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As the last decade of human genomics research begins to bear the fruit of advancements
in precision medicine, it is important to ensure that genomics’ improvements in human
health are distributed globally and equitably. An important step to ensuring health equity
is to improve the human reference genome to capture global diversity by including a wide
variety of alternative haplotypes, sequences that are not currently captured on the reference
genome. We present a method that localizes 100 basepair (bp) long sequences extracted from
short-read sequencing that can ultimately be used to identify what regions of the human
genome non-reference sequences belong to. We extract reads that don’t align to the reference
genome, and compute the population’s distribution of 100-mers found within the unmapped
reads. We use genetic data from families to identify shared genetic material between siblings
and match the distribution of unmapped k -mers to these inheritance patterns to determine
the the most likely genomic region of a k -mer. We perform this localization with two highly
interpretable methods of artificial intelligence: a computationally tractable Hidden Markov
Model coupled to a Maximum Likelihood Estimator. Using a set of alternative haplotypes
with known locations on the genome, we show that our algorithm is able to localize 96%
of k -mers with over 90% accuracy and less than 1Mb median resolution. As the collection
of sequenced human genomes grows larger and more diverse, we hope that this method
can be used to improve the human reference genome, a critical step in addressing precision
medicine’s diversity crisis.
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Background

The Beginning: The Human Genome Project

In 2001, scientists announced the completion of the human genome sequence [1, 2]. This
sequence eventually evolved into what is known as the “Human Reference Genome,” the most
recent stable version being HG38, and is used extensively in human genetics research and
precision medicine. However, despite the many improvements to the human reference genome
over the past two decades [3, 4], several issues to the human reference genome remain. First
of all, contrary to the public’s understanding of the Human Genome Project, the sequence of
even a single human reference genome remains incomplete. Many hard-to-sequence or hard-to-
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assemble regions such as repetitive regions, heterochromatin, and much of the Y chromosome
are still missing from the human reference genome [5]. Newly available long-read sequencing
technologies are promising avenues for mitigating these issues, and the Telomere-to-Telomere
Consortia recently published the first fully sequenced human chromosome (chromosome X)
[6], with the rest of the chromosomes soon to follow.

The other pressing issue, and the one that we will focus on in this paper, is that, in its
most commonly used form, the human reference genome is a linear sequence of bases built
using the genomes from only a handful of individuals. While a linear reference genome is an
acceptable reference for analyzing DNA that is fairly similar to the reference genome, it is
extremely difficult to localize segments of DNA containing structural variations to a linear
reference genome [7]. In many sequencing pipelines, reads that do not align well enough to
the human reference genome get thrown out and go unused in downstream analysis [8]. A
single linear reference genome has become so problematic that the human reference genome
effort has already attempted to include several alternative haplotypes, sections of genome that
are found in a nontrivial fraction of the population but that differ greatly from the reference
genome [9].

The Current Crisis: Grappling with Missing Genetic Diversity

Unfortunately, the last decade of genetics has primarily sequenced individuals of European
ancestry. Consequently, we know much more about the European-specific SNPs, structural
variants, and alternative haplotypes than we do about genetic variations in any other ancestry
[10]. Notably, African genomes have been particularly underrepresented in large-scale genomic
studies, despite the fact that people with African ancestry have one of the most diverse
collection of genomes in the world [11]

These alternative haplotypes may in fact play an important role in disease and precision
medicine: a structural variant in KCNJ18, a gene with alternative haplotypes missing from
most maps of the human genome, can cause a Mendelian neurological disease called thyrotoxic
periodic paralysis, most common in Asian and Latin American men [12]. Models for dosing
Warfarin, a blood thinner that is metabolized at a different rates based on patient genet-
ics, have been built using primarily European genomic data on the VKORC1 and CYP2C9
haplotype groups, leading to inequities in Warfarin efficacy and safety [13]. With the field
of genomics slated to make great leaps in precision medicine in the next decade, genomic
researchers must address this diversity crisis as soon as possible [14].

