis of TCGA DNA methylation data from 9855 tissue 
samples across 23 cancers to inform subsequent gene expression, proteomic, and clinical outcome 
analyses. The methylation samples were divided into discovery (2019 samples across 10 cancers) and 
validation (7836 samples across 21 cancers). KRT8 was the most significant differentially methylated 
gene across cancers. We next examined the gene expression profile of KRT8 in 6781 samples from 57 
independent microarray datasets in five solid tumor cancers (breast, colon, pancreatic, ovarian and lung) 
from NCBI GEO19, and found KRT8 to be universally overexpressed. Our analysis of intra-cellular 
gene-KRT8 expression correlations in 7447 single cells derived from lung tumor biopsies found KRT8 
is correlated with genes involved in p53-related pathways. We validated these correlations in gene 
expression microarrays of 1276 tissue biopsies from patients with lung cancer. We examined the 
prognostic relevance of tumor KRT8 protein in 294 tissue microarrays (TMAs) from patients with lung 
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cancer. We then calculated the prognostic value of tumor KRT8 gene expression in pancreatic cancer 

with data from Protein Atlas. Finally, we validated the potential of KRT8 as non-invasive biomarker 
with serum KRT8 in 32 pancreatic patients and 6 healthy controls from Stanford Hospital. An overview 
of this analysis is displayed in Figure 1. 

2 Methods 

2.1. Data Collection from Public Repositories – TCGA and GEO 

All methylation and transcriptome data used in our analyses are publicly available. We downloaded all 
available DNA methylation data the TCGA data portal (https://tcga-
data.nci.nih.gov/tcga/tcgaHome2.jsp) irrespective of cancer on May 19, 2018. We excluded data for 
cancers where less than two non-cancerous samples were profiled, which resulted in DNA methylation 
data for 9855 samples across 23 cancers. For DNA methylation profiling, samples from these 23 cancers 
were profiled using either the Infinium HM27 array (27,578 CpG site targeting probes) or Infinium 
HM450 array (485,577 CpG site targeting probes). All data was generated and processed by The Cancer 
Genome Atlas research network as described previously5,18. We used data profiled on the HM27 array 
as our discovery cohort (10 cancers, 2019 samples) and data profiled on the HM450 array (21 cancers, 
7836 samples) as validation.  

For gene expression, we downloaded whole transcriptome data for 6,781 tumor biopsies across 57 
independent datasets profiled using microarrays from the NCBI GEO. All datasets were required to 
measure gene expression in a minimum of two non-cancerous tissue samples. These tumor biopsies 
came from a patient with breast, lung, pancreatic, ovarian or colon cancer. 

 
Figure 1. Analysis overview. (A) DNA methylation data from TCGA for 10 cancers comprising 2019 samples 
profiled using the Illumina 27 platform were used for discovery. (B) Validation data comprised of 15,124 samples 
profiled using either DNA methylation, bulk and single cell gene expression, or tumor and serum protein. 
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2.2. Data Processing and Effect Size Estimation 

We ensured all downloaded gene expression data was log2-transformed. For each gene, we calculated 
chaQge iQ e[SUeVViRQ iQ a WXPRU biRSV\ aV HedgeV¶ g with adjustment for small sample size because it 
caSWXUeV bRWh Whe fROd chaQge aQd YaUiaQce. We haYe SUeYiRXVO\ XVed HedgeV¶ g WR geQeUaWe URbXVW geQe 
signatures with diagnostic and prognostic value20,21. We used the random-effects inverse variance meta-
analysis using Dersimonian-Laird method to calculate a summary effect size (ES) across datasets for 
each gene22. We chose Dersimonian-Laird as our previous work has shown it to be a good compromise 
between more conservative meta-analysis methods (Sidik±Jonkman, Hedges±Olkin, empiric Bayes, 
restricted maximum likelihood) and lenient methods (Hunter±Schmidt)22. If multiple probes mapped to 
a gene, the effect size for each gene was summarized via the fixed effect inverse-variance model. We 
corrected p-values for summary effect-sizes for multiple hypotheses testing using Benjamini-Hochberg 
false discovery rate (FDR) correction.23 We removed one cancer at a time and applied both meta-
analysis methods at each iteration to avoid influence of a specific cancer with a large sample size on 
the results. 

