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Gaussian processes (GPs) are a versatile nonparametric model for nonlinear regression and
have been widely used to study spatiotemporal phenomena. However, standard GPs offer
limited interpretability and generalizability for datasets with naturally occurring hierar-
chies. With large-scale, rapidly-updating electronic health record (EHR) data, we want to
study patient trajectories across diverse patient cohorts while preserving patient subgroup
structure. In this work, we partition our cohort of over 2000 COVID-19 patients by sex and
ethnicity. We develop and apply a hierarchical Gaussian process and a mixture of experts
(MOE) hierarchical GP model to fit patient trajectories on clinical markers of disease pro-
gression. A case study for albumin, an effective predictor of COVID-19 patient outcomes,
highlights the predictive performance of these models. These hierarchical spatiotemporal
models of EHR data bring us a step closer toward our goal of building flexible approaches
to capture patient data that can be used in real-time systems∗.
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1. Introduction

The highly contagious nature of the emergent coronavirus (COVID-19) and limited knowledge
of treatment methods necessitate decision support tools that can efficiently estimate and
predict patient trajectories in order to measure disease progression. Notably, recent findings
report considerable disparities in manifestations of COVID-19 across racial minorities within
the United States, with a disproportionately high frequency of hospitalizations among African
American, Hispanic, and Native American populations.1 Higher rates of obesity, a known
high-risk comorbidity, are observed in marginalized groups, which contribute to more severe
illnesses and higher mortality rates for these patients.2 Worse outcomes arise due to a complex

∗The code and supplementary material are available at: https://github.com/bee-hive/HGP-MOE
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combination of physiological, socioeconomic, behavioral, and cultural factors. A model that
can account for group structures that arise both inherently and environmentally is necessary
in order to develop clinical recommendations tailored to individual patients and to mitigate
bias in treatment procedures; at the same time, that model should also allow for the sharing
of signal across groups when patient group sample sizes are small.

The Hospitals at the University of Pennsylvania (HUP) COVID-19 dataset contains clinical
observations of 2069 patients who tested positive for COVID-19 via a PCR test between April
2020 to August 2020 at the University of Pennsylvania Medical Center (UPMC) hospital in
Philadelphia, PA.

This anonymized dataset includes the following patient information:

• patient demographic information including age, sex and ethnicity;
• labs and vital sign measurements, including blood serum creatinine, partial pressure of

oxygen, and total urine output;
• procedural information, including details of mechanical ventilation, nasal cannula, and

liters of oxygen flow; and
• medication information including type, dosage, and time of administration.

Fig. 1: Patient cohort breakdown. Cohort size (top left); patient mortality by ethnicity (top
right); patient mortality by age and sex (males bottom left and females bottom right)

With an emergent disease like COVID-19, we want a model that is robust to missing
and noisy patient data, and also computationally tractable to allow continuous data updates.
Known for their flexibility, interpretability, and uncertainty quantification, Gaussian processes
(GPs) have proven useful in machine learning,3 spatiotemporal statistics,4 and functional
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data analysis.5 Among their applications, GP regression is a nonparametric regression model
that places a distribution on arbitrary nonlinear functions with smoothness modulated by
the selected kernel function.6 Updated by observations, the GP posterior enables predictions
and uncertainty estimates at unobserved locations on sequences, such as the time or space
domain, including the future. Due to the Gaussian assumption of the joint distributions over
observations, the posterior is Gaussian with closed-form mean and variance terms.

Previous work has exploited the flexibility of GPs to obtain insights into problems in
healthcare, including early detection of sepsis through multi-output GPs,7,8 online updates of
patient vital signals with sparse multi-output GPs,9 and reliable prediction of adverse hospital
events by jointly modeling longitudinal trajectories and time-to-event data.10

For the task of modeling disease trajectories, particularly for a large patient cohort, us-
ing standard GP regression is insufficient because many complex diseases such as lupus and
pneumonia manifest heterogeneously in patients across different demographic and clinical sub-
groups.11,12 Noting this heterogeneity, prior work placed a hierarchy on scleroderma patients at
the population, subgroup, and individual levels.10 B-splines were used to model each subgroup
trajectory and a GP was used to capture noise.

