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Advances in medical science simultaneously benefit patients while contributing to an over-
whelming complexity of medicine with a decision space of thousands of possible diagnoses,
tests, and treatment options. Medical expertise becomes the most important scarce health-
care resource, reflected in tens of millions in the US alone with deficient access to specialty
care. Combining the growing wealth of electronic medical record data with modern recom-
mender algorithms has the potential to synthesize the clinical community’s expertise into
an executable format to manage this information overload and improve access to personal-
ized care suggestions. We focus here specifically on outpatient consultations for (Endocrine)
specialty expertise, one of the highest demand and most amenable areas for electronic con-
sultation systems. Specifically we develop and evaluate models to predict the clinical orders
of these initial specialty referral consultations using an ensemble of feed-forward neural
networks as compared to multiple baseline algorithms. As benchmarks closer to the ex-
isting standard of care, we used diagnosis-based clinical checklists based on our review of
literature and practice guidelines (e.g., Up-to-Date) for each common referral diagnosis as
well as existing electronic consult referral guides. Results indicate that such automated al-
gorithms trained on historical data can provide more personalized decision support with
greater accuracy than existing benchmarks, with the potential to power fully digital con-
sultation services that could consolidate utilization of scarce medical expertise, improving
consistency of quality and access to care for more patients.
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1. Introduction

The growing limitations in the scarcest healthcare resource - clinical expertise - is an issue
that has long been at the forefront of medicine. This shortage of clinician time is particularly
acute in access to medical specialty care. Patients can wait months for outpatient specialty
consultation care, which contributes to 20% higher mortality.1

Our broader vision beyond specialty consultations is synthesizing massive amounts of
medical information to support all decision making. Recommender algorithms could be used
for all clinical decision making, while here we focus on specialty consultations as a concrete
example point where there clearly is a request for assistance and a gap in availability of
that support. We focus on recommending the clinical orders for medications and diagnostic
tests from outpatient consultations that any clinician could initiate with adequate support.
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This system can consolidate specialty consultation needs and open greater access to effective
care for more patients. A key scientific barrier to realizing this vision is the lack of clinically
acceptable tools powered by robust methods for collating clinical knowledge, with continuous
improvement through clinical experience, crowd-sourcing, and machine learning. Existing tools
include electronic consults that allow clinicians to email specialists for advice, but their scale
remains constrained by the availability of human clinical experts. Electronic order checklists
(order sets) and the e-consult referral guides are in turn limited by the effort to maintain
content and adapt to individual patient contexts.2

Machine learning approaches are revolutionizing various healthcare areas such as medi-
cal imaging,3 diagnostic models,4,5 and virtual health assistants6 by introducing more accu-
rate, low cost, fast, and scalable solutions. Automated diagnostic workflow recommendation
is another emerging application of machine learning which has so far mainly been focused
on predicting the need for specific medical imaging.7 However, only a few previous studies
have explored the possibility of using machine learning approaches to design a scalable in-
telligent system that can recommend diagnostic procedures of any type as an alternative to
the conventional clinical checklists. Authors in8 and9 apply recommender systems based on
probabilistic topic modeling and neural networks to predict inpatient clinical order patterns.
Other than predicting workflows, recommender systems have also been used for diagnosis in
several previous papers.10,11

