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The three-dimensional structures of proteins are crucial for understanding their molecu-
lar mechanisms and interactions. Machine learning algorithms that are able to learn accurate
representations of protein structures are therefore poised to play a key role in protein en-
gineering and drug development. The accuracy of such models in deployment is directly
influenced by training data quality. The use of different experimental methods for protein
structure determination may introduce bias into the training data. In this work, we evaluate
the magnitude of this effect across three distinct tasks: estimation of model accuracy, pro-
tein sequence design, and catalytic residue prediction. Most protein structures are derived
from X-ray crystallography, nuclear magnetic resonance (NMR), or cryo-electron microscopy
(cryo-EM); we trained each model on datasets consisting of either all three structure types
or of only X-ray data. We find that across these tasks, models consistently perform worse
on test sets derived from NMR and cryo-EM than they do on test sets of structures de-
rived from X-ray crystallography, but that the difference can be mitigated when NMR and
cryo-EM structures are included in the training set. Importantly, we show that including
all three types of structures in the training set does not degrade test performance on X-ray
structures, and in some cases even increases it. Finally, we examine the relationship between
model performance and the biophysical properties of each method, and recommend that the
biochemistry of the task of interest should be considered when composing training sets.

Keywords: protein structure, machine learning, dataset bias, structure determination

1. Introduction

Understanding the complex interaction between protein structure and function is crucial for
elucidating disease mechanisms, discovering new drug treatments, and many other key ques-
tions in biology and medicine. The advent of machine learning techniques for analysis of 3D
protein structures has led to great advancements in many tasks across structural biology,
including protein structure prediction,1–3 protein-protein and protein-ligand interface predic-
tion,4,5 and the design of novel protein sequences and structures.6–8

Despite the strong performance of these machine learning methods, the degree to which
this performance will be replicated on new data depends on a match between the distribution
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of structures used for training and the distribution of structures to which the methods are
applied. In the case of structural biology, the distribution of the underlying data (the actual
3D positions of atoms) is governed by the laws of physics and is well-characterized. However,
the data provided to computational algorithms are not direct measurements of these positions.
Instead, input data consists of 3D structures derived from X-ray crystallography, NMR and
cryo-EM experiments. The fundamental differences between these technologies result in 3D
atomic structures with measurably different underlying distributions.9,10

Multiple studies11,12 have characterized these differences. X-ray crystallography generally
produces structures with higher atomic resolution than NMR13 and is better at solving cova-
lent geometry and torsion angles. However, it can only produce structures for crystallizable
molecules, and does not fully capture dynamics in solution. This experimental limitation re-
sults not only in different structures for a single protein, but also different distributions of
protein families within the sets of structures solved by each method. Conversely, NMR struc-
tures reflect dynamics and protein structure in solution, but are based on ensembles of noisier
local measurements and have lower resolution. NMR also tends to be used on smaller proteins.

Cryo-EM has been increasingly used for large proteins and has several logistical advan-
tages.14 However, resolution is generally low and its application can be hampered by technical
considerations. Cryo-EM measures electron potential rather than electron density, a distinction
that leads to different structural details.15 Thus, the three primary structural determination
methods have a complex set of possible biases which are not well characterized in the context
of machine learning. However, by empirically examining the structures generated and the al-
gorithms that use them for training, we can better understand the magnitude and importance
of these differences.

Fig. 1. Change in distribution of structures deposited
to the PDB from 1990-2020.

The increasing prominence of
cryo-EM (Figure 1) makes this issue
more pressing, as it is shifting the dis-
tribution of data more rapidly, caus-
ing the potential for model bias due
to dataset shift.16 X-ray crystallogra-
phy has been the dominant method of
structure determination for proteins
deposited in the Protein Data Bank
(PDB) for decades,17 so most analytic
methods developed have taken one of
two approaches: removing all non–X-
ray structures, resulting in a loss of
increasingly valuable NMR and cryo-
EM data; or including all data regardless of experimental method, which assumes that there
is not a meaningful difference across methods. We hypothesize that the experimental source
of protein structure data is important to consider when constructing training datasets and
evaluating machine learning algorithms, especially as such models are increasingly being used
to guide biological experimentation.
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In this study, we explore the effect of training set composition on the performance of differ-
ent algorithms applied to 3D protein structures. We focus on three common tasks: estimation
of model accuracy (EMA), protein sequence design, and catalytic residue prediction. For each
task, we use publicly available implementations of machine learning methods which learn di-
rectly from 3D structure. Each method is trained on datasets containing either (1) X-ray data
only or (2) a combination of X-ray, NMR, and cryo-EM data. We evaluate the performance of
each of these models trained on different data using a fixed test set containing all three types
of structures. Finally, we provide preliminary recommendations to maximize the performance
of structure-based algorithms in a deployment setting.

