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Big Data neuroimaging collaborations including Enhancing Neuro Imaging Genetics through Meta- 
Analysis (ENIGMA) integrated worldwide data to identify regional brain deficits in major depressive 
disorder (MDD). We evaluated the sensitivity of translating ENIGMA-defined MDD deficit patterns to 
the individual level. We treated ENIGMA MDD deficit patterns as a vector to gauge the similarity 
between individual and MDD patterns by calculating ENIGMA dot product (EDP). We analyzed the 
sensitivity and specificity of EDP in separating subjects with (1) subclinical depressive symptoms 
without a diagnosis of MDD, (2) single episode MDD, (3) recurrent MDD, and (4) controls free of 
neuropsychiatric disorders. We compared EDP to the Quantile Regression Index (QRI; a linear 
alternative to the brain age metric) and the global gray matter thickness and subcortical volumes and 
fractional anisotropy (FA) of water diffusion. We performed this analysis in a large epidemiological 
sample of UK Biobank (UKBB) participants (N=17,053/19,265 M/F). Group-average increases in 
depressive symptoms from controls to recurrent MDD was mirrored by EDP (r2=0.85), followed by FA 
(r2=0.81) and QRI (r2=0.56). Subjects with MDD showed worse performance on cognitive tests than 
controls with deficits observed for 3 out of 9 cognitive tests administered by the UKBB. We calculated 
correlations of EDP and other brain indices with measures of cognitive performance in controls. The 
correlation pattern between EDP and cognition in controls was similar (r2=0.75) to the pattern of 
cognitive differences in MDD. This suggests that the elevation in EDP, even in controls, is associated 
with cognitive performance - specifically in the MDD-affected domains. That specificity was missing 
for QRI, FA or other brain imaging indices. In summary, translating anatomically informed meta- 
analytic indices of similarity using a linear vector approach led to better sensitivity to depressive 
symptoms and cognitive patterns than whole-brain imaging measurements or an index of accelerated 
aging. 
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1. Introduction. 
Major depressive disorder (MDD) is the most common of all severe mental illnesses affecting 

up to 20-30% of the worldwide population and inflicting a tremendous burden on patients, caregivers, 
and communities. The onset and course of MDD are influenced by genetic and environmental risk 
factors that are complex and remain poorly understood. Moreover, clinical and neuroimaging 
findings in MDD have historically been affected by heterogeneity and poor reproducibility [1]. 
Collaborative studies by the Enhancing Neuro Imaging Genetics Meta Analyses (ENIGMA) led to a 
neuroimaging initiative to overcome the historically high heterogeneity and lack of consistent 
findings in MDD [2-8]. The standardized workflows developed by ENIGMA made it possible to 
elucidate the imaging patterns associated with MDD in cohorts across the world. The inclusive 
worldwide nature of the collaboration has reduced site-specific variances and biases in diagnosis, 
inclusion and exclusion criteria, demographics medication, and environment. These concerted efforts 
yielded the discovery of deficit patterns that are shared by patients worldwide and remain present 
even after treatment with existing therapies. 

In schizophrenia research, ENIGMA efforts led to the development of the similarity indices 
that use ENIGMA deficit patterns as the basis for vulnerability measurements [9]. It is unknown, 
however, to what extent this approach can also be applied to MDD – specifically at different levels of 
severity including recurrent, single-episode, and subthreshold illness. It is also unclear if the better 
alignment with disordered patterns can explain variance in the cognition as cognitive deficits in MDD 
contribute to the burden of this disorder. Finally, it remains unclear if this approach distinguishes 
MDD groups better than multivariate metrics based on deviations from normative reference 
distributions (e.g., ‘brain age’ metrics) [10, 11]. We design this study to answer two questions: A) is 
the similarity to the characteristic patterns of regional deficits derived by ENIGMA-MDD a better 
predictor of clinical features of depression, as compared to averaged brain structural measures? B) can 
the similarity index explain the cognitive variance in patients and non-psychiatric controls? We 
evaluated a linear algebra approach to calculate Enigma Dot Product (EDP) between the vector of 
individual brain structural measurements and the ENIGMA-derived patterns for MDD in the high- 
dimensional space of brain structural measurements. A larger EDP value suggests that the individual 
brain structural vector deviates from the expected population mean in the direction defined by the 
ENIGMA MDD deficit vector. 

