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To address the lack of statistical power and interpretability of genome-wide association
studies (GWAS), gene-level analyses combine the p-values of individual single nucleotide
polymorphisms (SNPs) into gene statistics. However, using all SNPs mapped to a gene,
including those with low association scores, can mask the association signal of a gene.

We therefore propose a new two-step strategy, consisting in first selecting the SNPs
most associated with the phenotype within a given gene, before testing their joint effect on
the phenotype. The recently proposed kernelPSI framework for kernel-based post-selection
inference makes it possible to model non-linear relationships between features, as well as to
obtain valid p-values that account for the selection step.

In this paper, we show how we adapted kernelPSI to the setting of quantitative GWAS,
using kernels to model epistatic interactions between neighboring SNPs, and post-selection
inference to determine the joint effect of selected blocks of SNPs on a phenotype. We
illustrate this tool on the study of two continuous phenotypes from the UKBiobank.

We show that kernelPSI can be successfully used to study GWAS data and detect genes
associated with a phenotype through the signal carried by the most strongly associated
regions of these genes. In particular, we show that kernelPSI enjoys more statistical power
than other gene-based GWAS tools, such as SKAT or MAGMA.

kernelPSI is an effective tool to combine SNP-based and gene-based analyses of GWAS
data, and can be used successfully to improve both statistical performance and interpretabil-
ity of GWAS.
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1. Introduction

Lack of statistical power is a major limitation of genome-wide association studies (GWAS).If
we perform tests at the level of single nucleotide polymorphisms (SNPs), this lack of statis-
tical power stems from from small effect sizes and linkage disequilibrium, among others. By
modeling the association signal over an entire region, gene-level analyses can address this lim-
itation. Being functional entities, genes have the potential to shed light on yet undiscovered
biological and functional mechanisms. Indeed, several tools have been proposed in recent years
to aggregate SNP-level information into gene statistics.1–3 However, using all SNPs mapped
to a gene, including those with low association scores, can mask the association signal of a
gene. We therefore propose a new two-step strategy, consisting in (1) restricting ourselves to
the SNPs most associated with the phenotype within a given gene, and (2) testing their joint
effect on the phenotype.

Because of the data scarcity in GWAS, we would like to use the same data for these two
steps. However, without further precaution, this amounts to data snooping, and may lead to
overestimating the effect of the gene on the phenotype. Post-selection inference (PSI)4 is a
framework specifically developed to address this issue. The main idea is to correct for selection
bias by conditioning the models used in the second step on the selection event from the first
step.

We have previously proposed a generic framework for nonlinear post-selection inference
called kernelPSI.5 kernelPSI uses quadratic kernel association scores (QKAS) to perform the
selection step. They are quadratic forms of the response vector, and can measure nonlinear
association between a group of features and the response. In the context of GWAS, QKAS
can be used to model epistatic interactions between neighboring SNPs, and the kernelPSI
framework is therefore well-suited to performing our two-step strategy.

In this paper, we show how to use kernelPSI in the GWAS setting. The first step consists
in selecting, for each gene or region of interest, a number of putative loci, or blocks of loci,
according to an appropriate QKAS. The second step tests for their aggregated effect on the
phenotype. The selection bias introduced by the first step is accounted for by sampling con-
strained replicates of the response vector. The statistics of the response are compared to those
of the replicates to obtain valid p-values.

The extension of kernelPSI to GWAS required several modifications. First of all, we gen-
eralized kernelPSI to any non-normally distributed continuous outcome, enabling us to use it
on any continuous phenotype. Second, we used contiguous hierarchical clustering6 to separate
each gene in blocks of strongly correlated SNPs. Third, we implemented the identical-by-state
kernel1 to define the similarity between individuals based on the number of individual alleles
they share in such a block of SNPs. Finally, we substantially improved the scalability of the
kernelPSI code. Most importantly, we developed a GPU-version of the constrained sampling
algorithm to speed-up linear algebra operations. The rest of the code was also accelerated
thanks to a more efficient C++ backend. In particular, we implemented a rapid estimator of
the HSIC criterion7 based on quadratic-time rank-1 matrix multiplications. HSIC is an example
of quadratic kernel association score.5

To illustrate the use of kernelPSI on GWAS data, we present a study of BMI and its
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fluctuations (∆BMI) in the UK BioBank.8 The UK BioBank is one of the largest available
sources of data for the investigation of the contribution of genetic predisposition to a variety of
physiological and disease phenotypes. We study both BMI and ∆BMI because of the suspicion
that different genetic mechanisms might be governing the two phenotypes.9 Our study yielded
a list of causal loci within genes playing a putative role in BMI and ∆BMI. In addition, this
use case also shows that kernelPSI enjoys a better statistical performance than other gene-
level association tools, with the unique benefit of pinpointing the causal loci within these
genes. We propose an eponymous R package that implements the full pipeline of kernelPSI.
The CPU-only version is directly available from CRAN. The enhanced GPU-version can be
downloaded from the development branch of the GitHub repository https://github.com/

EpiSlim/kernelPSI.git.