Code and supplementary material are available at https://github.com/awfderry/

ml-structure-bias and datasets can be downloaded at https://zenodo.org/record/

5542201.

2. Methods

2.1. Experimental Design

We choose three tasks spanning a variety of applications and describe each here, along with
the evaluation metrics used to assess performance.

Estimation of model accuracy is the task of scoring how close a proposed protein
structure (called a “decoy”) is to the ground truth “target” structure. This is an important
task for the blind evaluation of new structure prediction algorithms, and is thus a standard
task in the biennial Critical Assessment of Structure Prediction (CASP) competition.18 The
outputs are global and depend directly on the atomic structure of the target protein, so any
model must learn the intricacies of this structure along with its potential biases.

Evaluation: Model accuracy is typically quantified using the Global Distance Test Total
Score (GDT-TS), which is computed through the Local-Global Alignment (LGA) algorithm.19

Our models are trained to predict this quantity, and we evaluate performance using the Spear-
man rank correlation between predicted and actual GDT-TS for each decoy. We choose to use
Spearman correlation for two reasons: (1) a major use case of model assessment algorithms is
in the ranking of candidate structures for a specific target, and (2) the metric is insensitive
to the specific values of GDT-TS, which can vary across targets. In addition to global cor-
relation across all CASP targets, we report a mean per-target correlation which assesses the
ability of a model to rank candidate models for an individual protein. Statistical significance
between correlations is assessed using Fisher-transformed z-scores on the Pearson correlation
coefficients (see Supplementary Data for details).

Protein sequence design is the inverse of the well-known structure prediction task—
given a desired structure, the model produces an amino acid sequence predicted to fold into
that structure. A successful protein design model will enable rapid generation of de novo struc-
tures that may, for example, tightly bind a desired ligand of interest or self-assemble into a
nanomaterial without first requiring a natural protein that already demonstrates the activity
of interest. This task requires a model to accurately learn sequence-structure relationships,
and has recently been a popular task for deep learning models in structural biology.20–23

Evaluation: For evaluation, we follow the example of recent works22,23 and evaluate this
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task using perplexity and native sequence recovery. Perplexity is a common metric in natural
language processing which represents the likelihood of a particular sequence occurring under
the trained model, and recovery is the fraction of amino acids in the true sequence that are
predicted by the model. Although these are proxy metrics, under the assumption that native
sequences are optimized for their structures,24 we want to select for models that are better
at assigning high probability to native sequences. Statistical significance between perplexity
distributions on each dataset is assessed using Mann-Whitney U test (see Supplement).

Catalytic residue prediction involves predicting which amino acids in an enzyme are
involved in functional activity, an important task for automatic annotation and active site iden-
tification. Many methods and databases use sequence-based models to predict function,25,26

but since function is closely tied to structure, it is important to approach functional residue
prediction through a 3D lens. For this task, models must effectively learn structure-function
relationships in situations that often rely on precise positions of critical atoms.

Evaluation: This task requires predicting binary labels for catalytic residues. Since this
task is highly imbalanced (with far fewer functional residues than nonfunctional ones), we
evaluate performance using the area under the precision-recall curve (AUPRC). Statistical
significance is assessed using Mann-Whitney U test (see Supplement).

Algorithm selection: We trained one contemporary machine learning algorithm for each
task in our experiments. We selected algorithms using the following criteria: (1) The model
must be published and evaluated on the task in question. (2) The model must learn directly
from 3D atomic coordinates, without the use of hand-crafted or derived structural features.
(3) The model must report performance that is near state-of-the-art for the task, with some
leniency due to variations in evaluation criteria. (4) Finally, the algorithm must be publicly
available, including the ability to retrain on arbitrary protein structures from the PDB. This
final point is crucial because our experiments require training a new model on each data split,
while many published methods only include code for evaluating trained models on new data.

For both EMA and protein design, we use the recently published Geometric Vector Percep-
tron (GVP)23 graph neural network architecture, a method for learning from protein structure
which has demonstrated state-of-the-art performance on both tasks as well as a variety of other
problems in structural biology.27

For catalytic residue prediction we use DeepFRI,28 which uses a graph convolutional net-
work to predict function protein function. The gradients of a DeepFRI model trained on en-
zyme classification can be used to identify catalytic residues with high accuracy. By adopting
this method, we can evaluate not only predictions at residue level for catalytic site prediction,
but also global predictions of enzyme class designated by the Enzyme Commission29 (EC).