In this work, we address the problem of predicting outpatient specialty workflows. Specif-
ically, our objective is to predict which tests and procedures would be ordered at the first
specialty visit for a patient referred by a primary care physician (PCP), based on their unique
medical records. This prediction could provide automated decision support and recommen-
dations at primary care visits or specialist pre-visit screenings to allow diagnostic procedures
to be completed while the patient is awaiting their in-person specialist visit. As opposed to
manually-created medical checklists, which are mainly based on diagnosis (e.g., common labo-
ratory and imaging tests a clinician can order to evaluate diabetes), the proposed data-driven
algorithm utilizes the patient’s previous laboratory results, diagnosis codes, and the most re-
cent procedures as input and recommends follow-up laboratory orders and procedures. The
proposed recommender model offers several key benefits including scalability to answer unlim-
ited queries on-demand; maintainability through automated statistical learning; adaptability
to respond to evolving clinical practices; and personalizability of individual suggestions with
greater accuracy than manually-authored checklists. We categorized the input EHR data into
three groups: diagnostic data, including the diagnosis codes and laboratory results; procedures
ordered by the referring PCP; and the specialist being referred to (recognized by their ID).
This grouping of the data allows us to use appropriate base models for each of the input data
categories and process them separately. The first base model is a neural network based multi-
label classifier with diagnostic data as input and specialty procedures as labels. The second
model is a collaborative filtering AutoEncoder (AE) with the PCP and specialty procedures
as input and output, respectively. The designed collaborative filtering AutoEncoder is similar
to the the deep learning based collaborative models proposed in.12,13 The predictions from the
base models are then fed into an ensemble neural network to improve the predictions from
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each of the base learners. Unlike traditional ensemble methods that use the ratings from base
learners to improve predictions,14 the proposed approach leverages the specialist ID number
as side information to personalize the recommendations both for the patient and speciality
provider. Here, we develop and measure the potential advantages and tradeoffs of the proposed
method compared to clinical checklists and several other baselines.

2. Cohort and Data Description

In this work, we address the prediction of future clinical diagnostic steps for the outpatients
referred to the Stanford Health Care Endocrinology Clinic between January 2008 and Decem-
ber 2018. To have adequate access to the patients’ clinical records, we only considered those
referred by a PCP within Stanford Health Care Alliance network, which totally includes 6511

patients (67% Female, mean Age 53.2 years, min Age 16, max Age 89). We aimed to predict
the procedures (primarily laboratory and imaging tests) the endocrinologist would order at
the first in-person visit. Because the procedures ordered could depend on the time window
between the referral and the first specialist visit, we restricted the cohort to only those patients
with a first specialist visit within 4 months after referral.

For each patient in our cohort we used electronic health record (EHR) data to extract all
laboratory results within two months before the referral as well as the procedures ordered by
the referring PCP. We further included the receiving specialist’s identity (33 unique specialists)
as side information to allow the model to personalize predictions per specialist as well, as the
Endocrinology clinic directors noted that even different specialists within the same clinic had
subtly different preferences for diagnostic evaluation approaches to common conditions.

3. Proposed Method

The proposed method is an ensemble model that takes the patient’s clinical information and
the specialist ID as input and predicts the future procedures. In order to feed the data into
the model and train the base and ensemble models, we needed to pre-process the data to the
appropriate format.

3.1. Data Pre-Processing

The defined cohort included 6511 patients and, within the defined cohort, there were 2993

unique laboratory tests, 2158 unique procedures, and 11810 unique diagnosis codes. Given
that it would not be practical to train a model with several thousand data dimensions and
output labels using only 6511 samples, we restricted each data category to only the most
frequent types. Specifically, we only considered the top 100 most common laboratory tests
and the top 60 procedures. We also restricted the diagnosis codes to the top 10 most prevalent
codes related to endocrinology: Diabetes mellitus Type I or II, Hypercalcemia, Hyperlipidemia,
Hypothyroidism, Hyperthyroidism, Osteopenia, Thyroid cancer, Thyroid nodule, and Obesity.

The raw laboratory results in the EHR data are mainly continuous data, which we con-
verted into one-hot encoded format using the clinical laboratory defined ”normal range” for
each value. Thus, each laboratory value was embedded into a three dimensional binary vector,
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where the first dimension represents whether the laboratory value is available for the patient
and the second and third dimensions indicate whether the laboratory value is low or high (in
case of a normal result both are 0). Thus, if a patient has any missing clinical information, the
one hot encoding approach appropriately considers it the the encoded data format. Finally,
the samples were randomly shuffled and split into the train and test sets with 80% and 20%

of the entire sample sizes, respectively.

3.2. Ensemble Model

Fig. 1: The proposed model consists of two base models which were trained separately and an
ensemble model that combines the prediction results from the base models using the trained
neural network. The first base model is a neural network based multi-label classifier with diag-
nostic data as input and specialty procedures as labels. We refer to this network as diagnostic
model (abbreviated as DM). The second base model is an AutoEncoder (AE) based collabo-
rative filtering architecture with the PCP and specialty procedures as input and output. The
predictions from the base models are then fed into an ensemble neural network which includes
the specialist ID as side information to get the final predicted specialty procedures.