The Future: Towards a More Diverse Human Reference Genome

One of the first steps in making the field of human genomics fair, equitable, and accessible to
all is to improve the human reference genome in order to better represent the diverse set of
DNA that represents the collective human genome. Already many large scale sequencing efforts
have been launched, aimed at cataloguing genomes from diverse ancestries, particularly those
who have been historically underrepresented in genomic studies [15–19]. Meanwhile, the field of
pan-genomics has been searching for a way to structure and display the collection of all possible
genomic sequences from humans [20], with graph genomes emerging as the most popular
solution. A non-linear reference genome has become so popular that the Genome Reference
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Consortium delayed their upcoming release of HG39, in order to consider alternatives to the 
traditional linear representation [21].

In order to go from a collection of many genomes, to a graph or other non-linear repre-
sentation of the human pan-genome, the first step is determining where exactly alternative 
haplotypes, sequences not captured in the primary human reference genome, are coming from. 
That is, we need to be able to localize, or identify the chromosome and approximate location 
of, alternative haplotypes and non-reference sequences. Nearly all all localization of human 
alternative haplotypes has been done using long-read sequencing [22–24], which relies on se-
quencing stretches of tens of thousands of basepairs, with the hope of a read encompassing 
an alternative haplotype flanked by sequences of DNA that are easy to align to the refer-
ence genome, effectively determining where on the genome this uncatalogued sequence lies. 
However, long-read sequencing is still not nearly as popular as short read sequencing and 
is more error prone [25]. Most importantly, many of the recently launched studies aimed at 
underrepresented ancestries use short-read sequencing [15, 16, 19, 26].

We present a method that localizes 100-bp long k -mers extracted from short-read se-
quences. We use genetic data from over 700 families to identify shared genetic material among 
siblings and match the distribution of unmapped k -mers to these inheritance patterns to 
determine the most likely genomic region of a k -mer. We perform this localization with a 
computationally tractable Hidden Markov Model coupled to a Maximum Likelihood Estima-
tor. We show that our algorithm is able to localize 100-mers with over 90% accuracy, and is 
capable of resolution <1Mb. As the collection of sequenced human genomes grows larger and 
more diverse, we expect this method will be of use to improve the human reference genome, 
the first step to addressing genomics’ and precision medicine’s diversity crisis.

Methods

Dataset

We used the iHART WGS collection [27], a dataset of multiplex autism families, containing 
1,006 families and 4,610 individuals. Individuals were sequenced at 30x coverage using Illu-
mina’s TruSeq Nano library kits, reads were aligned to build GRCh38 of the reference genome 
and decoy contigs using bwa-mem [28], and variants were called using GATKv3.4. Only bial-
lelic variants that passed GATK’s Variant Quality Score Recalibration (VQSR) were included 
in analysis.

K-mer Counts

Our method uses distributions of k -mer counts within and across families. Thus, in order to 
localize each k -mer the first step of our algorithm is to extract the counts of k -mers for all 
samples in our dataset, as shown in the first step in Figure 1.

We use alternative haplotypes with known locations as a ground truth dataset to evaluate 
the performance of our method. The more recent versions of the human reference genome 
include a decoy reference genome, which includes several hundred contigs of alternative hap-
lotypes (chr# ID Alt) annotated with their location with respect to the primary reference 
genome.

For each sample in our dataset, we extracted the reads that mapped to any of these alter-
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Aligned Reads (.bam)

Person1  Seq1    TTCCATTGGTTC  chr1:12334
Person1  Seq2    TTCCATTGGTTC  chr2:44883
Person1  Seq3    TTCCATTGGTTC  chr2_Alt:30
Person1  Seq4    TTCCATTGGTTC  chrUn:12334
Person1  Seq4    TTCGGAATTAAA Unmapped

persons

Jellyfish

Person1

Person2

Person3
Person4

Person5

loci1 loci2  loci3 loci4 ...