2. Methods

2.1. kernelPSI for GWAS

We describe here how to use the kernelPSI framework5 to test for association between genetic
variants in a region and a continuous trait.

2.1.1. Notations

We assume n samples are sequenced in a region containing p SNPs. For each sample i ∈ J1, nK,
yi ∈ R represents the phenotype and xi the genotypes for the p SNPs. We denote by y ∈ Rn the
vector of phenotypes. Assuming a dosage encoding (or an additive genetic model), xij ∈ {0, 1, 2}
represents the number of copies of the minor allele at locus j for sample i. Other genetic
models and encodings can also be considered; dominant and recessive models, for example
would results in xij ∈ {0, 1}.

We further consider a partition of the region in a set of S contiguous SNP clusters
{S1, . . . ,SS}. Such clusters correspond to LD blocks and their construction is detailed in Sec-
tion 2.3 . For any i ∈ J1, nK and t ∈ J1, SK, we denote by xi,t the vector xi restricted to the
SNPs in cluster St, that is to say, the values of the SNPs of cluster St for sample i. Our goal
is to first select the SNP clusters most associated with the phenotype, and second measure
the association of the entire genomic region with the phenotype through its joint association
with the selected clusters.

2.1.2. Scoring clusters with kernels

We propose to use kernels to perform the selection step. More specifically, we use a positive
semi-definite kernel function kd : {0, 1, 2}d×{0, 1, 2}d → R (defined for any d ∈ N∗) to define, for
each cluster St, a kernel matrix Kt ∈ Rn×n such that, for any i, k ∈ J1, nK, [Kt]ik = k|St|(xi,t,xk,t).

Intuitively, [Kt]ik is a measure of the similarity between samples i and k, based on the |St| vari-
ants in the t-th cluster of the genomic region. One of the most commonly used kernel function
in genomics is the weighted IBS kernel, which is described in more details in Section 2.4.

Having defined these kernel matrices, we select the kernels most associated with the pheno-
type thanks to a so-called quadratic kernel association score, that is to say, a scoring function
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of the form

s : Rn×n × Rn → R
(K,y) 7→ y>q(K)y,

(1)

for a mapping q : Rn×n → Rn×n. We can use such a score to quantify the association between
a single cluster and the phenotype as s(Kt,y), but also to quantify the association between a
set of clusters I and the phenotype as s(

∑
t∈I Kt,y).

Quadratic kernel association scores are quite generic, and encompass a number of propo-
sitions. For example, using the identity for q is equivalent to the Sequence Kernel Association
Test (SKAT) score.1 In this paper, and because this choice was showed to lead to improved
statistical power in a variety of settings,5 we use the unbiased Hilbert-Schmidt Independence
Criterion (HSIC) estimator.10 HSIC has been in a variety of bioinformatics applications in
the past,11 including the non-linear analysis of GWAS data.12,13 The unbiased HSIC estimator
between two kernel matrices K and L is given by:

ĤSICunbiased : Rn×n × Rn×n → R

K,L 7→ 1

n(n− 3)

[
trace(K L) +

1>nK1n 1>nL1n
(n− 1)(n− 2)

− 2

n− 2
1>nK L1n

]
,

(2)

where K = K − diag(K), L = (yy>)− diag(L), and 1n is a n-dimensional vector of all ones. We
simply define

sHSIC(K,y) = ĤSICunbiased(K,yy>) (3)

We refer the reader to our earlier work5 for the proof that this estimator is indeed a quadratic
kernel association score.

2.1.3. Adaptive forward selection strategy

Several strategies for cluster selection can then be used to perform selection based on a choice
of quadratic kernel association score. In particular, one can adopt a forward- or backward-
stepwise strategy, and the number of selected clusters can be fixed or adaptively determined.
We opt here for an adaptive forward strategy, which consists in iteratively adding clusters to
the (initially empty) set of selected clusters until it contains all clusters, and then choosing
the number of selected clusters S∗ according to the maximum score attained throughout the
procedure. The detailed algorithm can be found in Appendix A.1.

