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Spatially resolved characterization of the transcriptome and proteome promises to provide further 

clarity on cancer pathogenesis and etiology, which may inform future clinical practice through 

classifier development for clinical outcomes. However, batch effects may potentially obscure the 

ability of machine learning methods to derive complex associations within spatial omics data. 

Profiling thirty-five stage three colon cancer patients using the GeoMX Digital Spatial Profiler, we 

found that mixed-effects machine learning (MEML) methods
†
 may provide utility for overcoming 

significant batch effects to communicate key and complex disease associations from spatial 

information. These results point to further exploration and application of MEML methods within the 

spatial omics algorithm development life cycle for clinical deployment.  
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1.  Introduction 

Practicing pathologists routinely order immunohistochemical stains to assess the spatial 

distribution of important biomarkers for disease prognostication. Recently, higher resolution 

spatially resolved technologies have emerged. Nature Methods declared “Spatially Resolved 

Transcriptomics” technologies as the method of the year in 2020 1. Although multiplexed 

immunohistochemistry and laser capture microdissection approaches once served as popular 

methods for assessing spatially resolved omics information, these approaches are largely intractable 

for high throughput analysis because quantitative analysis is hindered by significant tissue distortion 

from chemical restaining processes, insufficient multiplexing, and prohibitive costs. New spatial 

omics technologies can multiplex far more markers through targeted cleavage of oligonucleotide 

tags 2–8. For instance, the Nanostring GeoMX Digital Spatial Profiler (DSP) first utilizes multiple 

immunofluorescent (IF) antibody stains to highlight various cellular lineages, then uses UV-light to 

cleave attached oligos for quantification via the nCounter instrument or next-generation sequencing 

(NGS)9,10. A particular novelty of this technology is the ability to highlight regions of interest (ROI) 

through segmentation of the IF stains or selection of specific locations of interest. Informatics 

techniques developed for spatial data include estimation of: 1) which genes are spatially variable, 

2) how spatial clustering patterns of expression may differ between cases and controls, 3) co-

localization and coordination between cellular populations, accomplished using canonical protein 

markers or cellular deconvolution, and 4) integration with other imaging (e.g., morphology, 

architecture via hematoxylin and eosin stain, H&E) and single-cell multi-omics (e.g., RNASeq, 

ATACSeq; models of cell fate) which can further shed light on diagnosis and prognostication 11.    

Prospective deployment of clinical decision aids can use low-cost tissue staining techniques 

(e.g., IHC) to profile protein markers deemed relevant through spatial omics analysis. However, 

existing approaches (e.g., differential expression and spatial autocorrelation) suffer from technical 

factors, including: reagent application, batch effects, and other forms of repeated measurements. 

These confounders have the potential to bias disease associations and preclude prospective classifier 

deployment. Compared to traditional penalized, generalized linear modeling approaches, algorithms 

that can use the complete multiplexed set of markers and their interactions (e.g., Random Forest 

models) may be best positioned to capture the disease pathogenesis yet are likely less resistant to 

batch effects. Thus, we need machine learning algorithms that can fully utilize spatial multiplexed 

information while being immune to batch effect corruption. In this study, we assess the potential for 

mixed-effects machine learning (MEML) methods to address this issue, capturing unintuitive spatial 

and multiplexed complexities, while respecting patient and batch level differences.  

We assessed colorectal adenocarcinoma (CRC) cases, with or without nodal and/or distant 

metastasis using spatial omics technologies (Figure 1A-B).  Prognosis / metastatic potential is well 

characterized based on presence of tumor invasion into distinct tissue layers (e.g., epithelium, lamina 

propria, submucosa, muscularis propria, pericolic fat, and serosa). Previous research has 

demonstrated the importance of specific somatic alterations (e.g., APC, MMR) and tumor-

infiltrating lymphocytes (and their spatial coordination) as prognostic indicators 12–15. Here, we used 

the DSP to collect spatial expression of 39 immune markers across 840 ROIs and applied MEML 

to characterize factors relating to different macro-architectural contexts (e.g., markers related to 

tissue interface with tumor, inter; within tumor, intra; away from tumor, away) and metastasis. This 

study will serve as the backbone of an expanded investigation of spatial immune markers descriptive 

of nodal and distant metastasis for Colon cancer patients. 
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Figure 1: Overview of Experiment: Paired H&E and IF stains (PanCK stain, green; CD45 stain, pink) used to help 

select ROI (black squares) contained in macro-architectural contexts (outlined: blue for intra-tumoral, red for tumor 

interface, green for away from tumor) for: A) Non-metastatic patient, B) Metastatic patient; C) Tree boosting methods 

