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Application of artificial intelligence (AI) in precision oncology typically involves predict-
ing whether the cancer cells of a patient (previously unseen by AI models) will respond
to any of a set of existing anticancer drugs, based on responses of previous training cell
samples to those drugs. To expand the repertoire of anticancer drugs, AI has also been
used to repurpose drugs that have not been tested in an anticancer setting, i.e., predict-
ing the anticancer e↵ects of a new drug on previously unseen cancer cells de novo. Here,
we report a computational model that addresses both of the above tasks in a unified AI
framework. Our model, referred to as deep learning-based graph regularized matrix factor-
ization (DeepGRMF), integrates neural networks, graph models, and matrix-factorization
techniques to utilize diverse information from drug chemical structures, their impact on
cellular signaling systems, and cancer cell cellular states to predict cell response to drugs.
DeepGRMF learns embeddings of drugs so that drugs sharing similar structures and mech-
anisms of action (MOAs) are closely related in the embedding space. Similarly, DeepGRMF
also learns representation embeddings of cells such that cells sharing similar cellular states
and drug responses are closely related. Evaluation of DeepGRMF and competing models
on Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia
(CCLE) datasets show its superiority in prediction performance. Finally, we show that the
model is capable of predicting e↵ectiveness of a chemotherapy regimen on patient outcomes
for the lung cancer patients in The Cancer Genome Atlas (TCGA) dataset.⇤

Keywords : Drug Sensitivity Prediction; Matrix Factorization; Collaborative Filtering; Drug
Embedding; Deep Learning.

1. Introduction
Precision oncology aims to treat each patient with an individually tailored therapy regimen to
achieve better outcomes and minimize side e↵ects.1 Currently, a common practice in precision
oncology is to prescribe molecularly targeted drugs that are intended specifically to counteract
aberrant signals resulting from tumor-specific genomic alterations. However, such genome-
driven precision oncology has so far covered a limited fraction of patients.2 Furthermore,
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responses to specific targeted therapeutics are often short-lived due to tumor heterogeneity
and development of resistance.3,4 Currently, most cancer patients are treated with “standard
chemotherapies” that are not personalized, and a large proportion of patients do not respond
to these therapies but su↵er the full brunt of their side e↵ects.

Therefore, the success of precision oncology requires the capability to accurately predict the
responses of a patient’s cancer cells to existing anti-cancer drugs and select an optimal regimen,
potentially adjusting over time in response to incipient resistance. The resulting need for an
expanded repertoire of anticancer drugs has led to an active research e↵ort to discover and
repurpose FDA-approved drugs that are not yet considered as anticancer therapeutics but may
function as such. Furthermore, anticancer therapies often involve a combination of multiple
drugs, and the large number of possible combinations of anticancer drugs prevents systematic
clinical trials to develop novel therapies. The above unmet needs call for methods for predicting
e↵ects of drugs on cancer cells even when they have not been tested in such a setting, i.e., de
novo prediction of drug e↵ects. Contemporary large-scale pharmacogenomic studies, such as
Genomics of Drug Sensitivity in Cancer (GDSC),5 Cancer Cell Line Encyclopedia (CCLE),6

The Cancer Genome Atlas (TCGA),7 Library of Integrated Network-based Cellular Signatures
(LINCS)8,9 provide valuable information for exploring the above directions, but would benefit
greatly from computational systems capable of mining the information they provide and using
it to make accurate prediction about potential new therapeutic regimens and thus advance
precision oncology.

Prediction of cell-drug responses can be formulated as a recommendation problem (e.g.,
collaborative filtering10). More specifically, given information regarding a collection of cancer
cells (e.g., genomic and transcriptomic profiles of di↵erent cancer cell lines) and their responses
to di↵erent drugs, we would like to learn the representations of the cells such that cells sharing
similar representations respond similarly to drugs. Similarly, given information regarding a
collection of drugs (e.g., chemical structures and knowledge regarding the drugs) and their
e↵ects on di↵erent cancer cells, we would like to learn representations of the drugs such that
drugs sharing similar representations have similar e↵ects on the cells. After training, when
provided with information of a new sample of cells, a recommendation system should be able
to predict response of each cancer cell to di↵erent drugs. Alternatively, provided information
on a new drug, the system should be able to predict the e↵ects of the drug on di↵erent cells.
Finally, given a new cell sample and a new drug (both previously unseen in training process),
the recommendation system should be able to map the cell and/or the drug to respective
representations and predict the cell-drug response de novo.