Although the MedGP approach9 combined information across patients using an empirical
Bayes approach, allowing subgroups to be captured via kernel parameters, it lacks a rigorous
approach to evaluating group structure and posteriors. Motivated by the need to explicitly
account for group structure, our framework builds on the premise of a group structure in the
patient population and provides a fully Bayesian treatment of hierarchical disease trajectory
modeling.

The contributions of this work are as follows: At a high level, we develop a flexible Gaus-
sian process that is able to capture sparse, noisy, electronic health record (EHR) time-series
data. More specifically, we build a hierarchical mixture of experts (MOE) Gaussian process
(GP) regression model that allows sharing of strength across patient samples with known
group structure. The MOE allows each sample to participate in multiple patient groups si-
multaneously, such as inclusion in both the female (sex) and Black (race) patient groups.
Furthermore, our fast closed-form inference method allows us to apply this framework to hun-
dreds of COVID-19 patient trajectories to show its robustness in fitting a variety of clinically
important covariates.

This paper is organized as follows: In Section 2, we discuss the background for standard,
hierarchical, and MOE Gaussian process regression models. We introduce our framework of
MOE hierarchical Gaussian process regression in Section 3. We demonstrate the performance
of our framework on COVID-19 patient EHR data and discuss the implications of these results
in Section 4. We conclude by exploring future directions in Section 5.

2. Background

In this section, we provide a brief summary of GP regression and its extension to a Bayesian
hierarchical setting.
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2.1. Gaussian process regression (GPR)

We consider the Bayesian analysis of standard linear regression f(xi) = βTxi, where β is the
weights of the linear model, xi are regressors, and f(xi) is the noiseless function. Given observed
data D = (X,Y ) where X = {xi}ni=1 are regressors such as time across n total observations,
and Y = {yi}ni=1 are noisy, scalar responses, then we can write each response as yi = f(xi) + εi
where εi ∼ N (0, σ2) is Gaussian white noise. Given a new set of regressors X∗ = {x∗}, the goal
is to predict the responses Y∗ = f(X∗).

We can extend these linear models to nonlinear regression functions using Gaussian pro-
cesses. Gaussian process regression is a probability distribution over arbitrary smooth func-
tions such that any finite realization is a multivariate Gaussian random variable. For any
observations X = [x1, · · · , xn],

[f(x1), · · · , f(xn)]> ∼ GP ([m(x1), · · · ,m(xn)]>, (κ(xi, xj))),

where m(·) is the mean function and κ(·, ·) is a positive definite kernel function. As in prior
work, the mean function m is assumed to be zero.9 There are many possible positive defi-
nite kernel functions κ, including exponential (Ornstein-Uhlenbeck), squared exponential, and
Matérn covariance functions. These covariance functions include parameters that control the
spatial variance and decay of the dependency over the domain; these kernel parameters are
often estimated by maximizing the log likelihood (MLE):

log(p(Y |X)) = log N (Y |0,Γ) = −1

2
Y >(Γ + σ2I)−1Y − 1

2
log |Γ + σ2I| − N

2
log(2π),

where Γij = κ(xi, xj). Let Γ∗ = κ(X,X∗) and Γ∗∗ = κ(X∗, X∗) then the posterior of Y∗ is given
by

p(Y∗|X∗, X, Y ) = N (Y∗|µ∗,Σ∗)
µ∗ = ΓT∗ (Γ + σ2I)−1Y

Σ∗ = Γ∗∗ − ΓT∗ (Γ + σ2I)−1Γ∗.

A point estimate of Y∗ is given by µ∗, the posterior mean, while Σ∗ is the variance of this
posterior mean.

The computational complexity of inference for GPR is O(n3) because of the need to in-
vert Γ, an n by n matrix. Fortunately, there is an immense literature on scalable inference
algorithms for GPs, including tapering.13 The idea of tapering is to impose zero correlation
between two points that are not close to each other by multiplying κ by a tapering function
T : κT := κ(x, y)T (x, y). For example, when T (x, y) = 1{‖x−y‖<ε}, κT (x, y) = 0 if ‖x − y‖ ≥ ε,
resulting in a sparse block diagonal covariance matrix.