!"($%) combined with mixed effects modeling to adjust for D) patient/batch-level effects '[%] (e.g., interactions within 

nested observations, continuous scale) to yield E) disease associated interactions; SHAP dependence plots 

demonstrate how predictor (x-axis) covaries with another (colors) and impact on predictor importance, y-axis 

2.  Motivation for Comparison Study 

First, we will provide a broad overview of common analytical techniques for spatial omics data, 

then discuss potential statistical oversights (e.g., modeling of statistical interactions and 

nonlinearities, batch effects/repeat measurements), to highlight the advantages of MEML methods. 

2.1.  Review of Prior Spatial Omics Analysis Methods  

Within a slide, there is spatial variation in marker abundance, such that regions of interest (ROI)  

that are closer together may exhibit similar gene/protein expression 5,8,16. Spatial autocorrelation is 

typically assessed using a Gaussian Process (GP), a mixed-effects model with a parameterized 

kernel. Included is an example of this model for multivariate normally distributed expression data: 

*% ∼ ,-./0123(4%, 6
7) 

                                                                                  4% = 9$:;;;⃗ + '[%]   (1) 

';⃗ ∼ ,-./0123>0;⃗ , ΣA 

Where ';⃗  is a vector of random intercepts, here observed at locations B⃗. The covariance matrix of the 

random effects, Σ, is a kernel used to test spatial hypotheses; for instance, that the correlation in 

expression between two spatially dependent markers drops off with distance C, Σ%,D =

27E$F G−I7C>B%, BDA
7
J. The target of inference would be I, the degree to which the correlation in 

expression is retained as a function of the distance (C; e.g., L2-norm) between the ROIs K and L. 
Less parametric forms of this hypothesis can be tested through network autocorrelation and, more 

recently, through prediction models such as graph neural networks (GNN), where the latter is useful 
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for increasing the resolution of the spatial expression patterns– e.g., predicting the current ROI’s 

expression from that of neighboring (neighborhood .) cells/ROIs, L 17,18: *% = 6>∑ 2D*DD∈O A. 

    Other analyses expand the aforementioned GP models to estimate characteristic clustering 

patterns, enabling inter-slide comparison.  Less parametric forms that take into account regional 

dependencies include graph neural networks, which can utilize aggregation/pooling mechanisms 

across nested observations to predict a single outcome while learning representative patterns.  

    Here, establishing differential expression for specific markers and applying penalized regression 

procedures across a set of markers are simpler analytic approaches that compare spatially variable 

markers across slides and differentiate disease status. The latter is formalized below, where *% 

represents whether the case underwent metastasis, predicted from markers $:;;;⃗ : 

*% ∼ PKQ/1K23>1, F%,STUVA 

                                                                             3/WKX>F%,STUVA = 9$:;;;⃗    (2) 

In this simplified scenario, spatial clustering patterns can be incorporated into this analysis by 

estimating stratified or interaction effects by assigned macro-architecture (e.g., intra, inter, away). 

2.2.  Motivation for Mixed Effects Machine Learning Approaches 

The goal of this preliminary comparative study is to explore methods for classification of tissue 

macro-architecture/metastasis from spatially resolved expression patterns and to discuss 

opportunities for classifier development. In this section, we discuss deficiencies of existing methods. 

     Machine learning (ML) techniques search for the ideal specification of interactions and nonlinear 

transformations that capture the relationship between the input and target of inference. For instance, 

classification and regression models (CART; e.g., Random Forest) utilize conditional decision splits 

to extract these associations 19. Interpretation methods (e.g., Shapley Additive Feature Explanations, 

SHAP) can derive disease-associated predictors and interactions 20. As omics datasets are usually 

high-dimensional and multi-collinear, CART methods excel in spotting relevant interactions. 

     However, these algorithms assume that observations are independent and identically distributed 

(i.i.d.), which is invalid in the presence of repeated measurements, where statistical dependencies 

exist between observations. In the case of spatial omics modalities, an ROI may exist within several 

levels of nested dependencies (e.g., ROIs per section, sections per block and/or profiling batch). 