A variety of computational methods have been developed to predict the drug sensitivities
of cancer cell lines to a large number of drugs.11–13 However, the majority of previous drug-
sensitivity models concentrate on predicting responses of di↵erent cells to an individual drug,
and few have attempted to address the problem as posed above. These models do not fully
take advantage of available information on other drugs with respect to cells to learn from
drugs with similar chemical structures or mechanisms of action (MOAs), nor do they take
advantage of the fact that some cancer cells share similar drug response profiles to learn
common representations of such cells. Prior approaches to learning representations of drugs
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have transformed their chemical structures from a form defined by the simplified molecular-
input line-entry system (SMILES) into a vector (an embedding) that can be concatenated with
cell embeddings in a deep learning model to predict drug response.14–16 However, this approach
does not utilize a rich body of information regarding the functional impact of chemicals on
cell signaling systems,8,9,17 which is highly relevant to the MOAs of drugs18 and thus relevant
to predicting drug responses.

In this study, we developed a method called DeepGRMF (deep learning-based graph regu-
larized matrix factorization). The main innovation of our model lies in integration of multiple
sources of information and di↵erent learning techniques, including: 1) Integrative represen-
tation of drugs. For the representation of drugs, we combined three kinds of information
regarding a drug — its chemical structure,19 its impact on cellular transcriptomic signaling,17

and its pathway information20 — to make the representation more informative. 2) Repre-
sentation learning through collaborative filtering. Our model employs a framework of
collaborative filtering based on matrix-factorization, which learns representations of cells based
on the shared responses with respect to drugs as well as representations of drugs based on
their common e↵ects on cells. 3) Graph-based regularization. We adopted a graph-based
regularization approach21 to enhance the performance of collaborative filter modeling of cell-
drug responses. 4) Neural-network-based mapping from raw data to cell and drug
factor matrix. We incorporated two neural network models which map cells (or drugs) to
their corresponding factor matrix. This enables us to perform de novo prediction of responses
between a pair of previously unseen cell and drug.

Our results indicate that each of the above steps individually enhanced overall performance,
and that the complete model outperforms current state-of-the-art models in predicting drug
responses.

2. Materials and methods
2.1. Data pre-processing
We collected the pharmacogenomic data from GDSC (https://www.cancerrxgene.org) and
CCLE (https://portals.broadinstitute.org/ccle) to train and test models for predict-
ing drug cell-drug responses. We used the method described in previous work11 to process
the gene expression data and drug sensitivity data. In brief, the gene expression data were
normalized by the robust multi-array averaging, and genes with high variances were identified
by medium variance analysis, bimodal mixture fitting, and statistical significance of modes.
After filtering, we applied a nonparanormal transformation for distribution normalization and
a min-max normalization to normalize the value of expression data in a range between 0 to
1. Finally, we retained GDSC and CCLE datasets containing gene expression data of 2,758
genes in 954 and 477 cell lines separately. For drug sensitivity data, activity area (AA) was
used. To facilitate application in clinical practice, we discretized the continuous value into two
categories, sensitive (one) and resistant (zero).11 Since drug embedding is based on SMILES
strings, we only selected drugs with known SMILES strings, which resulted in 301 drugs in
GDSC and 24 drugs in CCLE (16 drugs existing in GDSC and 8 new drugs). For the drug
pathway information, the GDSC dataset has already provided a type of pathway name for each
drug. For the new drug in CCLE, we labeled its pathway name manually using the pathway
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Fig. 1: Diagram of DeepGRMF model. 1) The orange dotted box shows the procedure of the
first module: using a graph regularized matrix factorization to decompose the drug response matrix
into the product of cell line factor matrix A and drug factor matrix B. 2) The blue dotted box
shows the procedure of the second module: using two separate neural networks to learn the mapping
functions. The neural network I is used to learn the mapping function for cell lines, which maps
gene expression matrix C to cell line factor matrix A. The neural network II is used to learn the
mapping function for drugs, which maps the drug embedding obtained by concatenating integrative
drug embedding matrix D and pathway embedding matrix E to drug factor matrix B.