Splitting methodology: For each task, we construct two separate training sets based on
the two commonly used methodologies in the literature: one containing only structures solved
by X-ray diffraction, and the other containing a mix of structures solved by X-ray, NMR,
and cryo-EM. Validation sets were selected randomly from within each training set and were
used to choose the final model. All evaluations for each task are conducted on a single held-
out test set containing X-ray, NMR, and cryo-EM structures, and performance is evaluated
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separately for structures solved by each method. By using this setup, we mimic the scenario
where published methods trained on varying input datasets are tested on new data which
may be drawn from a different distribution. We also emphasize that we did not attempt to
balance the distributions of experimental method in the training sets, or create an NMR-only
or cryo-EM–only training set, since this would require either drastically reducing the training
set size or oversampling NMR and cryo-EM structures, which would further bias our analysis.

2.2. Task-specific Methods

Estimation of Model Accuracy

Data: We downloaded model accuracy metadata and labels from CASP 8–13, and obtained
the corresponding structures from the full pre-processed Protein Structure Ranking bench-
marking dataset provided by the ATOM3D resource.30 The standard splitting methodology
for accuracy estimation uses a time-based split to mirror the structure of the competition, in
which the most recent targets are withheld for testing. We adopt a similar strategy, but since
CASP 13 has released only two NMR structures, we augmented the test set with all NMR
structures in CASP 11 and 12. We further ensured that no targets in the test set shared any
chain-level CATH topology class with any structure in the train or validation sets. This re-
sulted in a final test set of 59 targets (40 X-ray, 8 NMR, 11 cryo-EM). All non–X-ray structures
were then pruned from the remaining training set targets to create an X-ray only training set
of 331 targets. To prevent bias due to train set size, the X-ray structures in the training set
were randomly subsampled to the same size, resulting in 287 X-ray, 42 NMR, and 4 cryo-EM
structures. Five percent of each training set (22 targets, stratified by method for the mixed
dataset) was removed at random to create a validation set. For training and validation sets,
we randomly sample 140 decoys per target; for the test set, we include all decoys.

Training details: We separately trained a GVP model on each of the two training datasets.
Each model used a batch size of 16 and otherwise default parameters (learning rate of 1e-4,
3 GVP-GNN layers, hidden dimension of 64), and was trained for 20 epochs using the Adam
optimizer31 with default parameters. The final weights for each model were selected using the
epoch which achieved maximum global Spearman correlation on the validation set.

Protein Sequence Design

Data: We obtained data from the 40% non-redundant dataset curated by Ingraham et al..22

This dataset consists of a total of 19,362 protein chains which are partitioned into train,
validation, and test sets by CATH topology code. We evaluate on this test set, which contains
333 X-ray structures, 767 NMR structures, and 55 cryo-EM structures. We prune the training
and validation sets as described for EMA, resulting in a training set of 13,687 X-ray structures.

Training details: As above, we separately trained a GVP model on each training dataset
with default parameters. We trained for 150 epochs using the Adam optimizer with default
parameters. The final weights for each model were selected using the epoch which achieved
minimum cross-entropy loss averaged over residue predictions on the validation set.
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Catalytic Residue Prediction

Data: We obtained data for functional residue prediction from the Catalytic Site Atlas
(CSA).32 We extracted 24,836 X-ray structures and 330 non–X-ray structures. In order to
prevent data leakage, we split the data into train and test splits based on sequence identity
between protein chains as calculated by BLAST.33 20,180 X-ray–derived chains had less than
30% sequence identity with the non-X-ray–derived chains as well as an EC class label (EC
number) available. We did an 80/20 random split to create a training set (16,163 chains) and
a validation set (4,017 chains). The remaining X-ray structures were set aside as a preliminary
test set. The non-X-ray chains were clustered into two partitions of approximately equal size
using CD-HIT.34 Each protein chain in the first partition had less than 30% sequence identity
with each of the protein chains in the second partition, and vice-versa. One of these partitions
was randomly split into a training set (160 chains) and a validation set (42 chains). The other
partition (231 chains) was designated as a test set. All X-ray structures in the preliminary
test set with greater than 30% sequence identity to any structure in the non–X-ray training
or validation sets (1,704 chains) were removed, and the remaining X-ray structures (4,142
chains) were added to the final test set.