Multiple blocks may be extracted from different biopsies across space (sampling site) and time. 

These factors may potentially exacerbate the negative impact of technical effects on statistical 

inference. Even after documenting and controlling for batch effects, the degradation in performance 

resulting from the correlation between batch and outcome has not been thoroughly studied in this 

context 21,22. Hierarchical modeling can leverage information across clusters of observations for 

efficient modeling of the fixed effects while respecting the dependency structure to avoid potentially 

biased inference. A random-intercept model, modeling different baseline measurements per cluster, 

follows the form of a linear mixed-effects model, which is a special case of the GP model 23: 

*% ∼ ,-./0123(4%, 6
7) 

                                                                                  4% = 9$:;;;⃗ + '[%]   (3) 

';⃗ ∼ ,-./0123>0;⃗ , τ7IA 

Given that spatial omics data may require algorithms that leverage nonlinear, complex high-order 

interactions offered by machine learning while respecting the dependency structure of the data, 

practitioners of spatial omics analyses, specifically those developing classifiers, should consider 
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machine learning models which utilize mixed-effects modeling. Several such methods have been 

developed in the previous decade, being usually formulated as 16,24–26: 

*% ∼ ,-./0123(4%, 6
7) 

                                                                                  4% = !"($%) + '[%]   (4) 

';⃗ ∼ ,VNormal>0;⃗ , ΣA 

This modeling approach learns to estimate a random-effect component, b;⃗ , that allows the estimation 

of a fixed-effect component robust to clustering by replacing a linear fixed-effects component, 9$%, 

with the fixed-effects machine learning model, !c($%) (Figure 1C-D). Model fitting is typically 

accomplished by first removing the random effects from the outcome before fitting the fixed effects 

machine learning model, *%
∗ = *% − '[%], and then estimating or drawing fixed effects components 

through frequentist or Bayesian procedures. This procedure is repeated until convergence of both 

the fixed and random effects components. Potential drawbacks of separating the fixed and random 

effect components include having to omit the random-effect component during inference, where in 

many cases out of cluster prediction yields similar results to the fixed effects counterpart, and 

complexities in the random effects are not well captured (only random intercepts and slopes). 

Alternatively, clustering can be directly included in the model decision splits. For instance, for a 

given split, one can fit a generalized estimating equation model with a custom dependency structure 

to assess the ability to partition variable e with cutpoint 2: logit>F%DiA = βk + βlmnopqr t + ϵ%D, where v%D ∈

.(0, Σ) and the correspondent Wald statistic on 9l may inform the variable and value to split on 27.   

     Failing to consider the dependency structure of omics data for ML risks introducing bias by 

learning properties of the batch rather than the inference target. As omics data becomes increasingly 

available at the single-cell and spatial resolutions, mixed-effect modeling approaches may be 

optimally positioned to capture potential dependency structures/repeat sampling in the data. 

3.  Materials and Methods 

3.1.  Data Acquisition and Preprocessing 

Under IRB approval, pathology reports and slides were reviewed for colon adenocarcinoma cases 

at Dartmouth Hitchcock Medical Center (DHMC) from 2016 to 2019.  A total of 36 biopsies were 

initially selected for spatial profiling, half of them exhibiting local invasion but no nodal or distant 

metastasis (no METS) and the other half of them having undergone nodal and/or distant metastasis 

(METS). The cohort was restricted to stage 3 assignments under the pTNM staging system, which 

balances the impacts of local invasion, nodal and distant metastasis for prognostication. Cases were 

matched between the non-metastatic and metastatic groups based on tissue size (measured through 

connected component analysis of whole slide image), tumor grade, mismatch repair (MMR) 

dysregulation status, site of the tumor (e.g., left or right colon), age, and sex. Matching was achieved 

through conducting fisher’s exact tests and two-sample t-tests after iterative resampling. For 

instance, average ages for the no METS and METS groups were 71±13 and 66±16 respectively 

(p=0.34) and stratified by sex, average ages for females and males were 68±18 and 69±13 

respectively (p=0.96). A similar percentage of males comprised the METS and no METS groups 

(56% and 58% respectively, p=1.0). Tissue blocks were sectioned into 5-µm sections. Sections were 

stained with fluorescent-labeled antibodies (highlighting tumor (PanCK), immune cells (CD45), and 

nuclei (SYTO13)) which are covalently linked to photocleavable oligonucleotide tags targeting a 