1/0  1/0 1/1 1/1

1/1  1/0 1/0 1/0
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0/1   0/1  1/1  1/1
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Fig. 1. The general pipeline for localizing sequences, a likelihood-based algorithm that uses chil-
drens; IBD computed from a HMM and k -mers distributions derived from raw sequencing reads.
Note that the graphs shown in the figure are real results, generated using our algorithm on our data.

native haplotypes. We used the fast multi-threaded k -mer counter ”jellyfish” [29] to extract
and count the number of 100-mers within the decoy alternative haplotype contigs. We chose a
k -mer length of 100, because with 150 bp reads at 30x coverage (1) there is a high probability
that the full sequence of given k -mer will show up in at least one sequencing read of an indi-
vidual if their genome does in fact contain it; (2) there is almost zero chance that every count
of a k -mer contains an error in an individual; (3) 100 bp is long enough to correspond to a
unique k -mer within the genome, except in highly repetitive regions; and (4) 100 bp is long
enough to make de novo assembly of k -mers possible for future steps in alternative haplotype
construction. In order to avoid k -mers due to sequencing errors, we ignored individuals with
only a single instance of a given k -mer, and only included k -mers that were found in at least
2 samples.

Phasing Families

Phasing refers to the use of an individual’s genetic data to determine which sequences or
variants in their genome were inherited from their mother and which from their father. Families
share genetic material. Each parent has two copies of each chromosome. During meiosis, these
two copies are combined in large blocks to form a new chromosomal copy which is then
inherited by the child. Our goal is to identify which parental copy was inherited by each
child at every position of the genome. Using a hidden Markov model (HMM) , our phasing
algorithm ultimately outputs for each region of the genome, whether a child inherited copy 1
or copy 2 of their mother’s genome in the form of (m1|2, p1|2)

We phase families using the final variant calls from the iHART dataset. We use a hidden
Markov model to describe a state space of inheritance. An HMM is defined by a state space,
transition probabilities, and emission probabilities. In our case, the state space is the set of
ways that the children can inherit the two maternal copies of the chromosome (m1 and m2) and
the two paternal copies (p1 and p2). For example, for a family with two children (m1p1,m2p1)

represents a state where the first child inherits parental copies m1 and p1 and the second child
inherits parental copies m2 and p1. Since we are working with whole-genome sequencing data,
we also include a hard-to-sequence region flag in our state space in order to detect and flag
regions with many sequencing errors. The transmission probabilities in our model represent
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recombination events where the chromosome inherited by a child switches from one parental
copy to the other. We use estimates of 1.39e−8 and 9.23e−9 for the probability of maternal and
paternal recombination per base-pair [30]. The emission probabilities in our model represent
the probability of sequencing errors. We estimate these probabilities directly from the genotype
data using a family-based method [31]. Finally, we use the Viterbi algorithm [32] to identify
the sequence of states that best explains the observed variant calls. The result is a fully phased
family as shown in Figure 2.

Dad

Mom

Sibling1

Sibling2

Goal: Find the 
path that explains 
the observed 
variant calls best

Family Variant Calls
States

Hidden Markov Model Phased Family

Fig. 2. Our hidden Markov model uses the pattern of variants within a family, to detect which
parental copy was inherited by each sibling. This allows us to detect recombination points as well as
identity-by-descent (IBD) sharing between the siblings.

Our phasing algorithm identified 225,313 total recombination points, and thus the same
number of possible distinct regions to use in the subsequent maximum likelihood localization
algorithm.

Note that while phasing families is an algorithmic challenge in its own right, we make our
localization algorithm the main focus of paper.

Localizing Haplotypes

For each k -mer, we wish to find it’s corresponding location (region r) in the genome that best
explain the distribution of the k -mer counts in all of the families.

We define the distribution of a given k -mer in all samples as K, and the distribution of
a given k -mer in family f as Kf . Therefore, we want to find the region r that maximizes the
likelihood of observing k. We can rewrite this likelihood in log-likelihood form:

`(r;K) =
∑
f

log(P (Kf |r)) (1)

Let’s discuss how to compute P (Kf |r), the probability of a family’s k -mer counts given the
k -mer’s hypothetical region.

We assume that children inherit the given k -mer in a Mendelian fashion: from each parent,
they receive either 0 or 1 copy of the k -mer. A parent with the k -mer present on both copies
of their chromosome is guaranteed to pass down the k -mer to their child, a parent without
the k -mer present on either copy of their chromosome will never pass the k -mer down to their
offspring, and a parent who is heterozygous for the k -mer has a 50% chance of passing the
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k -mer down to an offspring. The possible phased genotypes denoted in the order of (maternal
allele, paternal allele) for any person are: 0/0 if the person does not have the k -mer on either
copy of their chromosomes; 1/0 if the person has the k -mer on the maternal copy (or copy 1)
of their chromosome,but no the paternal copy (copy 2); 0/1 if the person has the k -mer on
the paternal copy of their chromosome (copy 2), but not the maternal copy (copy 1); and 1/1
if the person has the k -mers on both copies of their chromosome.