2.3. Survival Analysis and Modeling  

We used a right-censored model to fit survival data with the survival package in the R statistical 
computing environment (Version 3.5.1). We fit univariate and multivariate Cox proportional hazards 
models onto survival data using the coxph function. We confirmed the proportional hazard assumption 
with the cox.zph function.  

2.4. Human Plasma Samples  

Our study includes 32 human EDTA blood plasma samples collected between January 2007 and 
October 2011 from identically staged patients with advanced pancreatic ductal adenocarcinoma treated 
at Stanford University Medical Center under an institutional review board-approved protocol. All 
plasma samples were collected from untreated (de novo) patients with biopsy- proven pancreatic 
adenocarcinomas. Median age at blood collection was 68 years (range 37-84 years). As a control group, 
6 additional plasma samples were collected from age- matched, healthy volunteers under an IRB-
approved protocol. Immediately after acquisition, blood samples were centrifuged and aliquots of 
plasma stored at -80°C.  

2.4. Enzyme-linked immunosorbent assay (ELISA) 

The serum biomarker concentration was measured with a commercially available human protein 
sandwich enzyme immunoassay kit with two mouse monoclonal antihuman antibodies (R&D Systems, 
Inc., Minneapolis, MN, USA). All serum samples from patients and standards were incubated in 
microplate wells coated with the first mouse monoclonal anti-human biomarker antibody. After 
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washing, a second antihuman biomarker antibody labeled with peroxidase (HRP) was added for 
subsequent incubation. The reaction between HRP and substrate (hydrogen peroxide and 
tetramethylbenzidine) resulted in color development and the intensities were measured with a 
microplate reader at an absorbance of 450 nm. Concentrations of serum biomarkers were determined 
against a standard curve. 

2.5. Single cell data collection and processing 

We downloaded count matrices of 52,698 single cells from the tumor microenvironment of five lung 
cancer patient samples from Array Express (E-MTAB-6149)24. Of the total 52,698 cells, 7,447 
originated from the tumor. We calculated the Pearson correlation between expression of KRT8 and all 
other measured genes within each tumor cell. For each KRT8-gene correlation, we required non-zero 
expression of both genes in a minimum of 25 cells. We removed correlations with a p-value t 0.05.  

2.6. KRT8 Expression in Patients with Pancreatic Cancer from The Protein Atlas 

We downloaded prognostic information for 176 pancreatic cancer patients stratified by tumor KRT8 
expression from The Protein Atlas25 (https://www.proteinatlas.org/ENSG00000170421-
KRT8/pathology/tissue/pancreatic+cancer). We stratified patients based on median KRT8 expression 
of the cohort. Patient samples originated from the TCGA data repository. All counts are reported as 
Fragments Per Kilobase of exon per Million reads (FPKM).  

2.7. TMA cohort, and immunohistochemistry 

Patient samples were retrieved from the surgical pathology archives at the Stanford Department of 
Pathology and linked to a clinical database using the Cancer Center Database and STRIDE Database 
tools from Stanford. Patients who had surgically treated disease and paraffin embedded samples from 
1995 through June, 2010 were included. Surgical specimens that contained viable tumor from slides 
were reviewed by a board-certified pathologist (RBW) to build the Stanford Lung Cancer TMA as 
described previously. The area of highest tumor content was marked for coring blocks corresponding 
to the slides using 0.6 mm cores in duplicate arrays as previously described26. These cores were aligned 
by histology and stage and negative controls included a variety of benign and malignant tissues that 
included normal non-lung tissue, abnormal non-lung tissue, placental markers, and normal lung26. 
Normal lung consisted of a specimen adjacent, but distinct, from tumor over the years 1995 through 
2010 to assess the variability of staining by year. OligoDT analysis was performed on the finished array 
to assess the architecture of selected cores and adequacy of tissue content prior to target 
immunohistochemistry (IHC) analysis. Serial 4 µm sections were cut from FFPE specimens and 
processed for IHC using the Ventana BenchMark XT automated immunostaining platform (Ventana 
Medical Systems/Roche, Tucson, AZ). Rabbit monoclonal anti-Cytokeratin 8 (phospho S431) antibody 
was obtained from Abcam (ab109452, Burlingame, CA). Mouse monocolonal Anti-Cytokeratin 8 
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antibody was also obtained from Abcam (ab9023, Burlingame, CA). The intensity of KRT8 
immunostaining was graded from 1-4 as determined by an independent pathologist who was blinded to 
patient outcome. 