Pacific Symposium on Biocomputing 27:175-186(2022)

179



 

 

 

panel of Immune Cell Profiling and Tumor Immune Environment markers. These sections were 

visualized using immunofluorescent (IF) images provided by the digital spatial profiling (DSP) 

instrument. Subsequent sections were stained with hematoxylin and eosin (H&E) and scanned using 

the Leica Aperio-AT2 scanner at 20x. IF whole slide images (WSI) were stored in TIFF format (16-

bit unsigned color channels; one channel per stain) and H&E images were stored in SVS format (8-

bit color channels). IF and H&E images were viewed simultaneously by the pathologist using the 

ASAP annotation software, which allowed the pathologist to delineate immune populations within 

macroarchitectural regions of interest (intra or within tumor, inter or at interface with tumor, away 

from tumor) on the IF images using polygonal/spline annotations. For each slide, a semi-automated 

workflow placed eight regions of interest (ROI; square grids of maximal spatial dimensions 

allowable by the GeoMx DSP instrument) within each annotation region (24 ROI per slide) after 

removing ROI with low immune cell density as quantified by the presence of CD45 stain. ROIs 

were mapped onto IF slides, uploaded to the DSP, and manually registered to the unmanipulated 

DSP IF images. ROI were placed onto DSP slides corresponding to the semi-autonomous 

placements and manually adjusted to the nearest appropriate region by a practicing pathologist if 

any ROI were misplaced (e.g., incorrect region or low immune cell density). Within each ROI, 

immune cells were segmented by using color thresholding and connected component analysis to 

deduce which areas in the ROI had overlapping nucleus and immune stains while excluding the 

tumor stain. The oligo tags within the immune cell areas were cleaved using ultraviolet light, 

collected and counted with nCounter to quantify protein expression within the immune cell regions 

of all ROI. Four slides were assessed at a time due to the DSP’s batching mechanism. Additional 

cases were included/excluded due to tissue lifting after cover-slipping procedures (leading to case 

removal) or to balance subsequent batches, leading to inclusion of 35 cases (840 ROIs). 

     A total of 28 ROIs were removed after quality control procedures, retaining 812 ROIs. Within 

each batch, we separately performed and compared expression after ERCC normalization, 

normalization based on nuclei area and count, and normalization to housekeepers and IgG isotype 

controls. Using the raw data, we compared log2-transformed counts of housekeeper markers to each 

other (S6, Histone H3, GAPDH) and separately compared counts of IgG isotope controls (Rb IgG, 

Ms IgG1, Ms IgG2a), also looking for significant batch effects. We used this information to sub-

select markers that were consistent with other control markers and exhibited the lowest potential for 

batch effects (Housekeepers: GAPDH, Histone H3; IgG: Rb-IgG, Ms-IgG1), and normalized the 

expression of the other markers based on the geometric mean of these respective markers. A 

preliminary analysis demonstrated the lowest impact from technical factors when using IgG 

isotopes, so we normalized expression based on IgG isotope controls for the following experiments. 

ROIs were further labeled with positional coordinates, nuclei count and total area, MMR alteration 

status, age and sex, site of origin/metastasis, tumor grade, nodal and distant metastasis status, and 

macro-architectural region (intra, inter, away). A total of 36 protein markers were selected for 

analysis, not including housekeeping genes. We emphasize that the collected data represents a 

preliminary analysis and does not represent the data for final classifier development. Nonetheless, 

the data collected may prove helpful for the comparison of different classification algorithms.  

3.2.  Experimental Design: Prediction Tasks and Modeling Approaches 

We compared predictive performance of several mixed-effects machine learning (MEML), two 

fixed effects techniques (Random Forest, XGBoost) 28, and classical statistical methods. As input to 
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the algorithms are 36 markers (ROI-level fixed effects), age and sex (patient-level fixed effects), 

batch (random effects), and ROI coordinates (kernel). First, we treated the patient as a random 

intercept and predicted whether ROI could be localized to the tumor interface (macro), estimating: 

a) out of cluster predictive accuracy (macro-ooc; tested on held out set of patients) and b) within 

batch accuracy (macro-ws; samples from the same batch were partitioned for testing). Then, using 

the profiling batch as a random intercept, we sought to establish whether, based on assigned macro-

architectural region, colon cancer metastasis could be predicted (mets); first, predicting mets 