2.2. Hierarchical Gaussian process (HGP) regression

One of the main challenges in predicting future values of a disease trajectory or imputing
unobserved values within a trajectory is that biological and environmental factors lead to
high variance in patient state and disease progression. For instance, many diseases include
one or more disease subtypes, and the progression and severity of a disease can vary across
patients with different ages, sexes, or chronic conditions.
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For datasets with known subgroups, hierarchical models are a natural choice because they
allow the sharing of information across and within subgroups. The use of hierarchical models
allows precise modeling of each subgroup and sharing of signal across all of the subgroups; it
is particularly beneficial in the case where each subgroup has a small sample size.

Hierarchical structure can be enforced through the mean function, the covariance function,
or a structured prior. Prior work [14] placed a hierarchy on the mean function parameters to
model PM2.5 levels, a measurement of air quality, much like the spline model for individualized
disease prediction.10 Other work [15] placed a hierarchy on gene expression at two levels—
each experiment and each replicate gene—to model heterogeneity. Conjugate inverse Gamma
priors were placed on the kernel parameters to model the relationships between low and high
accuracy experiments.16 Variants of the hierarchical model include hierarchical MOE that
lends a tree structure in computing parameter values,17 deep GPs in which inputs to each GP
have their own GP prior.18 This work uses subsets of inducing points to fit experts, which
hold information at the group and individual levels.19

3. Hierarchical Gaussian process regression for patient trajectories

In the context of prior work, we develop a Bayesian hierarchical GP regression model for
patient data. We group the patient population by attributes including sex and ethnicity. We
impose a hierarchy on these trajectories at the group and individual levels by letting the mean
of each level in the hierarchy be distributed by a Gaussian process parameterized for the level
above. We use k = 1, · · · ,K as the group-level subscript and i = 1, · · · , Nk as the patient-
level subscript in group k. All patients in the kth subgroup share an underlying trajectory
modeled by gk(x). Patient i in subgroup k is associated with a unique trajectory, denoted by
fk,i(x), that is influenced by various factors including demographics, lifestyle choices, genetic
predispositions, and pre-existing conditions. Then,

gk ∼ GP (0, kg)

fik ∼ GP (gk, κf ).

Let Yk = {yk,i}Nk

i=1 be the collection of noisy observations of clinical markers of Nk patients
in subgroup k at time points Xk := {Xk,i}Ni=1. The covariance between the data Y and the
functions f(·), g(·) is

Cov(yk,i(x), gk(x
′)) = κg(x, x

′)

Cov(yk,i(x), fk,i′(x
′)) =

{
κg(x, x

′) + κf (x, x′) if k = k′

κg(x, x
′), otherwise .

3.1. HGP kernel functions and tapering

Our model uses an additive hierarchical kernel, similar to that introduced by [15], with tapering
that further enforces sparsity. For flexibility in the smoothness of the inferred functions, we
choose the Matérn kernel with parameter ν that controls the smoothness of the GP:20

κ(x, x′) =
σ2

Γ(ν)2ν−1

(√
2ν

γ
d(x, x′)

)ν
Kν

(√
2ν

γ
d(x, x′)

)
,
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where Kν is the modified Bessel function of the second kind with order ν. In practice, we es-
timate these parameters by maximizing the likelihood. In our model, we set kernel parameter
ν = 5

2 at the group level, and ν = 3
2 at the individual level.

With this kernel function, we model the data distribution as multivariate normal.

Yn|Xn, θ ∼ N (ŷn|0,Σn).

The parameters θ are {αT , βT , γT }. The covariance matrix Σn is written as

Σk(i, i
′) =

{
Γg(xk,i, xk,i′) + Γf (xk,i, xk,i′) + β · I, if i = i′

Γg(xk,i, xk,i′), otherwise.

