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With the advent of biotechnology, we are witnessing a paradigm shift in biology and medicine 
towards data intensive scientific discoveries. This brings a flood of physiological, contextual, and 
biological data at the individual and population level, and provides the perfect opportunity for 
integrating multidimensional information to study human variation and disease. This also creates 
new avenues in data breaches, necessitating careful studies of biomedical data privacy from a social, 
technical, and ethical standpoint. In this workshop, we explore the privacy issues related biomedical 
data use to advance human health. We will discuss the ethical and regulatory frames regarding 
privacy and implementations of such ethical considerations. We will also discuss technical 
approaches to ensuring privacy such as cryptographic techniques that allow responsible use and 
sharing of data. 

 

An important lesson we have learned from the COVID19 pandemic is that data sharing among 
researchers, institutions, and even countries is essential and important for advancing biomedical 
research. We recognize that broad data sharing is a prerequisite for many important integrative 
analyses. However, improved technology, increased data availability, and a deeper understanding 
of the associations between different biological and clinical observations create new avenues for 
data breaches, necessitating a careful re-evaluation of privacy leakage in biological big data.  
 
Studies of biological data privacy and security take attention of a diverse group of disciplines 
including genetics, biology, data science, computer science, law, and ethics. With the immense 
sensitivities and extremely identifying nature of biological data, especially genetic data (Erlich and 
Narayanan 2014; Gymrek et al. 2013; Hubaux, Katzenbeisser, and Malin 2017), we need to create 
avenues for interdisciplinary privacy discussions fueled by an understanding of the biology as well 
as ethics and technical challenges of use of such data. In part, the challenges in privacy of biomedical 
data use arise from a knowledge gap. There is a gap between the fields that generate and analyze 
personal biological data, the fields that establish theories and implementations for data privacy and 
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security, and the fields that study ethical and social implications of this data generation. By bringing 
ethicists and technology experts to the table, we aim to bridge this knowledge gap.  
 
As the international scientific community, we acknowledge the benefit and importance of data 
sharing. Solutions such ass access control can delay the access to the data, hence hampering the 
biomedical advances (Tryka et al. 2014; Fernandez-Orth, Lloret-Villas, and Rambla de Argila 
2019). Moreover, the need to comply with different regulations in different geographies (e.g., 
HIPPAA and GDPR), more biomedical data is increasingly being siloed behind firewalls. This 
highlights the importance of the ethical framework surrounding the data access solutions as well as 
the necessity of technical advances that prevent the privacy leakages while promoting data 
sharing(Knoppers and Beauvais 2021; Arellano et al. 2018).  
 
This workshop represents various aspects of biological data use highlighting a number of ethical 
problems and technological solutions that need to be addressed to protect privacy of research 
participants and patients. 
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