The neuroimaging structures used for the EDP calculation included 33 cortical thickness 
measures, 24 white matter diffusion tensor imaging (DTI) measures, and 7 subcortical gray matter 
volume measures. To compare EDP with traditional structural measures, we selected the whole-brain 
average measures including whole-brain average gray matter (GM) cortical thickness, subcortical GM 
volumes and fractional anisotropy (FA) of water diffusion. We also selected a Quantile Regression 
Index (QRI) - a linear analog of the BrainAge index that was shown to be sensitive to accelerated 
brain aging trends in MDD [12]. We performed these analyses in the UK Biobank cohort which was 
chosen because it is the largest publicly available dataset with high-quality brain MRI scans. Notably, 
the UKBB participants were not included in the ENIGMA MDD studies and therefore it is an 
independent source of test data for the questions tackled here. We classified the UKBB participants 
into four subgroups that reflect severity of depression. These included (A) people who express some 
subclinical depression symptoms without a lifetime history of diagnosed MDD at the time of scan (B) 
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people who had a single probable depressive episode, and (C) those who suffered from more than one 
episode of MDD (termed recurrent MDD). As a fourth comparison group, we also carefully chose a 
group of healthy controls (HC) who were free of any neurological or psychiatric disorders and denied 
significant depressive symptoms in their lifetime. 

We hypothesized that alignment with expected MDD pattern would rise from controls to 
subclinical, single, and recurrent MDD. We tested if the group differences in EDP, the whole-brain 
averaged structural measures and accelerated aging index would provide the best predictions that are 
proportional to the group differences in symptoms. We further hypothesized that the EDP would 
predict subclinical cognitive deficits in individuals without a formal diagnosis of MDD better than the 
whole brain averaged structural measures. We examined a novel proposition that EDP can predict 
cognitive deficits in non-psychiatric controls, and specifically in domains affected by MDD, and 
would do so better than the whole brain averaged structural measures. The overall goal of our study 
was to examine to what extent a linear combinatoric index of structural measures could be used to 
complement traditional structural measures and to provide an even more powerful approach to better 
understand the clinical differentiation and neurobiological underpinnings of different levels of 
depression. 

 
2. Methods. 
2.1 Participants 
Neuroimaging and clinical data, including structural and diffusion imaging phenotypes, were 
available for N=37,285 individuals (17,082/20,203 M/F). Data were collected between 2012 and 2019 
in participants recruited in the United Kingdom [13]. All participants provided written informed 
consent. 
2.2 Major Depressive Disorder Classification. 
We classified participants into four subgroups of depression, i.e., subclinical depression without a 
current or lifetime MDD diagnosis (subclinical depression N=8,822; 4,313/4,509 M/F), single episode 
(N=1,147; 443/704 M/F), and recurrent MDD (N=8,089; 2,971/ 5,118 M/F) (Table 1). We integrated 
classification criteria previously published for participants’ responses to the touchscreen questionnaire 
at each visit (Smith et al., 2013) with hospital records and self-reported diagnoses. Details of the 
classification are listed in Table 2. We took a conservative approach to defining controls so that 
participants with missing values (and thus preventing a definitive conclusion on certain criterion) 
were not used. We also excluded participants with significant neurological and psychiatric conditions 
(including bipolar disorder) and brain cancer per hospital records, self-report and probable bipolar 
disorder per [14]. 

We used the UKBB parser software (https://github.com/USC-IGC/ukbb_parser) to collect a 
group of N=7,266 (4,033/3,233 M/F, age = 63.3±7.5) in the overall sample who were free of ICD 
codes corresponding to any neurological or psychiatric illnesses and major health conditions. The 
exclusion criteria included: bipolar disorder, schizophrenia, anxiety, Alzheimer’s disease, head 
trauma, stroke, Parkinson’s, PTSD, meningitis, multiple sclerosis, migraines, and other demyelinating 
diseases, cancer, heart disease, and were treated as non-neuropsychiatric controls (Table 1). 
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Table 1. Classification of participants into subgroups of depression and non-psychiatric controls. 
MDD Classification Number of Participants (M/F) Average Age ± SD 
Subclinical 8,822 (4,313/4,509) 63.6 ± 7.5 
Single Episode 1,147 (443/704) 63.8 ± 7.4 
Recurrent 8,089 (2,971/ 5,118) 62.1 ± 7.3 
Controls 7,266 (4,033/3,233) 65.1 ± 7.5 
Total 37285 (17082/20203) 63.6 ± 7.5 

 
2.3 Imaging Protocol and Processing 
In this study, we examined regional cortical gray matter thickness, subcortical gray matter structural 
volume and tract-wise measures of fractional anisotropy (FA) values provided by the UKBB. These 
phenotypes were extracted from neuroimaging data collected with Siemens Skyra 3T scanners using 
standard 32-channel radiofrequency (RF) head coils. The brain imaging protocol collected high 
resolution T1-weighted 3D MP-RAGE scans (resolution=1x1x1 mm, FOV=208x256x256, duration=5 
minutes, sagittal, in-plane acceleration iPAT=2, prescan-normalize). Diffusion data were collected 
with a resolution of 2x2x2 mm and two diffusion shells of b=1000 and 2000 s/mm2 with 50 diffusion 
directions per shell and 5 b=0 images (FOV=104x104x72, duration=7 minutes). 