Training details: We separately trained DeepFRI on each of the two training datasets. Each
model used default parameters (batch size of 64; 3 graph convolutional layers with dimensions
of 128, 128, 256; dropout probability of 30%; learning rate of 2e-4; and L2 regularization with
weight 1e-4), and was trained for 50 epochs using the Adam optimizer with default parameters.
The final weights for each model were selected using the epoch which achieved minimum
categorical cross-entropy across EC numbers on the validation set. In order to use the models
for functional residue prediction, we calculated the gradient-weighted class activation maps
(grad-CAMs) for each chain and predicted EC number, and used the functional importance
of each residue as its predicted probability of functional activity.

3. Results

3.1. Performance on NMR and cryo-EM structures is consistently lower
than performance on X-ray structures, independent of training set

First, we compared the performance of each trained model on the X-ray, NMR, and cryo-EM
test sets. On all three tasks, the performance on X-ray test data was better than that of NMR
and cryo-EM test data, regardless of training dataset. For EMA, both global and per-target
Spearman correlations are highest for X-ray data, followed by NMR data and finally cryo-
EM (Figure 2a). For protein design, the models trained on both training sets also showed
significantly better perplexity on the X-ray test data than on NMR and cryo-EM data, even
with a small number of cryo-EM structures (p < 10−6; Figure 3a; Table S2). Finally, this trend
is also replicated for the catalytic residue identification task. It is clear from the precision-
recall curves that the model’s ability to identify functional residues is much higher for X-ray
structures than for NMR structures across all recall thresholds (Figure 3b). There was not
enough cryo-EM data to evaluate PR curves for this task.

To ensure that the differences we observe are not due solely to differences in protein family
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Fig. 2. Performance on EMA task. (a) True vs. predicted GDT-TS for each target in the test set,
divided by experimental method (rows), and training dataset (columns). Points are colored by target
protein. (b) Per-target Spearman correlation for models trained on all structures (blue) and X-ray
structures only (orange). Targets are sorted by size and colored by experimental method (blue=X-
ray; green=NMR; orange=cryo-EM). Stars indicate significance for selected pairs: ∗∗∗ : p < 0.01,
∗∗ : p < 0.05 , ∗ : p < 0.1 (see Table S1).

composition between the NMR and X-ray subsets, we tested the protein design model on a
set of 21 proteins with paired high-quality X-ray and NMR structures from Mei et al .10 On
all of these proteins, the perplexity on the NMR structure is higher than the perplexity on
the X-ray structure (mean difference of 3.71 ± 1.63; Figure S2). Together, these data support
the conclusion that models trained on PDB data are biased towards X-ray structures and the
performance on NMR structures suffers as a result.

3.2. Inclusion of NMR data in the training set improves performance on
held-out NMR data and does not degrade performance on X-ray data

Next we compared the performance of models trained on different datasets and evaluated
on the same test set. In general, models trained on datasets containing all types of structure
perform better on NMR test data without a loss in performance on X-ray test data. In the case
of EMA, both the global and per-target Spearman correlation were higher for the GVP model
trained on mixed data for all subsets of the test set (Figure 2a). The Spearman correlation
for GDT-TS scores for each individual target in the test set underscores the consistency of
this trend; for all but two of the 28 targets, the model trained on mixed data had a higher
correlation than the model trained on only X-ray data (Figure 2b). The remaining two targets,
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Fig. 3. (a) Performance of GVP on protein design task test set, split by experimental method
and training dataset. Lower perplexity indicates better performance. Stars indicate significance for
selected pairs: ∗∗∗ : p < 0.01, ∗∗ : p < 0.05 , ∗ : p < 0.1 (see Table S2). (b) Precision-recall curves of
DeepFRI on catalytic residue prediction, with X-ray test set in purple and NMR test set in green.

T0957s1 and T1016, were both solved by X-ray crystallography and did not have a significant
decrease in performance (p = 15.4739 and p = 20.6921; Table S1). Moreover, several of the
other X-ray test structures displayed a significant increase in correlation with the inclusion of
non–X-ray training data (Table S1). Figure 2b also demonstrates the differing distributions
of proteins solved by each experimental method. After sorting proteins by size (i.e. number of
amino acids), it is clear that NMR is used to solve much smaller structures, while cryo-EM
and X-ray are used for medium to large proteins.