3. Results 

3.1. Integrated analysis of TCGA data identifies KRT8 as hypomethylated across cancers 

We identified 23 cancers that had methylation data and at least two healthy controls per cancer from 
TCGA. We split the resulting 9855 samples into discovery cohorts (2019 samples from 10 cancers 
profiled using the Illumina 27 platform) and the validation cohorts (7836 samples from 21 cancers 
profiled using the Illumina 450 platform) for validation. In order to avoid the potential influence of a 
single cancer on the results due to unequal sample sizes or other unknown confounding factors among 
cohorts, we SeUfRUPed a µµOeaYe-one-cancer-RXW¶¶ aQaO\ViV. We h\SRWheVi]ed WhaW Whe UeVXOWiQg VeW Rf 
methylation sites, irrespective of the set of cancers analyzed, would constitute a robust methylation 
signature across cancers. We identified 1,801 differentially methylated genes (1,081 hyper- and 720 
hypomethylated, FDR < 5%) across all cancers (Figure 1A and Supplementary Figure 1A). We did 
not remove differentially methylated sites with significant heterogeneity for two reasons. First, 
heterogeneity is expected due to known heterogeneity within and between cancers. Second, we have 
previously shown that when combining across multiple datasets, filtering by heterogeneity removes 
higher proportion of true positives than false positives22. In the validation cohorts, which used Illumina 
450 platform, we found 1083 out of 1,801 sites were differentially methylated across all cancers (FDR 
< 5%; Figure 1B and Supplementary Figure 1B). 

Our discovery analysis found several previously reported differentially methylated genes. The 
hypomethylated genes across all cancers in the discovery cohort included CLDN427 (discovery ES = -
1.86, p = 8.0e-7; validation ES = -0.56, p = 1.55e-06) and SFN28 (discovery ES = -0.96, p = 2.01e-7; 
validation ES = -0.94, p = 9.4e-10) that have been previously shown to promote cancer cell proliferation 
(Ehrlich 2009), whereas the hypermethylated genes included known tumor suppressors such as SOX129 
(discovery ES = 1.05, p = 3.4e-08;  validation ES = 1.08, p = 4.4e-22), TWIST30 (discovery ES = 0.89, 
p = 1.5e-5; validation ES = 0.59, p = 4.3e-16), and GATA431 (discovery ES = 0.92, p = 1.7e-6; validation 
ES = 0.38, p = 3.77e-12). KRT8 was the most statistically significant hypomethylated gene after 
multiple hypothesis correction (discovery ES = -1.71, p = 3.2e-7, FDR=9.15e-6), but was unchanged 
in renal clear cell carcinoma. KRT8 was also hypomethylated in the validation cohorts across all cancers 
except pheochromatoma/paraganglioma and melanoma (validation ES=-0.69, p = 3.3e-15, FDR = 4.0e-
14).  