We leverage neural network based models to assess the performance potential beyond clas-
sical methods based on their flexibility in terms of model architecture and number of training
coefficients. The proposed model consists of two base models which are trained separately and
an ensemble model that combines the prediction results from the base models using the trained
neural network (Figure 1). The first base model is a neural network based multi-label classifier
with diagnostic data as input and specialty procedures as labels. A multi-class classifier has
the advantage of being able to predict multiple labels (specialty procedures) with the same
model and neural network is one of the most efficient methods to implement that. The neural
network consists of 5 fully connected layers with the dimensions 310−200−100−80−60 and rec-
tified linear unit (ReLU) activations. The network is trained using stochatic gradient descent
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(SGD) with a learning rate of 0.001 and mean square error (MSE) loss function. We trained
the network for 400 epochs with a batch size of 256. After each layer, a dropout regularization
with p = 0.3 is used to prevent overfitting. We refer to this network as the Diagnostic Model
(DM). The second base model is an AutoEncoder (AE) based collaborative filtering architec-
ture with the PCP and specialty procedures as input and output. The AE consists of 5 fully
connected layers with dimensions 60− 60− 40− 60− 60. The predictions from the base models
are then fed into an ensemble neural network which includes the specialist ID as side infor-
mation to get the final predicted specialty procedures. The ensemble neural network consists
of 6 fully connected layers with the dimensions 130− 200− 150− 100− 80− 60 and each output
neuron represents the score for a procedure ID. For all of the neural network based methods
we performed several hyperparameter optimizations. The scores are normalized within the
range [0, 1] and could be interpreted as an uncalibrated probability that the corresponding
procedure is ordered by the specialist. Based on the predicted scores for the procedures we
can take two different recommendation approaches. The first method applies a fixed threshold
where procedures are recommended only if their respective scores are above the threshold.
This will result in variable numbers of procedures being recommended for different patients.
In the second approach the algorithm always recommends the top k procedures. Thus, in this
approach only the order of the scores are important not their values. We ultiamtely converged
on recommendations based on a fixed score threshold that resulted in superior performance.

4. Experiment Design

The problem of predicting the specialty procedures using the laboratory test results, diagno-
sis codes, and PCP procedures is, in general, a multi-label classification problem and recom-
mender system methods cannot be directly applied. However, we can split the clinical data
into two major groups such that we can separately apply a multi-label classification model
to the first group (laboratory test results and diagnosis codes) and a collaborative filtering
model to the second group (PCP procedures), which is of the same type as the output labels
(Specialty procedures). We compared the results to two standard collaborative filtering meth-
ods, i.e. singular value decomposition (SVD) and probabilistic matrix factorization (PMF).
We compared the performance of the proposed ensemble method to each of the base models,
i.e., the diagnostic model (DM) and AutoEncoder (AE), as well as the collaborative filtering
methods SVD and PMF, and conventional clinical checklists and referral guides. Because of
the long wait time for new appointments and to ensure appropriateness of consults, clinical
checklists are sometimes provided to schedulers in subspecialty clinics to ensure that relevant
laboratory results will be available before the initial patient visit. For example, an endocri-
nologist may request that a patient referred for osteoporosis not be scheduled until a bone
density scan, a chemistry panel, and a vitamin D level are provided to the clinic. Alterna-
tively, diagnosis-related checklists may represent an ”order panel” of laboratory results and
procedures that one would commonly order for a given medical condition to improve clinical
care. Checklists represent a general list of laboratory results or procedures that an individual
clinician or subspecialty clinic has decided are relevant to most patients with that diagnosis,
but are often manually curated, not personalized to the individual patient, and do not update
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automatically as clinical evidence changes. For the clinical checklist baseline comparisons, we
looked to existing clinical order sets available in the electronic medical record system designed
for specific referral diagnoses and respective electronic consult referral guides that summarized
initial recommended steps for common referral diagnoses. In addition, our two board-certified
clinical authors (IJ and JHC) retrieved and reviewed clinical practice guideline references (e.g.,
UpToDate.com) to draft diagnostic workup checklists for each of the main referral diagnoses
that were confirmed by consensus agreement. We further compared the results to an multi-
label classifier based on aggregate neural networks (ANN) with 6 fully connected layers which
utilizes all the laboratory test results, diagnosis codes, PCP procedures, and specialist ID as
unified input to predict the specialist-ordered procedures. Incorporating the specialist ID as
side information reflects the further real-world practice we observed when interviewing multi-
ple specialists and clinic directors who indicated that even within specialist groups, different
individual physicians sometimes still have idiosyncratic preferences for expected diagnostic
workup sequences and lists for common conditions treated.