EDP calculations were based on the meta-analytical pattern aggregated from independent 
imaging studies of an illness to establish the ‘gold standard’ findings for that illness – here, the 
corresponding imaging measurements from ENIGMA were used. Accordingly, all imaging data were 
processed using the UKBB workflow that is based on the ENIGMA imaging processing pipelines. 
Details of the image preprocessing and analysis are provided by UKBB 
(biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). Briefly, the UKBB workflow provides 
brain imaging measurements that have been evaluated across many ENIGMA studies. These 
phenotypes included 24 regional white matter tract FA values, 33 regional estimates of cortical gray 
matter (GM) thickness, volumes of the lateral ventricles, and 7 subcortical gray matter volumes per 
hemisphere that corresponded to those derived by ENIGMA workflows. Measures from the left and 
right structures were averaged. 
2.4 Calculation of linear indices of similarity 
All linear indices of vulnerability were calculated using the ‘RVIpkg’ implemented in [R] software in 
Kochunov et al. (2020). Briefly, the effects of age, sex, and the intracranial volume were regressed. 
The inverse-normal transformation was applied to the residuals. This produced a vector of Z-values 
for everyone, the absolute value of which was the deviation of the individual from the mean of the 
group. The EDP was calculated as the normalized dot product between P and E using the following 
equation. 

Where Pi was the vector of deviation from the mean for the i-th phenotype and Ei was the vector of 
meta-analytical effect size for the i-th phenotype for MDD provided by ENIGMA. N was the total 
number of imaging phenotypes. 
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2.5 Calculation of QRI 
Individual assessments of brain aging were performed using quantile regression analysis to derive a 
quantile regression index (QRI) score provided in the ‘QRIpkg’ for R [15] available for download at 
https://CRAN.R-project.org/package=QRIpkg. Briefly, the normative modeling technique provided a 
map of individual deviations from the expected aging trends using the whole sample. The QRI 
function used a quantile regression analysis with age serving as a predictor for cortical regional gray 
matter thickness, subcortical gray matter structure volumes, and white matter fractional anisotropy 
values to fit three separate models for the 5th, 50th, and 95th percentiles. Then, values for each 
individual subject were compared to the expected aging trajectory, derived from the whole sample, 
and each regional measure was assigned a score: values >95% of the expected age data were assigned 
a value of “-1”, indicating an individual’s actual brain age was significantly younger than what was 
expected for that age; values <5% received a value of “1” , indicating an individual’s actual brain age 
was significantly older than what was expected for that age; all others were assigned “0”. Regional 
scores were averaged for cortical thickness, subcortical volume, and white matter to create tissue 
specific QRIs. A whole-brain QRI was derived by averaging the three-tissue specific QRIs. 
2.7 Cognitive assessment 
Participants completed the automated UK Biobank cognitive test battery on a touchscreen computer 
[16]. We included all tests collected by the UKBB covering cognitive domains of processing speed, 
cognitive flexibility, working memory, visuospatial learning/memory, perceptual reasoning, executive 
functioning/planning, and fluid intelligence. 
2.8 Statistics 
All statistical analyses were performed using RStudio v3.6.3 [71]. All measurements were 
preprocessed by correcting for age and sex prior to analysis. The relative effects of DP and other 
measurements on cognition were tested using the following model: 

Cognition ~ bDP × DP + A (1) 
Where b was a linear predictor coefficient, and A was the intercept. Model 1 was used in controls to 
examine whether being merely similar to MDD in brain patterns was associated with poorer cognitive 
performance and whether the pattern of this association matched the cognitive differences between 
subjects with MDD and controls. 