Both Γg and Γf are matrices formed by evaluating κg and κf , respectively, on xk,i and xk,i′ .
These covariance matrices inherit a natural block structure from the kernels (Fig. 2). To scale

Fig. 2: Model setup (left) and block structure of HGP covariance matrix (right).

up the HGP with computational complexity O(n3), we further perform tapering to enforce
relationships only between close time points. Tapering encodes sparsity in the covariance
matrix on the off-diagonal elements that are more distant from each other in time, which
improves inference tractability.13

3.2. Mixture of experts

Although the HGP allows us to model group structure and individual patient trajectories
that differ from the group, its exponential cost with respect to number of groups renders
it impractical for large patient cohorts with many groups. Because each patient belongs to
multiple groups simultaneously – sex, ethnicity, and disease subtype for instance – we want
a tractable way to combine information from all of the patient’s group attributes, i.e., an
additive kernel. Thus, we extend the HGP with mixture of experts (MOE) kernels at the
group level (Fig. 3). Originally developed to handle multiple modalities in large datasets,21

MOE GPs can be adapted to a hierarchical setting such that the group-level kernel is the sum
of attribute kernels of patients belonging to that group. An ensemble of local experts allows
the kernel function to adapt to each observation,22 which in our case corresponds to a patient.
Again, we use a tapered Matérn 5/2 kernel at the group level and a tapered Matérn 3/2 kernel
at the patient level. We perform efficient close-form inference using the SciPy Optimizer.
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Fig. 3: Model setup (left) and MOE HGP covariance matrix (right).

4. Experiments

We first benchmark our MOE HGP model, using HUP patient trajectories, against standard
GPR and an HGP. We then present examples of fitted and predicted trajectories of cluster
representatives, or patients whose trajectory minimizes the Wasserstein distance to all other
patients in their subgroup. Intuitively, the cluster representative corresponds to the patient
who best captures the canonical trajectory of that group.

We evaluate the performance of our MOE HGP on COVID-19 patient trajectories from
the Hospitals at the University of Pennsylvania (HUP). For the purposes of model fitting,
we only consider patient trajectories with over 25 observations corresponding to unique time
points. We group patients based on attributes of sex (male and female) and ethnicity (Black
and white). We create balanced patient cohorts with 30 patients per permutation of groups
(i.e., 30 Black women, 30 Black men, 30 white women, 30 white men).

For each patient and each covariate, we select 25% of the measurements randomly as the
test set and use the remaining measurements as the training set. It is also possible to include
future time points in the test set, albeit at the expense of GP model performance as test points
extend further into the future, meaning there is greater uncertainty in the predictions.20 To
evaluate performance, we use mean squared error (MSE) and R2 metrics to compare the train
and test sets to predicted values.

We also evaluate the 95% confidence intervals (CIs) to measure model calibration for
GPR, HGP, and MOE HGP. In our discussion, the values reported for 95% CI calibration
refer to the percentage of points that fall outside the 95% confidence interval. We focus on
albumin as our covariate of interest, as it has been shown to be a clinical marker of COVID-19
progression.23 The results for albumin are representative of trends across covariates in the
dataset (see Supplementary material for details).

The shapes of the patient trajectories for albumin vary greatly (Fig. 4). GPR cannot, for
example, capture the trajectory of patient 11, but the HGP and MOE HGP are able to do so.
For patient 38, the more granular trends for the first few time points are captured by the MOE
HGP, but not the HGP. The average train MSE across patients for the covariate albumin is
the lowest for the MOE HGP. The average test MSE across patients is comparable across the
three models. However, the train and test R2 values, and the 95% CI calibration, are much
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better across patients for the HGP and MOE HGP as compared to GPR (Table 1).

Fig. 4: Cluster representative fits for covariate albumin. Patient 11 is a white male; Patient
23 is a Black female. Patient 38 is a white female.

Model
Train
MSE

Test
MSE

% of Patient
Train R2s
for which

Model > GPR

% of Patient
Test R2s
for which

Model > GPR

% of Patient
95% CIs
for which
Model is

better than GPR

% of Patient
95% CIs
for which
Model is

same as GPR

GPR 0.04 0.21 — — — —

HGP 0.03 0.23 73.17 58.54 21.95 60.98

MOE 0.02 0.21 60.98 53.66 21.95 68.29

Table 1: Model metrics for covariate albumin

We find substantial overlap in the the patient trajectories that benefit from the MOE HGP
and HGP over GPR. Patient 7’s trajectory is a canonical case in which the R2 value is greatly
improved with the HGP and MOE HGP (Fig. 5, Top). The mean function for GPR appears
to a running average in the first half of the observed time points. The HGP and MOE HGP
both provide better fits where GPR cannot. Similar to patient 7, patient 2’s trajectory has
higher variance with GPR (Fig. 5, Bottom). This large variance has negative consequences
on the 95% CI calibration. This patient has eight test points, so GPR gives a 95% CI of 0%,
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but the HGP and MOE HGP give 95% CIs of 25% since they each have two “outlier” test
points. Taken together, these empirical results suggest that the two hierarchical models are
more effective on these complex patient trajectories.