name in GDSC.
For predicting e↵ectiveness of a chemotherapy regimen on real patients using the cell-

line trained drug sensitivity prediction model, we collected RNAseq expression data of lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients from the UCSC
Xena TCGA data portal (https://xena.ucsc.edu). The gene expression data in TCGA was
processed using the same procedure of processing the gene expression data in GDSC and
CCLE. The drug usage data of 179 LUAD and 144 lung squamous cell carcinoma LUSC
patients were downloaded from the Genomic Data Commons Data Portal (https://portal.
gdc.cancer.gov). We downloaded the corresponding survival data from the UCSC Xena data
portal. We kept data of patients who received adjuvant therapies. This resulted in a lung cancer
test dataset with drug usage and survival information for 182 patients. Since we focused on
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four drugs, cisplatin, pemetrexed, paclitaxel, and vinorelbine, finally we had a dataset with
62 adjuvant LUAD and LUSC patients.

2.2. Learning integrative drug embedding
To obtain an integrative drug embedding (IDE) reflecting multiple aspects of the drug, we
adopted a semi-supervised method19 that integrated two sources of information: 1) chemical
structure of the drug, and 2) functional impact of the drug on gene expression.17 To represent
chemical structures, we used the SMILES22 representation of molecules and obtained SMILES
strings of 250K drug-like molecules from the ZINC23 database. To represent the functional
impact on gene expression, we trained a variational auto-encoder (VAE)24 model on the tran-
scriptomic data of cell lines treated by di↵erent drugs from the LINCS database.8 Based on
the assumption that the cellular transcriptomic profile in response to a drug treatment reflects
the MOAs of the drug on the cell, we learned the MOAs representations of 1,825 drugs.17 After
obtaining the two sources of information, we used a VAE to encode the SMILES strings of
molecules19 and utilized the drug-drug similarity computed from their MOAs representations
to regularize the drug embedding space so that drugs with similar MOAs profiles were clus-
tered together. Note that our approach allows us to obtain the IDE of a new drug by mapping
its SMILES string to the pre-trained drug embedding space.

2.3. Model architecture
The overall architecture of DeepGRMF is shown in Fig. 1. This model has two modules: 1)
a graph regularized matrix factorization that decomposes the drug response matrix into the
product of two lower dimensional matrices, i.e., cell line factor matrix A and drug factor matrix
B; 2) two neural networks that learn the functions that map the representations of cell line
and drug to their hidden factors, i.e., C ! A and D [ E ! B, respectively.

2.3.1. Graph-regularized matrix factorization
We used matrix factorization to decompose the drug response matrix, Y 2 Rn⇥m into the cell
line factor matrix, A 2 Rn⇥d and the drug factor matrix, B 2 Rd⇥m. The variables n, m and d

indicate the number of cell lines, the number of drugs, and the latent dimension respectively.
The representations of cells and drugs in factor matrices capture the similarity of cell responses
to drugs and e↵ects of drugs on cells, so that if two cell lines have similar representations,
they would respond similarly to certain drugs, and vice versa. However, this encoding does
not incorporate intrinsic information of cells (e.g., cellular states) or drugs (e.g., chemical
structures). Inspired by the work of Guan et al,21 we employed graph-regularized terms so
that the similarities among the latent vectors in A and B are consistent with the pairwise
similarities derived from the cell line gene expression matrix C and the drug embedding by
concatenating IDE matrix D and pathway embedding matrix E denoted as D [ E.

The graph-regularized matrix factorization can be formulated as an optimization problem
with loss functions and constraints. For the constraints, we used both graph regularizations
of cell lines and drugs. We created adjacency matrices for cell lines (Wcell 2 Rn⇥n) and drugs
(Wdrug 2 Rm⇥m), respectively. The adjacency matrix is a representative description of a graph
structure in matrix form and the elements of it represent whether pairs of vertices are ad-
jacent in the graph or not. In our experiment, Wcell was constructed from the gene expres-
sion matrix C to measure the a�nity between cell lines. To create Wcell, a kernel function25
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(Scell)i,j = exp(�Ti,j/�) was first applied to convert the Euclidean distance between a pair of
gene expression profiles into a similarity score within the range of [0, 1], where Ti,j = kxi�xjk
is the Euclidean distance between expression profiles xi and xj, and � is the mean of all the
elements in T . We used Scell to identify the set of top p-nearest neighbors for each cell line,
and we set entries of these neighbors in the adjacency matrix to 1, and rest to 0.