2.1.4. Post-selection inference

We now want to use the optimal quadratic kernel association score s∗ to determine the asso-
ciation of the genomic region with the phenotype y, through its association with the selected
clusters in I∗. To obtain valid p-values, we need to account for the fact that we performed
this selection step, and that the clusters were chosen for their strong score of association with
y.

In other terms, denoting by Î(y) the set of indices of clusters selected by our procedure
for a phenotype y, we need to determine the distribution of sHSIC(

∑
t∈I∗ Kt,y) conditionally

to the selection event Î(y) = I∗.
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We have shown5 that this selection event can be modeled as an intersection of a finite
number M = (2S − 1) of quadratic constraints on y. Unfortunately, this does not allow us
to determine the exact distribution of sHSIC conditionally to this selection event. However,
the sampling procedure we proposed in5 makes it possible to efficiently sample replicates of
the outcome y which statisfy those quadratic constraints, which we leverage to determine
empirically the null distribution and obtain the desired p-values.

2.2. Outcome normalization

Our original proposal5 is limited to normally-distributed outcomes. To expand kernelPSI to
other continuous outcomes, it is sufficient to transform any continuous outcome y into a vector
of independent normally-distributed variables. Several outcome normalization approaches have
been proposed, among which we found the van der Waerden quantile transformation to be
the most consistent approach across phenotype distributions. We provide more details in
Appendix A.3.

2.3. Contiguous hierarchical clustering for genomic regions

We could apply the strategy outlined in Section 2.1 without any clustering step, using p

clusters of 1 SNP, so as to determine the association of a genomic region with the phenotype
through the association of individual SNPs.

However, nearby SNPs are often strongly correlated, a phenomenon refered to as linkage
disequilibrium (LD). Using clusters of correlated variants rather than individual SNPs has
the double advantage of reducing the number of clusters to choose from, while simultaneously
modeling the combined effects of the SNPs within a cluster on the phenotype. It also reduces
the dependence between individual tests.

To define these clusters, we use the R package BALD6 which implements adjacent hier-
archical clustering (AHC) in conjunction with the gap statistic14 to determine the optimal
number of clusters S. This approach is illustrated on Supplementary Figure 1.

2.4. The IBS-kernels and nonlinear SNP selection

We must now choose a kernel function kd that we will use to construct the kernel matrices Kt

corresponding to each of the clusters St, and interpreted as a similarity between two samples
based on the SNPs of cluster St. For SNP data, the identitcal-by-state (IBS) kernels proposed
by Wu et al.,15 which use the number of alleles that are identical between individuals, is a
popular choice. We give more details about these kernels in Appendix A.4.

2.5. Efficient nonlinear post-selection inference for high-dimensional data

In this section, we detail a number of modifications we included in order to improve the
scalability of kernelPSI to the large sample sizes.
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2.5.1. Rapid HSIC estimation

We score the association between a cluster and the phenotype using the HSIC unbiased esti-
mator (see Equation (3)). We recall here Equation (2):

ĤSICunbiased(K,L) =
1

n(n− 3)

[
trace(K L) +

1>nK1n 1>nL1n
(n− 1)(n− 2)

− 2

n− 2
1>nK L1n

]
.

The computation of 1>nK1n and 1>nL1n can be performed in quadratic time O(n2). However,
computing trace(K L) and 1>nK L1n requires the matrix-matrix multiplication of K and L,
resulting in a O(n3) complexity. To avoid that, we decompose trace(K L) as

∑n
i,k=1 [K]ik [L]ki,

which results in a better O(n2) complexity. The same complexity can be achieved for the
quadratic form 1>nK L1n by starting with the matrix-vector multiplication of either K1n or
L1n. Overall, we achieve a O(n2) complexity, for which ĤSICunbiased can be computed on a
single CPU for thousands of samples in relatively little time. As an illustration, we performed
100 repetitive evaluations of ĤSICunbiased for two matrices of size 5, 000× 5, 000. On a 2.7 GHz
intel core i5 processor, the average running time was 1.08s.