 
3. Results. 
3.1 Group differences in symptoms and biomarkers. The four subject groups demonstrated the 
expected difference in symptom severity (Figure 1). The ENIGMA dot product (EDP) showed the 
average values for four groups that were significantly higher in the clinical and subclinical depression 
groups than in controls (Figure 1). The average EDP values per group were correlated with the 
groups’ average symptom severity (r2=0.85). In comparison, among the three whole-brain average 
indices, only the average FA value showed a pattern that agreed with the average symptoms for each 
group (r2=0.81). Individual depressive symptoms in subjects with depression showed a significant 
correlation for EDP (r=0.04, t=6.4, p=10-10), followed by average FA (r=0.03, t=4.7, p=10-6) and QRI 
(r=0.02, t=4.2, p=10-5) but no significant correlation for GM thickness and volume. 
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Figure 1. Symptom severity (0-4), EDP (normalized dot product), QRI (deviation from normal 
aging) and whole-brain measurements of gray matter (GM) thickness, subcortical volume and 
fractional anisotropy (FA) of water diffusion, expressed as normalized Z-scores after 
regressing age and sex effects were plotted for 4 groups – Controls (no evidence for MDD), 
Subclinical Depression, Single MDD Episode and Recurrent MDD groups. 

(Figure 2) compared to healthy 
controls. 
3.3. Cognitive association. 
We tested if the variance explained 
by a biomarker for each cognitive 
domain matched the pattern of 
clinical deficits in MDD subjects. In 
subjects with MDD, both EDP and 
GM thickness (GMT) matched 
(r=0.90 and 0.85, p<0.05) the pattern 
of association observed in MDD vs. 
control group differences in cognitive 
measures (Figure 3). However, EDP 
explained a numerically higher 
degree of variance than GMT 
(average t-score = 3.1±0.7 vs. 

3.2 Effects of 
MDD on 
cognition. 

MDD was 
associated with 
lower cognitive 
function 
consistently across 
all MDD groups 
(Figure 2). 
Significant 
differences were 
observed for three 
out of nine tasks 
including Matrix, 
reaction time (RT) 
and Fluid 
Intelligence 

2.0±0.8, p=0.04). The other 
biomarkers did not show a significant 
correlation with the pattern of MDD- 

Figure 2. The pattern of cognitive differences (t-score) for subjects with 
MDD vs. controls. Significance is shown for the whole group vs. control 
analyses (yellow bars). 
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Figure 3. The scatter plots of the T-scores for the MDD vs. Control differences in 9 cognitive domains (Matrix, 
Reaction Time (RT), Numeric Memory (NM), Pairs Match (PM), Trails 1 and 2 (T1 and T2), Symbol Digit(SD), 
Tower (T), Fluid Intelligence (FI)) plotted versus T-scores for Model 1 predicting cognitive differences in 
participants affected with MDD. 

 

Figure 4. The scatter plots of T-scores for MDD vs. Control differences in 9 cognitive domains 
(Matrix, Reaction Time (RT), Numeric Memory (NM), Pairs Match (PM), Trails 1 and 2 (T1 
and T2), Symbol Digit (SD), Tower (T), Fluid Intelligence (FI)) plotted versus T-scores for 
Model 1 predicting cognitive differences in normal controls. 
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related cognitive deficits. We repeated the analysis in the controls. The t-scores of DP and GM 
thickness in model 1 for controls were significantly correlated with the t-scores of the MDD- 
control group differences (r=0.84 and 0.82, p<0.05, for DP and GM thickness, respectively) 
(Figure 4). Likewise, the EDP explained a higher overall proportion of the cognitive variance than 
GMT (average t-score = 3.6±0.7 vs. 1.9±0.8, p=0.02). There were no significant correlations for t- 
scores for QRI or FA or GM volume (Figure 4). 

4. Discussion. 
Using a large and inclusive dataset we evaluated the sensitivity and specificity of the 

ENIGMA Dop Product (EDP) index as a measurement of individual brain vulnerability for Major 
Depressive Disorder (MDD). EDP was calculated as a dot product between the vector of ENIGMA- 
MDD meta-analytic deficit values and an individual’s phenotypic vector of z scores. Higher EDP 
scores indicated a combination of more deviations from the expected mean and better alignment with 
the ENIGMA-MDD pattern. We evaluated the sensitivity and specificity of EDP to disorder severity 
and cognitive deficits and compared it to an index of accelerated aging (QRI) as well as whole-brain 
average values for gray matter (GM) thickness and volumes and fractional anisotropy (FA) of water 
diffusion. The EDP was superior to QRI and whole-brain measurements in separating participants 
with different states of MDD and healthy controls and showed the strongest association with 
symptoms of depression in subjects with MDD. The higher EDP values were associated with poorer 
performance on cognitive tasks in the MDD group. The associations were stronger in cognitive tests 
affected by MDD. Repeating these analyses in controls demonstrated a similar trend, suggesting that 
EDP is also applicable to individuals free of depression and the EDP is sensitive to cognitive 
performance in healthy individuals. Overall, the novel vulnerability construct, EDP, shows the ability 
to transfer big data neuroimaging findings to the individual and can characterize vulnerability to 
MDD and deficits in cognitive performance, even in non-psychiatric individuals. 