To derive the drug adjacency matrix (Wdrug), we first created a similarity matrix Sdrug

based on the IDE using similar procedures describing above to obtain Scell, then we added
a value of 0.5 to the similarity score in Sdrug if a pair of drugs are in a common pathway.
We then created an adjacency matrix (Wdrug) by only keeping edges connecting the p-nearest
neighbors of each drug.

Given a cell line factor ~Ai (ith row of matrix A), and a drug factor ~Bj (jth column of matrix
B), we optimized the following loss function:

Li,j(Ai, Bj ; yi,j , ~Wcell, ~Wdrug) = CrossEnt(ŷi,j , yi,j) + �c

nX

r=1

( ~Wcell)i,r · k ~Ai � ~Ark2

+ �d

mX

k=1

( ~Wdrug)j,k · k ~Bj � ~Bkk2,
(1)

where ŷi,j = �( ~Ai, ~Bj) = (1 + exp( ~Ai
| ~Bj))�1 is the predicted sensitivity, yi,j is the ground truth

sensitivity, and �c and �d are positive regularization weights. The loss function contains three
terms. The first term is a cross-entropy loss. The second term is the graph regularization of
cell lines, which enforces cell lines with similar gene expression to be close in the cell line
factor space A. The last term is the graph regularization of drugs, which enforces drugs that
are connected in the adjacency graph to be close in the drug factor space B. The final loss
function is the sum of individual cell lines and drugs: L =

P
i,j Li,j.

At the training time, we implemented factor matrices A and B as two embedding layers
with randomly initialized weights. Then we trained the graph-regularized matrix factorization
module using Adaptive Moment Estimation (Adam) as gradient descent optimization algo-
rithm (see 5.1 for implementation details). After the optimization was converged, we obtained
the learned cell line factor matrix A and the learned drug factor matrix B and kept them as
fixed during the training of the second module.

2.3.2. Using neural networks to learn mapping function
To enable de novo prediction of responses between a pair of previously unseen cell and drug, we
used neural networks to learn two mapping functions. Specifically, we used the neural network
I (denoted as f✓) to map a cell line gene expression profiling ( ~Ci) into its corresponding cell
line factor ( ~Ai). We used the neural network II (denoted as f�) to map a drug’s embedding,
which is concatenated by its IDE ( ~Dj) and pathway embedding ( ~Ej), into its corresponding
drug factor ( ~Bj). We adopted an embedding layer (denoted as f�) to convert a drug’s pathway
information ( ~Pj) into its pathway embedding ( ~Ej = f�( ~Pj)). We trained these two neural
networks separately and used the two loss functions for each network:

L(✓; ~Ci) =
nX

i=1

kf✓( ~Ci)� ~Aik2 (2)
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L(�,�; ~Dj , ~Pj) =
mX

j=1

kf�( ~Dj [ f�( ~Pj))� ~Bjk2 (3)

2.4. Evaluating drug sensitivity prediction on cell lines
We considered 3 scenarios of using our model to predict cell-drug responses: 1) Given a new
cell line that has not been treated by any drug (Fig. A1a), we would apply our neural network
I to predict its cell factor based on its transcriptomic profile and then apply collaborative
filtering to predict its response to all the drugs. 2) Given a new drug that has not been tested
on any cell line before, we would apply the neural network II to predict its drug factor based on
its IDE and pathway information, and we would then apply collaborative filtering to predict
its e↵ects on all cells (Fig. A1b). Finally, 3) Given a new cell line and a new drug, we would
first use neural network I and II to predict cell and drug factors respectively, and then apply
collaborative filtering to predict the cell-drug response (Fig. A1c).

We used three schemes to evaluate the performance: 1) the disentangled performance of
individual cell lines to all drugs (per-cell-line performance); 2) the disentangled performance
of individual drugs to all cell lines (per-drug performance); 3) and the global performance
ignoring the distinctions among cell lines and drugs (micro performance). We used area un-
der the receiver operating characteristic (AUROC) and area under the precision-recall curve
(AUPR) as evaluation metrics. We reported average per-cell-line and average per-drug AU-
ROCs/AUPRs for comparisons.