5. Results

5.1. Specialty Referrals Efficiency

To estimate the potential needs and impact on clinical practice and patient access, we extracted
several statistics on the current utilization of (Endocrine) specialty referrals in the Stanford
Healthcare system in 2017, summarized int Table 1 below.

Metric Description

5,675 Referral Orders to Specialty

51% Referrals Orders followed by Specialty New Patient visit within 12 months

67 + /− 66 Days between Referral to completed New Patient visit (avg +/- stdev)

4,796 New Patient visits (including external referrals and direct appointments)

92% New Patient visits with only orders that could be done in advance

60% New Patient visits with Only Diagnostic Tests

50% New Only Diagnostic Test visits with follow-up visit within 12 months

96 + /− 85 Days between New Only Diagnostic Test and follow-up visit (avg +/- stdev)

Table 1: Specialty referrals metrics

Outpatient visit metrics for Endocrinology specialty visits referred from primary care vis-
its in 2017 at Stanford Healthcare in Table 1 highlight many missed opportunities for clinical
improvement. Half of referrals are lost to follow-up, never completed within 12 months, indi-
cating large gaps in access to and completion of desired specialty care. The average waiting
time for in-person consultations is over 2 months. Yet clinical orders that result from over 90
percent of specialty New Patient visits could have been done in advance (i.e., NOT specialty
injections, chemotherapy, or procedures like biopsies). The majority of New Patient visits only
result in diagnostic test orders, without any medications or interventions at all. Half of these
New Diagnostic Test Only visits require another visit within another 12 months.
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The above implies that more than 30 percent of New Patient specialty visits have modifi-
able delays where a pre-visit digital consultation guide to complete initial (diagnostic) clinical
orders could at least consolidate two in-person specialty care visits into a single visit, if not
eliminating the need for an in-person follow-up completely. Besides sparing the immediate
patient another multi-month wait for a follow-up visit, freeing up low value clinic visit spots
opens access for all critical patient visits. Extrapolating to the nationwide shortage of (En-
docrinology) specialists, the above implies effective use and distribution of the types of tools
proposed here could enable access to care for hundreds of thousands more patients every year
in the US alone. This is consistent with our surveys of specialists who estimate about half of
their New Patient visits do not have appropriate initial clinical workup completed.

5.2. Model Performance

By varying the score threshold for each of the prediction methods (to convert predicted scores
into binary predictions) for each procedure order, we can obtain different performance metrics
including precision (positive predictive value, the fraction of predicted procedure orders the
specialist actually ordered) and recall (sensitivity, the fraction of orders the specialist actually
ordered that were predicted). Therefore, the methods are evaluated in terms of precision,
recall, and area under the receiver operating curve (AUROC) metrics. Figure 2 represents
the precision-recall graph of the proposed ensemble method compared to the base models
(diagnostic model and AutoEncoder), collaborative filtering methods (SVD and PMF), the
aggregate neural network model (ANN), clinical checklists and referral guides. As shown the
ensemble model achieves a better precision-recall trade-off compared to other models, the
clinical checklist and referral guides. More than a quarter of specialty referrals do not clearly
map to a single classic diagnosis, which means that simple static guides will not be adequately
personalized and viable in these and many more cases.