2.5.2. Accelerated replicates sampling

The gains achieved by speeding up the estimation of ĤSICunbiased turned out to be insufficient
because of the heavy computational workload involved in sampling replicates to compute p-
values. Our sampling algorithm5 is partly a rejection sampling algorithm. At every iteration,
we verify that the candidate replicate satisfies M quadratic constraints y>Qmy + bm ≥ 0 for
m = 1, . . . ,M . In Appendix A.6, we show in simulations that the p-values obtained through
our sampling algorithm are statistically valid. The kernelPSI statistics are not overpowered,
since the p-values are uniformly distributed under the null hypothesis (absence of effects).
Furthermore, kernelPSI has statistical power under the alternative hypothesis.

When M is large, we observed a significant slow-down due to the overhead between succes-
sive evaluations of the constraints. A single combined evaluation eliminates this overhead. We
achieve this by encoding all computations in a matrix form, as illustrated on Supplementary
Figure 3, and by using the ViennaCL library16 to accelerate these computations on GPUs.

A major drawback in hybrid CPU-GPU calculations is the transfer time between the main
memory and the GPU memory. With most Nvidia GPUs, the theoretical bandwidth limit is
8 Gb/s. To reduce transfer times of the matrices Q = {Q1, . . . , QM}, we transfer them to GPU
memory once and for all before sampling. However, because of memory size limitations, this
imposes an upper limit on the number M of matrices in Q, and consequently on the number
of LD clusters as S = M/2 + 1.

Finally, we give a rough estimation of the complexity of our sampling algorithm. If we
denote by Nreplicates the number of replicates, the overall complexity can be approximated as
O
(
NreplicatesMn2/τ(n)

)
. τ(n) is a decreasing function of n which corresponds to the probability

of sampling a replicate in the acceptance region. The average number of iterations to obtain
a valid replicate is then 1/τ(n) (mean of a geometric distribution). We are currently unable to
propose a closed form for τ(n).
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2.6. Data and experiments

The study of physiological phenotypes in GWAS has so far focused on basic anthropometric
measures such as height, weight, and BMI. Their longitudinal fluctuations received little atten-
tion, mainly because of the lack of such data. To the best of our knowledge, the fluctuations of
BMI in adults have been the subject of very few GWA studies.17–19 Some studies9 suggest that
BMI and its variation might be influenced by distinct sets of SNPs. In addition, rare variants
impacting weight loss through gene-diet interaction are referenced in the literature.20 Recent
biobanks are finally making such longitudinal data available, among which the UK BioBank,8

which provides extensive phenotypic and health-related information for over 500, 000 British
participants. We apply kernelPSI on the UK BioBank dataset to separately study BMI and
variations of BMI (∆BMI).

2.6.1. Quality control

Our preprocessing pipeline for the UK BioBank dataset is close to the pipeline of the Neale
laba. The detailed quality control procedure we conducted for samples can be found in Ap-
pendix A.7. The application of this pipeline yielded n = 266, 679 final samples. In contrast,
the Neale lab obtained 337, 000 samples by implementing less stringent thresholds. The QC
pipeline resulted in 577, 811 SNPs.

2.6.2. Phenotypes

∆BMI is not directly available. We computed it from the participants who attended both
the initial assessment visit and the first repeat assessment visit. In total, we obtained
11, 992 samples for ∆BMI. More precisely, we define ∆BMI as the average yearly variation
(BMIrepeat−BMIinitial)/∆tyears. Indeed, the time span between the visits is not the same for all
participants.

As for BMI, we use the measurements of the initial visit. To avoid issues that can arise
when jointly analysing results stemming from datasets containing different samples, we restrict
ourselves to studying the samples for which both phenotypes are available.

As explained in the Section 2.2, we apply the Van der Waerden transformation to the phen-
toypes. We show on Supplementary Figure 2 a visual comparison of the empirical cumulative
distribution functions (cdfs) of BMI and ∆BMI to the cdf of a standard normal distribution.

2.6.3. Gene selection

To reduce computational time and resource requirements, as well as facilitate results valida-
tion, we restricted our study to the genes already associated with BMI in the GWAS catalog.21

The scope of the narrower study is then gene prioritization: the dual SNP-gene perspective of
kernelPSI allows it to assess whether SNP-level associations translate into a gene-level asso-
ciation. This is particularly interesting given the large number of genes associated with BMI

aMore details are provided on their website https://www.nealelab.is/uk-biobank
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(1811 genes). For each gene, the sampling of 50, 000 replicates took on average 6 minutes on a
single K80 Nvidia GPU. This makes kernelPSI scalable to genome-wide analyses.