We will refer to define this set of possible genotypes as G = {0/0, 1/0, 0/1, 1/1}. We will call
mother’s genotype gm, father’s genotype gp (p for paternal), and a child’s genotype gc. We can
also define mother’s, father’s, and child’s k -mer counts as km, kp, and kc respectively. Using
this notation and the law of total probability, we can rewrite our family-wise probability of
observing the data as:

P (Kf |r) =
∑

gm,gpεG

P (Kf |r, gm, gp)P (gm, gp) (2)

=
∑

gm,gpεG

(
P (kp|gp)P (km|gm)

∏
c

P (kc|gc)

)
P (gm, gp) (3)

We iterate over all possible genotypes for the mother and the father but not for the
children because from our phasing algorithm, we already know which copy of mom’s DNA a
child inherited, and which copy of dad’s DNA a child inherited at any given region. We can
therefore compute the child’s genotype for a k -mer, given the region, and the parent’s phased
genotypes:

gc = phase(c, r, gm, gp) (4)

The phase() function queries the inheritance pattern of a child c at a region r in the phasing
dictionary. Using the phasing information, it then combines the maternal haploid genotype
on the appropriate copy of gm with the paternal haploid genotype on the appropriate copy of
gp to infer the child’s diploid genotype.

Let’s compute a toy example: phase(c∗, r∗, 1/0, 0/1). If a phasing dictionary tells us that
at region r∗, child c∗ inherited DNA from her mother’s chromosomal copy 1 and her father’s
chromosomal copy 2, the child would then inherit one copy of the k -mer from her mother
(because the mother’s genotype is 1/0, corresponding to a copy on the mother’s 1 copy), and
another copy of the k -mer from her father (because the father’s genotype is 0/1, corresponding
to a copy on the father’s 2 copy). The child’s genotype gc∗ would thus be 1/1. By the same
logic, for the same child at the same region, phase(c∗, r∗, 0/0, 1/0) would be 0/0.

Now let’s compute P (k, g), the probability of a k -mer count in a person, given a person’s
genotype. We assume that k -mers do not exhibit copy number variation; a given k -mer only
appears once in each haploid copy of a person’s genome. We also assume that the sequencing
pipeline, which used random-PCR targeted every region of the genome at an equal read
depth (we later discuss the limitations of these assumptions in the discussion). k -mer depth
then follows a Poisson distribution, dependent on genotype heterozygosity and average k -mer
depth µk. Using the syntax where

∑
(0/0) = 0,

∑
(0/1) =

∑
(0/1) = 1, and

∑
(1/1) = 2, a k -mer

Pacific Symposium on Biocomputing 27:313-324(2022)

318



distribution can be summarized as follows:

P (k|g, µk) = Ppoisson(k;µk
∑

g) (5)

A theoretical µk can be derived for each person using the total number of sequencing reads,
the length of the person’s genome (which differ slightly between males and females), and the
length of the k -mer. The average µk of a 100-bp k -mer for our samples was 5.83.

Given the phasings and k -mer counts, for every family we can now compute the log-
likelihood of a given k -mer belonging to each region of the genome log(P (Kf |r)) and we
can take the cumulative log-likelihoods to compute the total log-likelihood of a given k -mer
belonging to each region of the genome log(P (K|r)). Rather than reporting only the region
with maximum likelihood and be at the whim of statistical noise, we estimate a maximum
likelihood interval [33]. From our cumulative likelihoods, we find all the neighboring regions
on the graph whose relative likelihoods are within a certain threshold. That is, our maximum
likelihood interval is:

{r :
L(r)

L(r̂)
>= t} (6)

where t is a certain threshold. Because k -mers very in their allele frequencies and families
in which they are present, and because families vary in their IBD patterns, k -mer likelihood
profiles are susceptible to different amounts of statistical noise. For that reason, we choose t
as a function of the standard deviation (σ) in each k -mer’s log-likelihood profile. Specifically,
we define our maximum likelihood region to be:

{r : log
L(r)

L(r̂)
) >= −γσ(log(L(r)))} (7)

where γ is a hyperparameter that we must tune. We tried values of γ between .01 and 1,
ultimately choosing .1 for a balance of sensitivity and specificity, localizing 96% of medium-
prevalence (prevalence of .2-.8) k -mers, with a 90% accuracy and median resolution of 870Kb.
If regions from multiple different chromosomes fell into our maximum likelihood region for a
given k -mer, we considered that k -mer unlocalized. A schematic of this pipeline is shown in Fig.
1, with actual family-wise and cumulative log-likelihood graphs computed by our algorithm
on a k -mer from the data.

The code for our localization algorithm can be accessed at
https://github.com/briannachrisman/alt haplotypes.

Results

Our algorithm ultimately localized 96% of medium-prevalence k -mers, with a 90% accuracy
and median resolution of 870Kb.

Likelihood Threshold Tuning

In order to test the trade off between accuracy and resolution, we experimented with several
different relative likelihood threshold cutoffs (as described in Eq. 7 to determine localized
region. We found that using a threshold of γ = .1 provided a satisfactory balance of accuracy
and resolution. More lenient cutoff values, such as γ = .5 resulted in higher accuracy, but
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a lower resolution, and more k -mers with multiple chromosomes falling into their maximum
likelihood regions and thus considered unlocalized.

Number of Correctly Localizd, Incorrectly
Localized, and Unlocalized Sequences

Region Length of Correctly
Localized Sequences

Distance From True Location for
Incorrectly Localized Sequences

correctly localized
incorrectly localized
unlocalized

Correctly
Localized

Wrong
Chromosome

A B C

Fig. 3. (a) Number of sequences in correctly localized (colored as blue); incorrectly localized (yel-
low); or unlocalized (green). (b) Region length of correctly localized sequences. (c) Distance from
true location for incorrectly localized sequences.

Dependence on Prevalence

As shown in Fig. 3A, localization capability and accuracy was heavily dependent on k -mer
prevalence. Our algorithm was unable to localized or incorrectly localized k -mers with very
high prevalence or very low prevalence. This is expected, as there will not be enough sibling
discordance for a k -mer to determine which similarly inherited region between siblings it be-
longs to. Therefore, we report the % localized accuracy, median region length, and median
distance from true values only for the k -mers with ”medium” prevalences (defined as preva-
lences between between .2 and .8), and used those metrics to decide on the best likelihood
cutoff.

Accuracy and Precision

Using a relative likelihood cutoff of -.1σ(L), our algorithm was able to localize 96% of medium-
prevalence k -mers from the decoy sequences, with 90% accuracy and a median 870Kb resolu-
tion. With a 3Gb long genome, this resolution corresponds to being able to localize a sequence
to the a region .03% of the full genome length.

Error Profile

In order to understand the types of errors from our localization algorithm, we analyzed the
error profile. From Fig. 4, we see that our errors are primarily generated from a handful
of alternative haplotypes whose k -mers are incorrectly localized consistently. Only 24 out
of 198 alternative haplotypes had their k -mers localized with < 90% accuracy. These alter-
native haplotypes include chr8 KI270813v1 alt, chr12 GL877875v1 alt, chr2 KI270894v1 alt ,
chr17 KI270907v1 alt, and chr22 KI270878v1 alt. Interestingly, for k -mers from many of these
these ’poorly’ localized haplotypes, our algorithm consistently localized the k -mers to the same
region of the genome. For example, k -mers from chr12 GL877875v1 alt consistently were local-
ized to the beginning of chromosome 6, and k -mers from chr8 KI270813v1 alt were consistently
localized to a region 2Mb downstream of their annotated location. Given these patterns, we
wonder if perhaps there are alternative haplotypes located elsewhere in the genome that are
homologous to those in the decoy sequence and our algorithm is detecting such.

Pacific Symposium on Biocomputing 27:313-324(2022)

320



correctly localized

incorrectly localized

unlocalized

Fig. 4. Stacked histogram of correctly localized (colored as blue), incorrectly localized (yellow), and
unlocalized (green) k -mers for each alternative sequence in the decoy genome.