regardless of assigned macro-architecture (mets-overall; including whether ROI was intra- or inter- 

tumoral as additional predictors). We then built classifiers to predict whether there was nodal or 

distant metastasis based on localization of spatial markers within distinct macro-architecture (mets-
intra, mets-inter, mets-away). Our primary comparison was to compare out-of-cluster sampling 

performance with within-cluster sampling for the macro tasks. Since predicting out-of-cluster leads 

to the exclusion of random effects, we expect differences between fixed effects machine learning 

models and their mixed effects counterparts to be marginal. Thus, for the mets tasks, we focused on 

comparison of predictions within batch, as we wanted to shift focus from development of a classifier 

which can be used on external datasets to one where interrogation of important fixed effects 

predictors could potentially yield metastasis-related factors worth follow up. We provide brief 

overviews of selected modeling approaches and their implementations (R v3.6, Python v3.7): 

1. Gaussian Process Boosters (GPBoost): tree boosting algorithms are additive models which fit 

weak learners to the residual between the outcome and sum of previous trees. Covariance 

parameters that account for random intercepts and arbitrary covariance functionals are updated 

at each boosting step via iterative minimization of the model likelihood and risk functional by 

gradient/newton descent. GPBoost models can generalize to classification tasks by regressing 

on a continuous latent outcome, dichotomized to yield binary outcomes. We model 

patients/batches as grouped random intercepts 24: 

*% ∼ PKQ/1K23(1, F%) 

3/WKX(F%) = !"($%) + '[%] 

                                                                            !"($%) = ∑ !D($%)
x
D    (5)	

'[%] ∼ .(0, τ
7z) 

2. GPBoost with Nested Coordinates (GPBoost-Coords): Similar to GPBoost, with a random 

intercept for patient/tissue section and grouped within-patient, a spatial Gaussian Process with 

covariance function of exponential form which captures spatial dependence between ROI: 

3/WKX(F%) = !"($%) + '
(l)

[%] + '
(7)

[%]	

'(l)[%] ∼ .(0, {
7z) 

                                                               '[cluster	k]
(7);;;;;;;;;;;;;;;;;;;;;;⃗
∼ ,-./0123>0;⃗ , Σ[cluster	k]A																																																						(6) 

Σ[cluster	k]	%,D = 2 ∗ ExpG−I  ∗  C>B%, BDAJ 

3. Semi-Parametric Mixed Effects Bayesian Additive Regression Trees (SP-BART): Bayesian 

additive regression trees are similar to boosting in that decision trees are being successively 

estimated, this time in the form of particle Gibbs sampling of decision trees, with priors set over 

tree parameters (splitting structure, predictor selection, tree depth, residual variance) as 

regularization and Bayesian backfitting techniques to draw new trees based on the residual. This 

semi-parametric approach uses Markov Chain Monte Carlo procedures to draw additive trees as 

the fixed effects model components (dbarts 29), with subsequent Hamiltonian Monte Carlo 

(HMC) draws via Stan, to update patient/batch-level random intercepts 30.  

Pacific Symposium on Biocomputing 27:175-186(2022)

181



 

 

 

4. Bayesian generalized linear mixed-effects model (BGLMM) with Horseshoe Prior: 

Implementation of Bayesian logistic regression using the brms package 31, where model 

parameters/random intercepts are drawn using HMC, and horseshoe shrinkage prior with 

documented performance over Lasso priors to effectively remove irrelevant/collinear genes 32.  

5. Regularized BGLMM with Interactions (BGLMM-Int): A hybrid approach between mixed-

effects CART methods and generalized linear procedures utilizes SHAP to extract the top 10 

salient interactions from the GPBoost model and adds proposed interactions (robust to 

clustering; Figure 1E) as terms in the BGLMM Horseshoe model, under the premise that these 

interactions help the GLMM recover any performance gap for their MEML counterparts 33. 
6. BGLMM with Gaussian Process (BGLMM-GP): Similar to GPBoost-Coords, replacing the 

gradient boosting decision trees with a linear functional: 3/WKX(F%) = β$% + '
(l)

[%] + '
(7)

[%]. 
7. Random Forest (RF) and Extreme Gradient Boosting (XGBoost): Fixed effects counterparts 