To define genic boundaries, we used the biomaRt tool,22 which provided a genomic interval
for 1774 genes. Moreover, the intervals were converted from the GRCh38 coordinate system
to the GRCh37 one, since the SNP positions in the UK BioBank are given in the GRCh37

system. We point out that the conversion can result in several noncontiguous intervals.23,24

An immediate use of the resulting intervals led to a number of genes without any SNPs
within. As a result, we added a downstream/upstream 50kb buffer to cover more SNPs. The
same buffer size was also opted for by several other authors.25,26

2.6.4. SNP clusters

Despite the extended 50kb buffer, several genes still contained a handful of SNPs. 1215 genes
contained at most 3 SNPs. In particular, if only one SNP is mapped to a given gene, the
kernel selection step becomes irrelevant. Nonetheless, we still perform hypothesis testing by
directly using the HSIC statistic in Eq. (2) to measure the association between the gene and
the phenotype. If 2 or 3 SNPs are mapped to a gene, we associate a distinct cluster/kernel to
each one of them. This allows for a more accurate SNP selection.

For all other genes (i.e. those mapped to more than 4 SNPs), we applied AHC, as explained
in Section 2.3 . The optimal number of clusters S is determined by the gap statistic. In the
adaptive kernel selection strategy we use here, this leads to iM = 2 (S−1) constraints. To avoid
the issues encountered for large values of iM (see Section2.5.2), we set the maximum number
of clusters to 5. This leads to a ∼ 9.2Gb maximum GPU memory occupancy for Q.

3. Results

3.1. Kernel selection

Validating statistical tools in GWAS is always made difficult by the lack of a ground truth.
In our study, validation is made easier by the fact that we only tested genes containing SNPs
previously associated to BMI in the GWAS catalog. We can therefore evaluate kernelPSI
based on its ability to recover GWAS catalog SNP, which we measure using the distance
between those SNPs and the clusters selected by kernelPSI. Figure 1 shows the distribution
histogram of these distances. It is heavily skewed toward small distances, meaning that the
clusters selected by kernelPSI are often located near the GWAS catalog SNPs. This confirms
the capacity of kernelPSI to retrieve relevant genomic regions. Moreover, the selected clusters
also surround GWAS catalog SNPs. For BMI and ∆BMI, the selected clusters respectively
included at least one GWAS catalog SNP in 62.5% and 40.6% of genes.

These results would be irrelevant if kernelPSI turned out to be selecting all clusters. Indeed,
the clusters would always contain GWAS catalog SNPs. However, kernelPSI was conservative
for a large majority of genes, overwhelmingly selecting fewer clusters than the total number
of clusters S (see Table 1). For BMI, kernelPSI selected one cluster in 75, 9% of the genes for
which S = 3 and at most 2 clusters in 73, 6% of the genes for which S = 5. Similar results were
obtained for ∆BMI.
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Fig. 1. Distance between the SNPs of the GWAS Catalog and their closest neighbor among the
SNPs in the clusters selected by kernelPSI.

Overall, the conservative kernel selection combined with the proximity of the selected
kernels to the GWAS catalog SNPs demonstrate the selective abilities of kernelPSI.

3.2. Hypothesis testing

For association testing, we benchmarked kernelPSI against two state-of-the-art gene-level
baselines. The first one is SKAT,1 and can be described as a non-selective variant of ker-
nelPSI. Furthermore, it is a quadratic kernel association score which can be incorporated
into the framework of kernelPSI. The SKAT score is a variance-component score27 given by
sSKAT(K,Y ) = Y >KY , for a centered phenotype Y . The second baseline is MAGMA,2 which
computes an F-test in which the null hypothesis corresponds to absence of effects of all geno-
type PCs.

To compute the empirical p-values in kernelPSI, we sampled 40, 000 replicates in addition
to 10, 000 burn-in replicates. The comparison of the distributions of the resulting p-values to
those of SKAT and MAGMA shows that kernelPSI clearly enjoys more statistical power than
the two baselines for both phenotypes (Figure 3.2). The p-values were altogether significantly
lower. Thanks to the large number of replicates, we attribute this performance, not to the
lack of accuracy of the empirical p-values, but to the discarding of non-causal clusters in the

Table 1. Distribution of the number of selected clusters S∗ depending on the total number of
clusters S and the phenotype.