As shown in Fig. 5, for the most part incorrect localizations are fairly randomly distributed
across the genome. There are some hotspots for incorrect localization, such as the spikes in
chromosome 6 and 8, which correspond to k -mers from a handful of alternative haplotypes
being consistently localized to those regions. This mostly uniformly distributed error profile
bodes well for the future next steps in constructing alternative haplotypes, which would be
to de novo assemble k -mers that are localized to similar regions of the genome into longer
contigs. A uniform error profile would likely mean that k -mers localized to the wrong region
would simply not make it into the assembly of a long contig, and with a high enough k -mer
overlap and accuracy a small percentage of k -mers missing from a region should not create
gaps in the final assembly. We discus the potential pipeline downstream of our localization
algorithm in more detail later on.

Localized Region

correctly localized

incorrectly localized

Fig. 5. Localization predictions for incorrectly and correctly localized k -mers.

Discussion

We show that our model can localize 96% of medium-prevalence k -mers extracted from alter-
native haplotype sequences, with over 90% accuracy and better than 1Mb resolution.

Use Cases

Our model can be used as the first step in a process to generate longer strings of sequences
representing alternative haplotypes that can ultimately be used as alternate contigs in a linear
reference genome, or nodes in a graph-based reference genome. In large genomic studies of
nuclear families, we would extract k -mers from reads that didn’t align to the reference genome,
compute their counts for each person, then use our algorithm to localize each k -mer. From
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there, in a process similar to genome binning [34], k -mers that were localized to similar regions
of the genomes would be de novo assembled into larger contigs, which could ultimately be used
in future human reference genomes, linear or otherwise. Very near future work will involve
localizing reads from our that did not map to the reference genome nor the decoy genome
from our large dataset of families.

As mentioned before, most anticipated large-scale genomic studies focused on underrepre-
sented groups will use short-read sequencing technology. We showed that our method works
well for short-read sequences, but theoretically our method could be adapted to long-read
sequencing as well. Given our read length and coverage, we chose a k -mer length of 100. In
studies with different read lengths, coverage, and error rates, a different k -mer length may be
optimal.

Limitations

This model has two major limitations. Firstly, in using a Poisson distribution to model k -mer
count, we assumed that every 100-bp sequence occurs only once in the genome. This limits
our ability to k -mers that might appear many times in a genome, such as those from highly
repetitive sequences. However, ultimately we wish to assemble our localized sequences into
longer contigs. Highly repetitive sequences are difficult to assemble, and may vary in number
of repeats across individual. Our algorithm would likely still be able to localize the sequences
corresponding to the ends of a highly repetitive contig and capture at least one full repeat,
allowing for reads from a repetitive region to still map to such a contig.

Most importantly, our localization method relies on having genomes from many nuclear
families. Though the field of genomics historically prioritized attaining data from families
in order to understand inheritance patterns via pedigrees, recently family structure has been
sidelined in favor of large unrelated case and control cohorts. However, genomic methods using
families are extremely powerful and seem to be making a comeback. Using genomic data from
families, we can not only make use of our described localization method, but we can better
understand dynamics of recombination [35], detect rare and de novo variants and analyze
their relationship to phenotypes [27], use sibling recurrence rates to categorize inheritance
mechanisms of disease [36], and measure experiment-specific sequencing error rates [31]. We
strongly advocate for the return of family study designs in the field of genomics, particularly
in upcoming studies that seek to sequence large numbers of genomes from underrepresented
groups.

The Role of Sequence Localization in the Future of Reference Genomes

Localization has an important role to play in the future of reference genomes. Being able to
localize short sequences will allow us to construct alternative haplotypes from the unmapped
read space of short-read whole genome sequences. Our algorithm uses nuclear family structure
to localize such sequences, and we implore future studies to take advantage of our algorithm
along with the the many other benefits that come with using family study design. Particularly,
as the African Society for Human Genetics pushes forward its exciting goal of sequencing
3 million African genomes [37], we highly recommend recruiting families for at least some
samples. A better understanding of diverse haplotypes, starting from where they are located
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within the human genome, is a vital first step in creating a reference genome that encompasses
the full spectrum of human genetic diversity and in addressing precision medicine’s diversity
crisis.
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