The GVP models for protein design also displayed this trend. While the two differently-
trained models had near-identical performance on the X-ray test sets, there is a statistically
significant improvement in the perplexity on the NMR test set when NMR structures are
present in the training data (p < 10−90; Figure 3a; Table S2).

One exception to this trend is the catalytic residue prediction task. While the precision-
recall curves for the two models are very close to one another, the model trained only on X-ray
structures slightly outperforms the model trained on a mixed dataset (Figure 3b). Because
the difference in performance is not very large, this is a preliminary conclusion, though we
hypothesize that this task is more suited to X-ray structures due to the high resolution required
to make precise residue-level predictions.

3.3. Known biochemical and biophysical effects are replicated in trained
models

When catalytic residue prediction models were used to predict EC number, the general trend of
mixed training data improving performance held, but that of X-ray test data having higher per-
formance than NMR test data did not. While most differences in distributions of term-centric
AUPRCs were not statistically significant (Table S4), we do observe a clear upward shift in
performance on NMR test data from that on X-ray test data (Figure 4a). Sorting the EC num-
bers into their coarser-grained enzyme classes revealed different performances across classes
(Figure 4b). For example, while oxidoreductases and lyases have higher AUPRCs for X-ray
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Fig. 4. Performance of DeepFRI on enzyme classification. (a) Average AUPRC over all enzyme
classes with each trained model for X-ray (purple) and NMR (green) structures in the test set. Stars
indicate significance for selected pairs: ∗∗ : p < 0.05 (see Table S4). (b) Average AUPRC within each
class of enzymes. No differences in distribution are statistically significant (see Table S5).

test data than for NMR test data, hydrolases and translocases demonstrate the opposite. Un-
like X-ray crystallography, NMR can capture the conformations in solution or associated with
membranes. This may be important for broad enzyme classification. In particular, translocases
are defined by their role in moving molecules across membranes, and so could be difficult to
identify in a crystallized form. On the other hand, oxidoreductases commonly include catalytic
metal ions, which have been historically challenging to resolve in NMR models.35 Because of
a lack of statistical significance (Table S5), these conclusions require confirmation. Neverthe-
less, this demonstrates that comparing global performance may not be sufficient to evaluate
machine learning models and selecting training data for specific biochemical applications.

Fig. 5. Sequence recovery for protein design as a function of protein features. (a) Sequence recovery
across all residues, separated by CATH class. Stars indicate significance for selected pairs: ∗∗∗ : p <
0.01 (see Table S3). (b) Difference in recovery of each residue type when non–X-ray structures are
included in the training data, separated by experimental method.

We further analyzed the performance of our protein design model on specific subsets of the
test data. We first grouped the structures in the test set by secondary structure characteristics,
as defined by CATH class.36 For proteins in the test set with mainly alpha, mainly beta, or an
alpha/beta class, recovery was higher on the X-ray test structures (p < 0.001 except for model
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trained on mixed data and evaluated on mainly beta structures; Figure 5a; Table S3). These
three classes also had near-identical performance on X-ray test data between the two models,
but showed significant improvement for NMR test data when NMR structures were added
to the training set (p < 10−8; Table S3). Notably, many of the NMR structures in the test
set with few secondary structures had higher recovery than NMR structures in other CATH
classes when predicted with the model trained on mixed data, in many cases even higher than
that of the X-ray structures in the test set. This is consistent with the fact that unstructured
regions are often modelled better with NMR than X-ray crystallography.37

We also analyzed the performance of the protein design model in terms of its ability to
predict specific amino acids. Recovery of most amino acids improved on NMR test data when
NMR structures were included in the training set (Figure 5b). The greatest improvement
is observed for lysine, serine, proline, cysteine, and glutamic acid. Lysine has the longest
side chain of the natural amino acids, and is among the most solvent-exposed (over 90%).38

Lysine thus has very high conformational entropy which discourages crystallization, resulting
in conformations which are captured differently in solution.39 Serine and glutamic acid are also
polar residues with high solvent accessibility and a tendency to prefer loops and unstructured
regions.40 Cysteine is unique in its ability to form disulfide bridges, a biochemical feature
which is more difficult to resolve with NMR than X-ray crystallography.41,42 Core packing,
which is stabilized by disulfide bridges, is also known to be significantly different between
X-ray and NMR structures.10 Proline is known to disrupt helices and sheets, corroborating
the evidence from Figure 5a that recovery improves for NMR structures with few secondary
structures.

For X-ray structures, the recovery of most amino acids either improved or stayed roughly
constant when trained on the mixed dataset. A confusion matrix of the errors made on these
structures shows that in cases where performance does decrease, the model tends to substitute
chemically similar amino acids (Figure S3, Table S6).