BMI ∆BMI

S = 1 S = 2 S = 3 S = 4 S = 5 S = 1 S = 2 S = 3 S = 4 S = 5
S∗ = 1 100.0% 100.0%
S∗ = 2 82.9% 17.1% 92.7% 7.3%
S∗ = 3 75.9% 18.5% 5.6% 70.4% 20.4% 9.3%
S∗ = 4 55.9% 30.9% 10.3% 2.9% 50.0% 27.9% 19.1% 2.9%
S∗ = 5 43.9% 29.7% 17.6% 7.2% 1.5% 40.3% 28.4% 21.4% 7.6% 2.3%
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selection stage.
Our study was motivated by the hypothesis that BMI and ∆BMI are driven by different

biological mechanisms. The low rank correlations of the p-values between the two phenotypes
(see Table 2) lend further credence to this hypothesis. Interestingly, we observed a similar
range of values for kernelPSI and the two benchmarks SKAT and MAGMA. For all metrics
and methods, the rank correlations are lower than 0.1.

Despite the low rank correlations between BMI and ∆BMI, we obtained 7 common sig-
nificant genes (CKB, EIF2S2, KSR2, MIR100HG, NRXN3, PDILT and RAB27B) out of 64

significant genes for ∆BMI and 40 for BMI. The latter were determined after the application
of the Benjamini-Hochberg procedure with an FDR threshold of 0.05. The existence of a num-
ber of separate mechanisms does not preclude the existence of common ones simultaneously
regulating BMI and ∆BMI.

Table 2. Concordance between the p-values for BMI and ∆BMI
by method, according to three Kendall rank correlation measures
(standard, multiplicative, additive)

Standard Multiplicative Additive
BMI ∆BMI BMI ∆BMI BMI ∆BMI

kernelPSI
1.000 0.015 1.000 0.093 1.000 0.072
0.015 1.000 0.093 1.000 0.072 1.000

SKAT
1.000 0.020 1.000 0.008 1.000 0.028
0.020 1.000 0.008 1.000 0.028 1.000

MAGMA
1.000 0.036 1.000 0.058 1.000 0.083
0.036 1.000 0.058 1.000 0.083 1.000

0
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5

ΔBMI BMI
phenotype

-l
o
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1
0
(p
)

Method
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Fig. 2. Violin plot comparing the p-values of kernelPSI for BMI and ∆BMI to two benchmarks.

4. Conclusion

Several tools have already been proposed to address the lack of statistical power of SNP-based
GWAS by performing analyses at the gene level. However, aggregating into gene p-values
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information from all SNPs mapped to a gene, including those with low association scores, can
weaken the association signal. We therefore proposed a two-step strategy, consisting in (1)
restricting ourselves to the SNPs most associated with the phenotype within a given gene,
and (2) testing their joint effect on the phenotype.

Recent advances in the field of post-selection inference make it possible to perform these
two steps on the same data, and to obtain valid p-values without overestimating the joint
effect of the selected SNPs on the phenotype. In addition, one can model nonlinear effects and
interactions among SNPs within this framework, thanks to the use of kernels.

In this paper, we have showed how to use the generic post selection inference framework
kernelPSI in the GWAS setting. To this end, we included several modifications, generaliz-
ing kernelPSI to non-normally distributed continuous outcomes, using adjacent hierarchical
clustering to separate each gene in blocks of strongly correlated SNPs, implementing the
identical-by-state kernel to define similarities between individuals, and substantially improv-
ing the scalability of the code.

Using data from the UKBiobank, we have illustrated how these modifications make it
possible to analyze two continuous phenotypes, BMI and its variation. We have shown on this
case study that kernelPSI enjoys more statistical power than either SKAT or MAGMA, and
successfully identifies genes associated with a phenotype through the signal carried by the
most strongly associated regions of these genes.

The broad GWAS community can benefit from tools like kernelPSI which combine sta-
tistical performance with interpretability. In the future, we hope that developments in the
post-selection inference field will allow us to develop exact variants of kernelPSI, which forego
the sampling step to directly determine the associated p-value. This could further reduce
computational times dramatically.

Another direction of major interest for statistical genetics would be the application of
kernelPSI to other SNP sets, such as cis-regulatory regions, or entire pathways. Indeed, it
should be possible to use kernelPSI to determine pathways significantly associated with a
phenotype, through the association signal carried by individual genes or even LD-blocks of
each pathway.

Supplementary Materials

Appendices are available at https://doi.org/10.1101/2020.09.30.320515
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