2.5. Survival analysis on real patients
We evaluated performance of our model on real-world patients by first assigning patients into
predicted responders and non-responders, and we then compared their survivals as a surro-
gate indicator of drug e�cacy. From TCGA consortium, we collected clinical data, including
treatments and overall survival, of 62 LUAD and LUSC patients, who received di↵erent com-
binations of cisplatin (41 cases), pemetrexed (19 cases), paclitaxel (17 cases), and vinorelbine
(10 cases) as adjuvant therapies. We applied our model, which has been trained on GDSC
dataset, to each patient to derive the probabilities of being sensitive to the drugs in the
prescribed regimen. Since the probabilities for di↵erent drugs were not well calibrated, we
assigned a patient as sensitive to a drug if the prediction probability for the patient is among
the top 40th percentile of all patients treated with the drug. We then designated a patient
as a responder to a regimen if the patient is predicted to be sensitive to any of drugs in the
regimen, otherwise as a non-responder. We tested our model on these drugs in two schemes: 1)
Predicting e�cacy of existing drugs to treat new cancer cells (previously unseen by models)
as in Fig. A1a; 2) and predicting e�cacy of new drugs (unseen during training) on new cancer
cells as shown in Fig. A1c. For the second scheme, we removed these four drugs from GDSC
dataset during training.

3. Results
3.1. Drug embedding analysis
We evaluated the quality of IDE and the contribution of each of its components, i.e., chemical
structure, MOAs, and pathway information. Our evaluation was based on the heuristics that a
pair of drugs with similar e↵ects on cancer cells should be close in the drug embedding space.
To that end, we calculated the drug-drug similarity (Jaccard coe�cient) in terms of their
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sd
Fig. 2: A) The relationship between similarities of drug sensitivity and Euclidean distance of drug
representations using chemical structure with/without the drug MOAs information. B) The relation-
ship between similarities of drug sensitivity and Euclidean distance of drug representations using
chemical structure, drug e↵ect with/without pathway information.

cell-drug response profiles, and we computed the pairwise Euclidean distances between drug
embeddings. For easy visualization, we divided drug-drug pairs equally into low (bottom 33%),
medium, and high (top 33%) quantiles with respect to their Euclidean distances. Fig. 2A shows
the relationship between these two pairwise measurements. We observed a decreasing trend
(the blue curve) of drug sensitivity similarity from the low quantiles of Euclidean distance
to the high quantiles of Euclidean distance in the drug embedding space using only chemical
structure information. This trend (the orange curve) becomes more evident by using the MOAs
as a regularization, suggesting that the drug embedding is augmented by adding the MOAs
information. Similarly, Fig. 2B shows that including the pathway information into the IDE
further boosted its quality.

3.2. Drug sensitivity prediction on cell line
To evaluate the performance of DeepGRMF, we applied 25-fold cross-validations to GDSC
dataset. As shown in Fig. A2, we adopted di↵erent train-test split strategies. In order to
test the out-of-sample performance across di↵erent platforms or pipelines and examine the
robustness of DeepGRMF, we also predicted and evaluated the drug response of unseen CCLE
dataset with the GDSC-trained models.

3.2.1. Drug sensitivity prediction of new cell lines to existing drugs
To predict drug sensitivity of new cell lines to existing drugs (Fig. A2a), the cell lines were split
into 25 folds, every time we trained on 24 folds and tested on the remaining one. We evaluated
the performance of DeepGRMF and compared it with two models: Lasso and DeepDSC,15

where Lasso is a classic model and DeepDSC is a state-of-the-art model to predict drug
sensitivity. DeepGRMF outperformed these two models (all three were trained on GDSC
data) in both GDSC and CCLE datasets (Table 1), indicating both better accuracy and
generalization of the model. These results show the superiority of non-linear modeling for drug
and gene expression in DeepGRMF over the linear modeling in Lasso. DeepDSC introduces
non-linearity by concatenating the drug chemical features with cell line genomic features
followed by a neural network to predict the drug sensitivity data. We assumed the collaborative
filtering in DeepGRMF could better capture the interaction between cell line and drug.
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Table 1: Performance of di↵erent models to predict drug response of new cell lines to existing drugs.