(FEML) to aforementioned MEML methods, fit using scikit-learn and xgboost packages 28,34. 
To assess the predictive performance of each modeling approach, we performed ten-fold cross-

validation and bootstrapped performance statistics (C-Statistic and Log-Loss) through iterative 

resampling of the held-out validation sets of each of the cross-validation folds before averaging. We 

focused on sensible/coarse selection of hyperparameters. Salient predictors for the CART methods 

were extracted using SHAP to estimate the local importance of each predictor and summed to form 

global attributions 35. Interaction effects were extracted using SHAP’s TreeExplainer20. After 

selecting predictors via Horseshoe Lasso variable selection and standardizing, posterior draws of 

unpenalized BGLMM model parameters were used to assess and visualize significant predictors. 

4.  Results 

4.1.  Macro: Inter-Tumoral Prediction  

The ability to characterize ROI out-of-batch/sample (OOS) indicates the potential to assess new 

cases prospectively for macro-architectural characteristics. Here, we expected within-sample (WS) 

performance to exceed predictions made on held-out patients. As expected, the prediction of whether 

an immune cell ROI was embedded in the interface with tumor exhibited greater performance 

within-sample across all approaches. MEML methods, taken as a group, slightly outperformed fixed 

effects approaches for macro-architectural prediction (Table 1). Surprisingly, generalized linear 

mixed effects approaches outperformed both the fixed effects and MEML methods, with slightly 

greater performance assigned to the BGLMM model, which utilized interactions detected from the 

GPBoost model (Table 1). Adding spatial dependence to the model in the form of Gaussian 

Processes did not improve predictive performance for GPBoost and BGLMM.  

     Top predictors for tumor interface macro-architecture between the GPBoost model and BGLMM 

model were concordant (e.g., PanCk. CD127, CTLA4, CD44) and of similar directionality (Figure 
2A,C). IgG isotope technical factor Ms-IgG2A was found to be in the top half of predictor for 

GPBoost, though effects were largely negligible and undetected by the BGLMM. Some of the 

interactions extracted from the GPBoost model were found to be some of the top predictors for the 

BGLMM-Int model (e.g., PanCk:CD68, PanCk:CD34) (Figure 2B-C; Table 2), indicating the 

relevance of MEML extracted interactions in capturing macro-architectural associations. 
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Figure 2: Macro Predictions: A) SHAP summary plot of top GPBoost terms; each point represents value of specific 

predictor for ROI; color indicates predictor’s value; positive SHAP value (x-axis) indicates how related to tumor 

interface; B) GPBoost SHAP partial dependency of CD68 interaction with PanCK; C) Posterior distributions of 

unpenalized BGLMM-Int predictors (thick and thin bars represent 50% and 90% credible intervals respectively) 

Table 1: Bootstrapped model performance comparison, using C-Statistic/Area Under the Curve (AUC) and Log-Loss   
Fixed Effects MEML Bayesian Generalized Linear Mixed 

Models 
Task AUC ± 

SE 

RF XGBoost GPBoost GPBoost-
Coords 

SP-BART BGLMM BGLMM-
Int 

BGLMM-
GP 

Macro OOS 0.759±0.01 0.747±0.01 0.752±0.01 0.747±0.01 0.772±0.01 0.778±0.01 0.785±0.009 0.777±0.01 

WS 0.781±0.009 0.773±0.01 0.782±0.009 0.78±0.009 0.784±0.009 0.788±0.009 0.802±0.009 0.786±0.01 

METS Overall 0.909±0.006 0.951±0.004 0.971±0.003 n/a 0.897±0.006 0.852±0.008 0.896±0.006 n/a 

Intra 0.834±0.014 0.849±0.014 0.89±0.011 n/a 0.867±0.012 0.848±0.013 0.877±0.012 n/a 

Inter 0.881±0.013 0.866±0.013 0.899±0.012 n/a 0.874±0.012 0.836±0.014 0.881±0.012 n/a 

Away 0.827±0.014 0.842±0.014 0.895±0.011 n/a 0.887±0.011 0.885±0.012 0.885±0.011 n/a           

Task Log-Loss 
± SE 

RF XGBoost GPBoost GPBoost-
Coords 

SP-BART BGLMM BGLMM-
Int 

BGLMM-
GP 

Macro OOS 0.546±0.008 0.747±0.025 0.572±0.013 0.578±0.014 0.547±0.013 0.535±0.01 0.528±0.011 0.536±0.01 