3.2. Multi-cohort gene expression analysis demonstrates KRT8 is over-expressed in five cancers 

Hypomethylation and hypermethylation typically lead to over- and under-expression of the 
corresponding gene, respectively.32 Therefore, we hypothesized that hypo- or hyper-methylated genes 
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across multiple cancers will be over- or under-expressed across multiple cancer compared to control 
samples. Arguably, we could use gene expression data for the same samples from TCGA. However, we 
decided to use gene expression data from completely independent cohorts from a different source to 
increase stringency of our analysis. Therefore, to test this hypothesis, we downloaded 57 microarray 
gene expression datasets from the NCBI GEO19 comprising of 6781 samples (4870 cases, 1911 
controls) obtained from human tissue biopsies of five cancers: breast, colon, lung adenocarcinoma, 
ovarian, or pancreatic. These 57 datasets included broad biological and technical heterogeneity, such 
as treatment protocols, demographics, collection year, and microarray platforms to further increase the 
stringency of our analysis and identify robust signals that persist despite these potential sources of noise.  
Differential gene expression meta-analysis across all 6781 samples identified overexpression of known 
oncogenes such as ERBB2 (ES =0.51, p = 6.22e-13), KRAS (ES =0.43, p = 2.90e-9), CCND1 (ES = 
0.25, p = 7.34e-3), and VEGFA (ES = 0.42, p = 2.19e-06). Housekeeping genes did not show a change 
xin expression between control and cancer, such as B2M (ES = 0.12, p = .25), HBS1L (ES = -0.08, p = 
0.15), or EMC7 (ES = 0.18, p = 0.09)33,34.  
Next, we calculated the Spearman correlation between the discovery methylation ES and gene 
expression ES in the 1,801 differentially methylated genes as -0.21 (p=1.27e-19), which in line with 
previous studies35 that examined intra-sample methylation-expression correlation (Supplementary 
Figure 2). Finally, we found that hypomethylation of KRT8 led to overexpression in multiple cancers 
compared to healthy samples (ES=1.05, p=2.8e-27, FDR=2.0e-24). KRT8 was over-expressed in 
pancreatic cancer (ES=0.69, p=4.02e-08), ovarian cancer (ES=1.61, p=1.93e-03), lung cancer 
(ES=1.55, p=1.95e-13), and breast cancer (ES=0.88, p=7.82e-10), but not in colon cancer (ES = 0.14, 
p = 0.38).  

3.3. KRT8 overexpression is associated with a chemotherapy-resistant phenotype in vitro 

Chemotherapy resistance is responsible for more than 80% of cancer-related mortality. We investigated 
whether increased KRT8 expression is associated with chemotherapy resistance. We downloaded 100 
samples in seven datasets from NCBI GEO across six cancers that contained both chemotherapy-
resistant and chemotherapy-sensitive cell lines. KRT8 was consistently overexpressed across all chemo-
resistant cancer cell lines (summary effect size=0.76, p=0.035; Supplementary Figure 3). This result 
demonstrates a consistent association between KRT8 expression and chemotherapy resistance in vitro.   

3.4. Single cell analysis of KRT8 expression  

Single cell gene expression data has allowed researchers to probe intra-cellular gene-gene correlations, 
which in turn suggest gene interactions or a common regulator. We analyzed intra-cellular correlations 
between every gene and KRT8 with single cell RNA sequencing data of 7447 cells from tumor biopsies 
of five lung cancer patients. To calculate intra-cell gene-gene correlations, we correlated the expression 
of each gene to KRT8 expression in every cell. Several other keratin genes were positively correlated 
with KRT8. For example, KRT18 and KRT7 had Pearson correlation of 0.59 and 0.55, respectively, 
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with KRT8. Next, we preformed pathway analysis of the 100 most positively and negatively correlated 
genes with KRT8 using the Reactome Knowledge Database36. Thirty out of the 100 genes were not 
annotated in the Reactome Knowledge Database. We identified six significantly enriched pathways, 
each of which has been previously implicated in cancer progression (Figure 2A). The top three 
significantly enriched pathways were comprised of six unique genes: GSTP1, PRDX5, GPX2, TXNRD1, 
SFN, COX6A1 (Supplementary Table 1). Each of these six genes had an intra-cellular correlation with 

 
 

Figure 2. Intracellular Pearson correlations of six genes with KRT8 calculated from 
7447 tumor cells in five lung cancer patients. (A) Contour maps of correlation for the 6 
most correlated genes. Level defines the density of cells found in each contour layer. X axis 
is the expression of the respective gene in log2 counts per million (CPM) within each cell. Y 
axis is KRT8 expression in the corresponding cell. (B) Bulk gene-KRT8 Pearson correlations 
in 12 lung cancer datasets. (C) Differential expression of the 6 most correlated genes with 
KRT8 in the 12 lung cancer cohorts compared to control samples. Effect size was computed 
aV HedgeV¶ g in log2 scale.  
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KRT8 expression t0.30 (Figure 2A). All genes except GSTP1 are annotated in Reactome as involved 
in p53 signal transduction (Supplementary Table 1). However, GSTP1 is known to be a direct 
transcriptional target of p5337, further supporting the association between KRT8 and genes involved in 

the p53 pathway. 
We next examined the correlation between the six genes and KRT8 in bulk lung adenocarcinoma gene 
expression data from microarrays of 1276 lung biopsy samples from 12 datasets. All genes were 
significantly correlated with KRT8 at sample level (Figure 2B). All genes except PRDX5 were 
overexpressed in lung adenocarcinoma compared to healthy patients (Figure 2C). The majority of these 