Per Cell Line Per Drug Micro

Train/Val Data Test Data Model AUROC AUPR AUROC AUPR AUROC AUPR

GDSC GDSC Lasso 79.1 53.8 67.1 38.2 79.3 55.4
DeepDSC 80.0 54.8 67.7 38.8 79.9 56.4

DeepGRMF 83.2 60.1 70.9 41.8 83.1 62.0

GDSC CCLE Lasso 79.2 67.5 66.2 38.2 74.1 50.5
DeepDSC 80.0 68.3 67.0 40.5 75.1 51.5

DeepGRMF 82.0 70.9 67.9 41.6 76.0 53.7

3.2.2. Drug sensitivity prediction of existing cell lines to new drugs
To predict drug sensitivity of existing cell lines to new drugs (Fig. A2b), we split drugs into
25 folds and used 24 folds for training and the remaining one for testing. The performance of
DeepGRMF was compared to DeepDSC in the task of predicting drug sensitivity of existing
cell lines to new drugs. DeepGRMF compared favorably to DeepDSC on both AUROC and
AUPR (Table 2). We did not compare with Lasso because Lasso needs to build a di↵erent
model for each cell line, while 1k cell lines in the dataset are too many. Since CCLE has
di↵erent cell lines from GDSC, for this task we can not train on GDSC and test on CCLE.

Table 2: Performance of di↵erent models to predict drug response of existing cell lines to new drugs.

Per Cell Line Per Drug Micro

Train/Val Data Test Data Model AUROC AUPR AUROC AUPR AUROC AUPR

GDSC GDSC DeepDSC 58.6 33.0 64.5 35.3 65.4 37.7
DeepGRMF 65.5 38.1 70.7 41.8 72.9 46.7

3.2.3. Drug sensitivity prediction of new cell lines to new drugs
To predict drug sensitivity of new cell lines to new drugs (Fig. A2c), we used both new cell
lines and new drugs to test the prediction performance. The cell lines and drugs were firstly
split into five folds, and we then paired each drug fold with each cell line fold to create 25
folds in total. Every time we utilized one fold of cell line paired with one fold of drugs to test,
the remaining pairs of cell lines and drugs were used to train the model.

Table 3: Performance of di↵erent models to predict drug response of new cell lines to new drugs.

Per Cell Line Per Drug Micro

Train/Val Data Test Data Model AUROC AUPR AUROC AUPR AUROC AUPR

GDSC GDSC DeepDSC 58.2 31.6 55.6 28.5 59.8 31.9
DeepGRMF 64.6 36.6 61.4 33.8 66.9 38.9

GDSC CCLE DeepDSC 49.1 49.4 58.5 38.1 55.1 32.2
DeepGRMF 56.1 55.5 69.1 49.4 61.0 44.6
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Table 3 shows the comparison between DeepGRMF and DeepDSC in this evaluation
scheme. DeepGRMF has better performance than DeepDSC on both AUROC and AUPR.
Compared with DeepDSC, the graph regularization technique could further capture the sim-
ilarity among cell lines and drugs, thus improving our performance.

3.3. Survival analysis on real patients
As shown in Fig. 3, patients in the responders group survived significantly longer than the
non-responders group regardless of whether we treated the four drugs (cisplatin, pemetrexed,
paclitaxel, and vinorelbine) as existing drugs or new drugs. The log-rank test p-value is 0.03
and 0.05 for existing and new drugs, respectively. Our model successfully discriminated lung
cancer patients into di↵erent drug response groups that are correlated with survival outcomes
in both schemes. Compared with treating the four drugs as new drugs, treating the four drugs
as existing drugs better separated the two groups.