WS 0.542±0.017 0.701±0.025 0.535±0.013 0.538±0.013 0.526±0.011 0.522±0.01 0.508±0.01 0.524±0.01 

METS Overall 0.485±0.005 0.284±0.013 0.248±0.007 n/a 0.409±0.014 0.455±0.01 0.393±0.01 n/a 

Intra 0.544±0.009 0.509±0.027 0.422±0.014 n/a 0.454±0.021 0.479±0.017 0.444±0.017 n/a 

Inter 0.507±0.009 0.499±0.032 0.412±0.017 n/a 0.457±0.026 0.484±0.017 0.429±0.019 n/a 

Away 0.559±0.01 0.559±0.031 0.428±0.017 n/a 0.442±0.023 0.441±0.015 0.434±0.015 n/a 

4.2.  METS: Nodal and Distant Metastasis Prediction  

The greatest performance differences between fixed effects methods and MEML methods were 

noticed across all metastasis prediction tasks, where the GPBoost method obtained as little as a 2% 

boost in C-statistic to as much as a 9% performance gain versus RF and XGBoost. Within batch, it 

was easier to detect metastasis when all macro-architectural regions were utilized, while 

performance was roughly equivalent for each of the subregions (Table 1). Since performance of 

GPBoost exceeded that of all other approaches, the model may have learned significant interactions 

between genes that were invariant to batch differences. Using the detected interactions to 

supplement the BGLMM model allowed the BGLMM interaction model to vastly exceed the 

performance of its non-interaction counterpart and obtain performance competitive with GPBoost 

(Table 1). Across all tasks, the BGLMM model mostly outperformed its CART counterpart BART. 

     GPBoost and BGLMM derived some concordant predictors (e.g., CD20, CD14), while others 

(e.g., FOXP3) were not found in the BGLMM model (Figure 3A,C). IgG isotope technical factor 

Ms-IgG1 was found to be in the top half of GPBoost predictors; effects were largely negligible and 
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undetected by the BGLMM. The GPBoost model was also able to detect important interactions, 

(e.g., effect modification of markers CD20 and Fibronectin by age) (Figure 3B-C; Table 2) 36.  

Table 2: Top terms from BGLMM-Int models; GPBoost-extracted interactions are emphasized in bold 

Top 7 Ranked BGLMM-Int Terms 
Macro METS 

OOS WS Overall Intra Inter Away 
PanCk PanCk CD20:Age Beta-2-microglobulin (B2M) CD68:CTLA4 CD25 

CTLA4 CD127 CD14 CD45 CD11c CD44 

CD68:PanCk CTLA4 Age CD8 CTLA4 FAP-α 

CD34 PanCk:CD68 CD68 FOXP3 CD14 Fibronectin 

PanCk:CD27 CD44 CD11c B2M:FOXP3 GZMB CD68 

CD68 PanCk:CD34 Fibronectin:Age Age CD68 Age 

CD27 CD68 Ki-67 CD8:CD45 CD14:CD66b FAP-α:CD163 
 CD56 Age:Sex  Age CD163 
 CD34 CD8  CD14:CTLA4 PanCk 
 PanCk:CD56 Beta-2-microglobulin (B2M)  CD66b PanCk:Age 
  CD20  GZMB:Age  
  B2M:Age    
  Fibronectin    
  Sex    

 
Figure 3: METS Predictions: A) SHAP summary plot of top GPBoost terms; each point represents value of specific 

predictor for ROI; color indicates predictor’s value; positive SHAP value (x-axis) indicates how related to tumor 

interface; B) GPBoost SHAP partial dependency of CD20 interaction with age; C) Posterior distributions of 

unpenalized BGLMM-Int predictors (thick and thin bars represent 50% and 90% credible intervals respectively) 

5.  Discussion 

Spatial localization of gene and protein markers provides additional resolution on disease 

pathogenesis and etiology, which may soon lead to more informative and promising diagnostic and 

prognostic decision aids. While failing to account for repeated measurements in this setting may 

threaten to preclude classifier deployment, incorporating mixed-effects modeling into machine 

learning model development may derive potential additional clinically relevant disease predictors 

due to nonlinear interaction modeling while accounting for batch effects. In this study, we performed 

a preliminary assessment and comparison of different generalized linear and CART models for 

deployment as classifiers to assess macro-architectural characteristics and potential for undergoing 

nodal or distant metastasis. Results from our study indicate that classifier development for spatial 

omics technologies such as GeoMX DSP or Visium’s Spatial Transcriptomics may benefit by taking 

into account repeated measurements on the case and batch level. At minimum, mixed effects 

classification algorithms in spatial omics studies may detect complex gene-gene and gene-
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phenotype interactions that can be applied towards clinical findings (e.g., reportable risk estimates). 