Big Data neuroimaging studies have markedly improved the stability of research findings in 
MDD [17, 18]. The ENIGMA-MDD workgroup published regional deficit patterns that were 
replicable across independent datasets, including the UKBB [9]. Here, we performed a head-to-head 
comparison to demonstrate the applicability of EDP in MDD research and its superiority to other 
measurements including measures of accelerated aging and whole-brain average neuroimaging 
measurements. The EDP showed a superior ability to separate subjects with MDD based on the 
severity of their illness compared to all other measurements that we selected. The EDP index showed 
a gradual increase from controls, to subjects with subclinical MDD, to MDD and recurrent MDD. 
Among all neuroimaging indices, only the average FA showed an intergroup pattern that matched 
that. However, EDP showed a more statistically significant intergroup difference than the average FA 
and a stronger association with symptoms in individual subjects. The follow up demonstrated that 
while the FA was sensitive to the symptom severity, it did not track the cognitive deficits in MDD. 

To further understand the roles of EDP on specificity to MDD, we used it to explain cognitive 
variance in subjects with MDD and normal controls. EDP tracks similarity to brain structural patterns 
and therefore incorporates both genetic and developmental risk factors associated with MDD and may 
provide the ability to characterize the potential vulnerability for cognitive impairments in both people 
affected with MDD and non-psychiatric controls. Cognitive deficits are not a substantial part of the 
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diagnostic criteria for MDD but they are prominent beyond the potential `impaired concentration’ 
criterion and are debilitating features that contribute to the socioeconomic burden [19]. In the UKBB 
sample, subjects with MDD performed significantly more poorly than controls on the Matrix, 
Reaction Time and Fluid Intelligence measures - consistent with the ‘mental fog’ reported in MDD 
patients [20]. The EDP has readily replicated that pattern of association, while the pattern for other 
indices - except for GM thickness - did not match that of MDD. Specifically, FA and QRI selectively 
explained variance in the cognitive tests sensitive to information processing speed and working 
memory, while GM volume was not significantly associated with cognitive performance. The cortical 
GM thickness explained cognitive variance in a matching pattern. This was surprising because 
subjects with MDD did not demonstrate significant differences in whole-brain GM thickness, nor did 
this biomarker show an association with symptom severity [6]. 

We further tested the specificity of cognitive association by repeating this analysis in controls. 
Our hypothesis was that people in the general population that show similarity in brain metrics, as 
indexed by EDP, may be at higher risk for subtle cognitive deficits. We found that higher EDP values 
in non-neuropsychiatric subjects were significantly and inversely associated with cognitive 
performance in all nine cognitive measures. The EDP was especially sensitive to and explained more 
variance in the cognitive tests affects by MDD. The association between EDP and cognition matched 
the profile of cognitive deficits in MDD (r=0.84). The cortical GM thickness was likewise associated 
with cognitive performance in a similar pattern. Even so, the degree of variance that it explained in 
either subjects with MDD or controls was significantly smaller than that explained by EDP. 

This study has several limitations. The diagnostic information provided in the UKBB is based 
on self-report and hospital records, but is not verified by independent clinical interviews, and thus is 
subject to some misclassification error (24). The study is also limited as it is based on the existing 
UKBB sample which is cross-sectional. Expansion of these large data sets into different phases of life 
as well as still other brain diseases would allow for improvement upon the proposed validity. 
5. Conclusion 

The ENIGMA Dot Product is a novel anatomically informed index of vulnerability that is 
calculated as a similarity index between an individual’s brain patterns and expected patterns of 
deficits in cortical, subcortical, and white matter reported by the ENIGMA consortium. We found that 
higher EDP were associated with more severe symptoms of depression in subjects with MDD and 
with lower cognitive performance in psychiatrically healthy controls, in a pattern mirroring that 
observed in subjects with MDD. Indexing the similarity to brain imaging phenotypic patterns 
reported by big data neuroimaging studies of psychiatric conditions provides a characterization of the 
vulnerability to severe mental illnesses. 
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