Fig. 6. Perplexity of the protein design models as a function of training set size. Models were trained
on mixed (solid line) or X-ray only (dashed line) datasets with 25%, 50%, 75%, and 100% of the
X-ray training data.
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3.4. Downsampling X-ray structures during training negatively affects
performance on all types of data

One logical strategy for improving the performance on NMR data would be to try to balance
the training dataset by downsampling the X-ray structures. However, it is also well-known
in machine learning that having a larger training dataset leads to better performance, even
when that dataset may be slightly noisy. We sought to determine the nature of this tradeoff
between data quality and data quantity by training our protein design model on datasets with
varying degrees of downsampling (i.e. increasing class balance). The results clearly show that
downsampling degrades performance on both X-ray and NMR data (Figure 6). This suggests
that the benefit provided by including more data outweighs the loss in performance due to
overfitting to X-ray structures.

4. Conclusion

We analyzed the impact of protein structure determination method on three machine learning
tasks. This study represents, to our knowledge, the first attempt to systematically assess the
effect of structure determination method on protein-based machine learning methods. Our
results suggest that machine learning models perform better on X-ray crystallography data,
and that performance on other types of structures are boosted by the inclusion of non–X-ray
data in the training set. We show that the benefit of including more training data outweighs
the penalty for overfitting or introducing noisy data for all types of test structures. However,
the detailed task of interest and its sensitivity to biochemical and biophysical variables may
impact the choice of data types, and global model performance may not be sufficient to
measure these specific effects. Our results are preliminary, and further analysis is needed to
corroborate and expand upon these findings. Our work used limited cryo-EM data, and that
which was available largely had relatively low resolution. However, as the technology improves
we expect to see these structures achieving similar resolution to X-ray structures. We evaluated
primarily graph-based models, and so the results need to be replicated with models such as
3D convolutional networks. Finally, the recently released database of AlphaFold2-predicted
structures provides the opportunity to train models on larger datasets than ever before. More
studies are needed to assess how the inclusion of computationally-predicted structures affects
the behavior of algorithms, especially for the EMA task where deep learning has notably
changed the properties of decoys.43 Despite the need for deeper investigation, we demonstrate
that in many contexts the composition of experimental methods in the training set does impact
performance and should be factored into the design of machine learning methods. This work
paves the way for a deeper understanding of these previously understudied factors, which will
in turn enable a more principled approach to machine learning in structural biology.

5. Acknowledgments

We thank Dr. Joseph Puglisi and Alex Chu for discussion of experimental techniques; Dr.
Xiaoyang Jing for guidance on model re-training; and Margaret Guo and Daniel Sosa for
advice on experimental design and statistical interpretation. A.D. is supported by LM012409,
K.A.C. is supported by LM703337, and R.B.A. is supported by NIH GM102365 and Chan

Pacific Symposium on Biocomputing 27:10-21(2022)

20



Zuckerberg Biohub. Most of the computing for this project was performed on the Sherlock
cluster; we would like to thank Stanford University and the Stanford Research Computing
Center for providing computational resources and support.

References

1. M. Baek, F. DiMaio et al., Science 10 (2021).
2. J. Jumper, R. Evans et al., Nature (2021).
3. J. Yang, I. Anishchenko et al., PNAS 117 (2020).
4. R. Townshend, R. Bedi et al., NeurIPS 32 (2019).
5. P. Gainza, F. Sverrisson et al., Nat. Methods 17 (2020).
6. N. Anand and P. Huang, NeurIPS (2018).
7. C. Norn, B. I. Wicky et al., PNAS 118 (2021).
8. N. Anand-Achim, R. R. Eguchi et al., bioRxiv (2021).
9. L.-W. Yang, E. Eyal et al., Structure 15 (2007).

10. Z. Mei, J. D. Treado et al., Proteins Struct. Funct. Bioinf. 88 (2020).
11. S. O. Garbuzynskiy, B. S. Melnik et al., Proteins: Struct. Funct. Genet. 60 (2005).
12. M. Andrec, D. A. Snyder et al., Proteins: Struct. Funct. Genet. 69 (2007).
13. V. Krishnan and B. Rupp, eLS (2012).
14. H.-W. Wang and J.-W. Wang, Protein Sci. 26 (2017).
15. M. A. Marques, M. D. Purdy and M. Yeager, Curr. Opin. Struct. Biol. 58 (2019).
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