4. Discussion
Accurate prediction of drug sensitivity is crucial for the success of precision oncology. We
presented a model called DeepGRMF, which demonstrated enhanced capability for predicting
drug sensitivities in comparison to the previous state-of-art algorithm. Furthermore, our model
can predict drug responses de novo for previously unseen drugs, which enables one to repur-
pose existing FDA-approved drugs for treating cancer as well as potentially discover novel
anticancer chemicals. This capability is achieved by innovative integration of four machine
learning technologies: 1) The IDE representation of drugs that incorporates the information
of drug chemical structures and MOAs. 2) Matrix-factorization-based collaborative filtering,
which captures characteristic interactions between a set of similar cell lines and a set of similar
drugs. 3) Graph-based regularization that encodes the similarity of cells and drugs in original
input space. As shown in Table A2, using both similarities can improve AUROC and AUPR
compared with using one similarity or not using any similarity to constrain solutions. 4) Neu-
ral networks that accurately map a new input (a new cell or a drug) to factor space. We also
tried other methods to learn the mapping function, such as random forest and elastic net. As
shown in Table A3, since the neural network had higher performance, we selected it to learn
the mapping functions.

We have shown the generalizability and robustness of our model in transferring the predic-

Fig. 3: Kaplan-Meier curves of responder and non-responder group of lung cancer patients that took
Cisplatin, Pemetrexed, Paclitaxel, and/or Vinorelbine for adjuvant therapy which these four drugs
treated as existing drugs (A) or as new drugs (B).
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tion models trained with GDSC data to make predictions on cell lines from another large-scale
cell-line-based pharmacogenomic study, CCLE, and, more excitingly, predictions on real-world
patients. It is foreseeable that future precision oncology may involve designing a personalized
regimen consisting of multiple e↵ective drugs for each patient. Developing prediction systems
transferring knowledge from cell lines to real-world clinical practice o↵ers promise for greatly
accelerating this process.

The DeepGRMF model can be improved in several aspects. Currently, the DeepGRMF
model only utilizes gene expression profiling data, and we anticipate that further integrating
genomic alterations (mutations and copy number alterations) and epigenetic information will
likely further improve the performance of the model. We noted that the performance of new
drug sensitivity prediction is not as good as new cell line prediction, which may be due to
limited expressiveness of our VAE-based representation of chemical structures. Recently, it
has been shown that a family of graph neural networks can better provide a representation
of chemical structures,26 which can be explored in the future. Finally, the current represen-
tations of cellular states of cancer cells are derived using “black-box” neural networks, and
interpretable deep learning models can be explored not only to achieve interpretability of our
model but also to enhance its performance.
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7. K. Tomczak, P. Czerwińska and M. Wiznerowicz, The cancer genome atlas (tcga): an immea-
surable source of knowledge, Contemporary oncology 19, p. A68 (2015).

8. A. Subramanian, R. Narayan, S. M. Corsello, D. D. Peck, T. E. Natoli, X. Lu, J. Gould, J. F.
Davis, A. A. Tubelli, J. K. Asiedu et al., A next generation connectivity map: L1000 platform
and the first 1,000,000 profiles, Cell 171, 1437 (2017).

9. A. B. Keenan, S. L. Jenkins, K. M. Jagodnik, S. Koplev, E. He, D. Torre, Z. Wang, A. B.
Dohlman, M. C. Silverstein, A. Lachmann et al., The library of integrated network-based cellular
signatures nih program: system-level cataloging of human cells response to perturbations, Cell
systems 6, 13 (2018).

10. X. Su and T. M. Khoshgoftaar, A survey of collaborative filtering techniques, Advances in arti-
ficial intelligence 2009 (2009).

11. M. Q. Ding, L. Chen, G. F. Cooper, J. D. Young and X. Lu, Precision oncology beyond targeted
therapy: combining omics data with machine learning matches the majority of cancer cells to
e↵ective therapeutics, Molecular cancer research 16, 269 (2018).

12. Y.-C. Chiu, H.-I. H. Chen, T. Zhang, S. Zhang, A. Gorthi, L.-J. Wang, Y. Huang and Y. Chen,
Predicting drug response of tumors from integrated genomic profiles by deep neural networks,
BMC medical genomics 12, 143 (2019).

13. Y. Tao, S. Ren, M. Q. Ding, R. Schwartz and X. Lu, Predicting drug sensitivity of cancer cell lines
via collaborative filtering with contextual attention, Proceedings of Machine Learning Research
Vol. 126 (PMLR, Virtual, 07–08 Aug 2020).

14. J. Cadow, J. Born, M. Manica, A. Oskooei and M. Rodŕıguez Mart́ınez, PaccMann: a web service
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