Fig. 5: Exemplars of patient trajectories benefiting from HGP and MOE HGP.

The importance of group structure becomes more evident when we examine the kernel
parameters at the patient level. The MOE HGP has lower spatial variance across all patients,
as reflected in the distribution of the patient-level kernel variance parameters. GPR, lacking a
group structure, defaults to learning a higher variance parameter. The structure of the MOE
HGP is also useful for comparison across groups. When partitioning the patient cohort by
ethnicity and sex, we see that Black patients have higher variance parameters than white
patients do (Fig. 6). We do not observe meaningful differences in these parameters between
male and female patients.

Next, we fit the three models to the following clinical markers of COVID-19 disease pro-
gression for a randomly selected patient: anion gap, creatinine, partial pressure of oxygen (PO2

Arterial), blood carbon dioxide levels (CO2), fraction of inspired oxygen (FIO2) and blood oxy-
gen saturation (Arterial O2 Content) (Fig. 7). Our experiments suggest that the MOE HGP
effectively fits these markers for any randomly selected patient in the cohort.

Across patients and groups, we see that the HGP and MOE HGP consistently outperform
GPR in fitting patient trajectories for albumin, blood CO2, fraction of oxygen inspired FIO2,
and lactic acid (Supplementary material Fig. 1-3, 5). These covariates – albumin as an indi-
cator of kidney function and the remaining covariates as indicators of cardiovascular function
– can inform immediate treatment decisions. Furthermore, the MOE HGP demonstrates su-
perior uncertainty quantification over the HGP by giving the best 95% CI calibration at no
observed cost to the test MSE, as reported for albumin, blood CO2, fraction of oxygen inspired
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Fig. 6: Patient level kernel parameters for GPR versus the MOE HGP for albumin.

Fig. 7: Covariate trajectories for a randomly selected patient in the cohort to demonstrate the
robustness of the MOE HGP.

FIO2 (Table 1, Supplementary material Tables 2-4). The MOE HGP’s strong performance,
particularly in capturing complex trajectories with low spatial variance, can be attributed to
its incorporation of group structures.

5. Conclusion

We propose a hierarchical mixture of experts Gaussian process (MOE HGP) model to fit and
predict COVID-19 patient trajectories for clinically relevant covariates. We show that our
MOE HGP model is effective in analyzing covariates and provides an in-depth analysis for
albumin. We demonstrate the robustness of our model for an individual patient on indicators
of blood oxygen levels like arterial PO2, CO2 and FIO2. Theses covariates are noisy yet useful
for monitoring patient state in ICUs. Overall, the MOE HGP allows us to model groups
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separately while sharing signal across groups to enable more precise modeling of the natural
group structure in patient populations without losing statistical power.

A natural extension of this work is to generalize the model to perform multi-output pre-
dictions. Because clinical covariates are often correlated, a multi-output GP that captures
correlations between disparate covariates, in addition to correlations between observations
within a single covariate, would be useful for more accurately modeling of clinical markers
across time. With a multi-output model, we may include larger patient cohorts that are more
diverse with respect to group attributes that could serve as proxies of socioeconomic status
such as zip code, marriage status, and insurance status. We anticipate that we would be able to
leverage such group structure to explore differences in disease trajectory or biases in treatment.
Other group attributes like age, body mass index (BMI), and estimated glomerular filtration
rate (eGFR) inform our understanding of how comorbidities such as obesity and renal disease
impact disease progression within a certain socioeconomic or ethnic subpopulation.

Another direction of future work may be to apply contrastive learning, or methods that
capture differences between the groups using parameters present in one but not the other.24

Contrastive modeling has been applied to linear dimension reduction25 and formalized to a
probabilistic model-based alternative.26,27 With an extension of probabilistic contrastive mod-
eling to Gaussian processes, we could improve the group-based prior for our model with in-
formation regarding differences between patients from traditionally marginalized populations,
the “foreground” group, and their majority counterparts, the “background” group.
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