 
Figure 3. Protein measurement of KRT8 in cancer. A. IHC of lung adenocarcinoma TMAs for KRT8. B. Cox 
proportional hazard of 294 lung cancer samples stratified by KRT8 concentration. C. Survival of 176 patients with 
pancreatic cancer stratified by KRT8 expression relative to the median of the cohort. D-E. Violin (D) and ROC (E) 
plots of serum KRT8 as measured by ELISA in patients with pancreatic cancer and healthy controls. Dashed line 
represents the ELISA detection threshold. Width of a violin plot indicates density of samples, where each dot 
represents a sample.   
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six genes were additionally overexpressed across 5505 microarray samples from four cancers (breast, 
colon, ovarian, and pancreatic; Supplementary Table 2). 

3.5. Protein expression of KRT8 is associated with mortality in patients with lung adenocarcinoma 

Given robust hypomethylation of KRT8 across 9,855 samples from 23 cancers, over-expression across 
6,781 biopsies from 5 cancers, strong association with chemo-resistance, and sustained correlation with 
p53-regulated genes both at single-cell and sample levels, we investigated whether KRT8 is also 
expressed at protein-level in tumor biopsies, and whether it is associated with survival in patients with 
either lung adenocarcinoma or lung squamous cell carcinoma. We stained tissue microarrays (TMAs) 
containing 294 lung tumors (228 lung adenocarcinoma, 66 lung squamous cell carcinoma) resected 
from patients at Stanford Hospital for KRT8 protein (Supplementary Table 3). An expert pathologist 
(MO) rated the maximum intensity of cancerous cell KRT8 staining in each TMA (Figure 3A).  Out of 
the 294 samples, 5 (1.7 %) scored as 1+, 35 (11.9%) as 1-2+, 55 (18.7%) as 1-3+, 8 (2.72%) as 2+, 85 
(28.9%) as 2-3+ and 106 (36.1%) as 3+. In a multivariable cox regression model, KRT8 intensity was 
a significant predictor of mortality after adjusting for sex and age at diagnosis in lung adenocarcinoma 
(Hazard Ratio = 1.49, 95% CI = 1.06 ± 2.10, p=0.02), but not in squamous cell (Hazard Ratio = 1.19, 
95% CI = 0.57 ± 2.52, p=0.65; Figure 3B). 

3.6. Elevated RNA expression of KRT8 is associated with mortality in patients with pancreatic cancer 

Next, we investigated whether KRT8 tumor gene expression is a prognostic marker of survival. We 
downloaded KRT8 expression and corresponding survival data for 176 patients with stage I-IV 
pancreatic cancer from Human Protein Atlas (Supplementary Table 4). We classified patients as either 
³High KRT8´ RU ³LRZ KRT8´ if WheiU KRT8 expression was above or below the median KRT8 
e[SUeVViRQ Rf Whe cRhRUW (363.5 FPKM), UeVSecWiYeO\. PaWieQWV iQ Whe ³High KRT8´ gURXS had aQ 
increased risk of mortality (cox proportional hazard ratio = 1.73 p = 0.01 Figure 3C).  

3.7. Serum KRT8 discriminates between healthy and pancreatic patients  

Finally, we explored the potential of KRT8 as a minimally invasive biomarker. We measured KRT8 
concentration in serum of 32 biopsy-confirmed patients with pancreatic ductal adenocarcinoma and 
six healthy controls by enzyme-linked immunosorbent assays (ELISA). Samples were collected from 
Stanford Hospital (Supplementary Table 5). The mean KRT8 concentration was significantly 
higher in the pancreatic cancer patients compared to that of healthy controls (p = 7.7e-4; Figure 3D).  
Samples were considered KRT8+ if they had a measured KRT8 value about the detectability limit 
of the ELISA (0.06 RLU). KRT8+ status distinguished patients with pancreatic cancer from healthy 
controls with an area under the curve (AUC) of 0.94 (Figure 3E) and an area under the precision 
recall curve (AUPRC) of 0.99 (Supplementary Figure 4).  
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4. Discussion 