For instance, the BGLMM-Int model indicated that the presence of CD20 (B-cells) was more 

predictive of metastatic potential in older individuals compared to younger individuals, while the 

presence of Fibronectin indicated the opposite effect (more predictive of metastasis in older 

individuals). We plan to further investigate the clinical utility of such identified interaction effects. 

 The added advantage of employing an MEML model is the ability to extract an interaction that 

the generalized linear approach can utilize, which may outperform generalized linear approaches 

without interactions, often unfairly reported in algorithm comparison studies. In this study, using 

this hybrid approach of informing interactions through MEML methods yielded BGLMM models 

that could outperform fixed effect and MEML methods due to simpler decision boundaries (line 

instead of stepwise function) and less biased sampling of the posterior of the parameters. 

     We acknowledge a few study limitations. Namely, we performed very coarse hyperparameter 

searches and other notable MEML methods 27,29,37–40 were omitted due to overlapping design. 

Additional algorithmic fine-tuning may demonstrate superior performance that is different from that 

reported in this work. The role of batch imbalance (association of batch with an outcome) has been 

well explored as it degrades the model performance in bulk expression datasets. However, its effects, 

particularly on intra-batch normalization and estimation of random effects, are unclear with the 

presented data and demand further exploration. We chose not to include batch effect correction 

using ComBat to limit the number of comparisons41. Regarding the batch effects, other than 

modeling Gaussian Processes nested within random intercepts, we did not include any random 

slopes in any of the MEML and BGLMM models, nor did we consider multiple hierarchy levels 

simultaneously (random intercept for batch and patient/biopsy). METS predictions were made 

within-batch and are not an accurate reflection of deployment on new samples. We did not 

incorporate time from initial biopsy to development of local or distant METS, though we plan to 

comment on the temporality of such associations in follow-up clinical findings. Projective predictive 

feature selection can help select more relevant BGLMM predictors 42,43. We neither performed nor 

compared findings from univariable analyses with multivariable analyses, which is outside the study 

scope. We also noticed that there was no gain in performance from using the ROI spatial coordinates, 

which may have been an artifact of implementational difficulties, the low sample size of ROIs and/or 

selection/learning of improper kernels. Spatial autocorrelation is often studied in spatial omics 

analyses, and, in the future, we expect to include an in-depth assessment of spatial effects.  

     In the future, we aim to refocus these findings for a more clinical setting after further algorithmic 

fine-tuning and orthogonally validation of our research results using immunohistochemistry (IHC). 

For prospective deployment of these technologies, we envision IHC serving as a low-cost alternative 

and potentially less encumbered by batch effects to rapidly spatially assess markers that have 

demonstrated utility for identification of colon metastasis. Such data modalities require 

standardization of collection/analysis processes (e.g., automated segmentation of macro-

architecture (intra, inter, away) with deep learning algorithms, assessment of potential for bias from 

semi-subjective/automated selection of ROI) 44. Application of chemical reagents demands further 

adjustment to ensure meaningful deployment. Regarding further methods development, aggregation 

across macro-architectural regions may be explored using graph neural networks, which can pool 

spatial omics information across these regions to form a succinct vectorial representation of patient’s 

overall profile that can be integrated with H&E imaging modalities. Simulation studies may provide 

further validation of the utility of MEML methods for the assessment of spatial omics technologies.  
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6.  Conclusion 

In this work, we demonstrated the potential utility of MEML methods for the assessment of spatial 

protein markers collected using the Nanostring GeoMx DSP. We illustrated that MEML methods 

obtain superior within-batch performance for Colon metastasis prediction versus fixed effects and 

generalized linear methods. Furthermore, MEML methods, when combined with generalized linear 

modeling, may lead to clearer communication of significant spatial disease associations in clinical 

research studies through the extraction of key complex interactions. Further standardization of data 

collection, normalization, and analysis are potential opportunities to consider spatial omics machine 

learning technologies for meaningful clinical deployment. 
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