Precision at different fixed values of recall are represented in Figure 3. The ensemble
method achieves a better precision-recall trade-off compared to the other models. The methods
are also compared in terms of AUROC in Figure 4. The ensemble method achieves the highest
AUROC of 0.80 compared to the other methods.

Figure 5 shows an example of model inputs and outputs. The patient was referred for
hyperthyroidism, presumably for a low thyroid stimulating hormone (TSH). The true specialist
orders were all related to thyroid conditions, except for vitamin D, which was presumably
repeated due to theprevious low laboratory test values. The predicted specialist orders with
a predicted score above a fixed threshold of 0.20 captured a portion of the thyroid-related
laboratory tests as well as the repeat vitamin D, a metabolic panel (appropriate for a general
review of the patient’s body chemistry context) and a hemoglobin A1c (not as relevant for the
primary thyroid disorder, but likely reflects the Endocrinologists attention to other common
disorders like diabetes). Finally, we compare the performance of the ensemble method using
two selection approaches based on the predicted scores (discussed in Section 3.2). As shown
in Figure 6, the selection method based on a fixed threshold (η) performs better than the
selection method based on the fixed k.
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Fig. 2: Precision-Recall graph of the proposed ensemble method compared to the base models
(diagnostic model and AutoEncoder), collaborative filtering methods (SVD and PMF), and
the aggregate neural network model (ANN). Notably, all methods substantially outperform
credible real-world standard of care benchmarks of static clinical checklists and referral guides.

Fig. 3: Precision at fixed recall for the proposed ensemble method compared to the base
models (diagnostic model and AE), collaborative filtering methods (SVD and PMF), the
aggregate neural network model (ANN). The ensemble model achieves a better precision-
recall trade-off compared to other models and the clinical checklist. Again, the ensemble
model achieves a better precision-recall trade-off compared to other models.

6. Discussion

The generalizability of the proposed model to more diverse types of patients with different
conditions depends on several key assumptions. As mentioned in 3.1, due to the model’s
learning limitations with respect to the number of patients, we only included a portion of the
laboratory tests, diagnosis codes, and procedures as features and labels in our data, which
degrades the performance of the recommendation model. Further, the recommended items
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Fig. 4: AUROC of the proposed ensemble method (EM) compared to the base models (diag-
nostic model and AE), collaborative filtering methods (SVD and PMF), the aggregate neural
network model (ANN). Error bars show the 95% confidence interval computed using boot-
strapped resampling.

Fig. 5: Example Inputs and Outputs for referral clinical order predictions. Adapted from a
real-world patient’s information available at the time of referral and the predicted specialist’s
clinical orders vs. actual specialist orders vs. simple checklists (order sets) based only on the
primary referral diagnosis. In this example, the ensemble model predicts 5 candidate clinical
orders that exceed a score threshold, of which 2 were actually ordered by the specialist who
ordered 6 total items. (Precision = 2/5 = 40%, Recall = 2/6 = 33%).

based on the prediction model are learned based on specialists’ preferences; they are not
necessarily correct or incorrect orders. Gold standards for ”correctness” are largely elusive
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Fig. 6: Precision-Recall performance comparison of the ensemble method using different
threshold approaches to selecting the top predictions. A fixed number (k) can used to select
the top 5, or top 10, or other top k items to predict, or a score threshold to select all top
items with a predicted score above that threshold. The curves illustrate the natural tradeoff
between precision vs. recall with varying threshold values, and moreso, indicates that score-
based thresholding will consistently outperform fixed count selections.

for medical care, but our prior studies have already assessed this in different ways such as
alignment with clinical practice guidelines,9 risk-adjusted patient outcome scores,? and expert
panel consensus of clinical appropriateness,15 where we largely find that the “normative”
clinical behavior we predict already naturally aligns with such external measures of correctness.

7. Conclusion

In this work, we addressed the problem of predicting outpatient specialty diagnostic workups,
specifically the orders expected to result from adult Endocrinology referrals. We proposed a
data-driven model that recommends follow-up procedure orders based on patients’ clinical
information. Several evaluations illustrate that the proposed method can outperform conven-
tional clinical checklist and baseline methods.
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