Only a fraction of molecular cancer biomarkers published in academic literature are reproducible in 
follow-up studies. The first step to identifying a robust biomarker is to ensure that the discovery phase 
has included a heterogeneous set of samples, platforms, and measurement technologies. Here, we 
identified KRT8 as such a biomarker by integrating DNA methylation profiling of 2019 samples across 
10 cancers from the TCGA. We then validated that KRT8 is a robust biomarker on 7836 samples in 21 
cancers measured with a different DNA methylation platform within the TCGA. We next analyzed the 
diagnostic and prognostic value of tumor KRT8 gene and protein expression as well as serum KRT8 
using ELISA in over 7000 samples spanning 10 years, multiple platforms, and data repositories. 
Pan-cancer methylation findings have been hindered by questions about batch effects and platform 
bias38. In this work, we used samples run on Illumina 27 platform as our discovery data and Illumina 
450 as validation. KRT8 was significantly hypomethlyated in both platforms, suggesting it is robust to 
platform bias. While TCGA has gene expression data, we chose to use microarray samples from the 
NCBI GEO to ensure that our findings would be robust to data type, batch effect, and platform.  
Single cell analysis has broadened our understanding of tumor heterogeneity, but it can be difficult to 
interpret the immediate translational value of a single time point scRNA-seq analysis. Here, we show 
that intra-cellular gene-gene correlations can suggest overlooked gene functions.  

Our study has several limitations. First, it does not include the entirety of all cancer data available 
in the public sphere, and thus presents an incomplete picture of KRT8 across all data. However, this 
study used 17149 samples across 23 cancers, which still includes significant amount of biological, 
clinical, and technical heterogeneity in the real-world patient population. Further, we have previously 
shown that 4-5 independent datasets with a total of approximately 200-250 samples substantially 
increases the probability of validation in independent cohorts22. Second, we only required two control 
samples in the methylation discovery analysis, which could have led to false positive or patient-specific 
effects within a dataset. However, the integration of all the discovery cohorts and independent 
validation using Illumina 450 methylation platform substantially mitigated the effect of a single cancer 
outlier. In addition, our rigorous downstream analysis of gene expression from 6781 samples in 57 
datasets from 5 cancers provide strong evidence of the robustness of our analyses. Third, we chose only 
the top gene and validated it here. It is possible that other genes may provide equal or greater prognostic 
value than KRT8. However, our aim is to demonstrate the value of the framework we propose here and 
thus we explored only the most promising gene, KRT8. Forth, we do not provide any indication of the 
mechanism underlying the prognostic value of KRT8. It may be as straightforward as increasing 
epithelial cancer cell numbers results in more KRT8 released into the bloodstream, or perhaps there is 
a more complex biological phenomenon at work. These questions can only be answered with follow-
up hypothesis-driven research. 

Previous studies have highlighted the contribution of KRT8 in the progression of gastric and kidney 
cancer. KRT8 has also been proposed as a biomarker in lung cancer. However, KRT8 has never been 
shown to be overrepresented across cancers in a multi-omic analysis. One GEO dataset (GSE15932) 
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contained expression from peripheral blood samples. In this dataset, KRT8 expression was able to 
differentiate cancerous from healthy patients, suggesting that circulating KRT8 RNA may be a 
candidate for a diagnostic blood biomarker. Biomarkers not only have diagnostic and prognostic 
implications, but are also helpful for measurement of treatment responses, surveillance for tumor 
recurrence and guiding clinical decisions. For many cancers, there is not a single blood biomarker; 
others like pancreatic cancer have one or two unreliable screening biomarkers. Here we show the 
potential use of serum KRT8 protein as a blood biomarker in pancreatic cancer. Given that we identified 
KRT8 as overexpressed across cancers, it stands to reason that KRT8 may be useful as a peripheral 
biomarker in other cancers as well.  

Most importantly, this work demonstrates a strategy to translate large molecular analyses into 
specific, clinically relevant hypotheses. Omics sciences enable complex biological systems to be 
visualized in a holistic and integrative manner. Application of systems biology to interpret large 
multidimensional omics data across cancer types will enable the robust identification of biomarkers that 
share common pathophysiology, which can potentially be further explored for pan-cancer interventions 
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