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The average life expectancy is increasing globally due to advancements in medical technology,
preventive health care, and a growing emphasis on gerontological health. Therefore, developing
technologies that detect and track aging-associated disease in cognitive function among older
adult populations is imperative. In particular, research related to automatic detection and
evaluation of Alzheimer’s disease (AD) is critical given the disease’s prevalence and the cost
of current methods. As AD impacts the acoustics of speech and vocabulary, natural language
processing and machine learning provide promising techniques for reliably detecting AD.
We compare and contrast the performance of ten linear regression models for predicting
Mini-Mental Status Exam scores on the ADReSS challenge dataset. We extracted 13000+
handcrafted and learned features that capture linguistic and acoustic phenomena. Using
a subset of 54 top features selected by two methods: (1) recursive elimination and (2)
correlation scores, we outperform a state-of-the-art baseline for the same task. Upon scoring
and evaluating the statistical significance of each of the selected subset of features for each
model, we find that, for the given task, handcrafted linguistic features are more significant
than acoustic and learned features.

1. Introduction

People are living longer due to advancements in medical technology, preventive health care,
and a growing emphasis on gerontological health. The Administration for Community Living
estimates that by 2020, 77 million people in the United States will be 60 years of age or older.
Hence, developing technologies that detect and track aging-associated disease in cognitive
function among older adult populations is imperative.

For decades scientists have examined the association between psychological well-being and
cognition. In prior research, gerontologists have identified a significant relationship between
mental acuity, loneliness and depression, and social engagement among older adults. Specifically,
late-life dementia has been associated with extended periods of loneliness in older adults.1

Another cognition study,2 conducted a longitudinal study of adults aged 60 years or older
living in North Manhattan, New York, and who were randomly selected from a dementia
registry. Their study assessed the association between depressed mood and the onset of dementia.
Physicians collected neuropsychological data to assess the degree of decreased cognitive function
and determine the risk of dementia. Study results indicated that of the 1,070 participants,
218 (20%) met the criteria for dementia at baseline assessment. Among the 852 participants

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.

Pacific Symposium on Biocomputing 2023

335



that did not have dementia, depressive symptoms were common among those with cognitive
impairment. Two years after the baseline data collection, follow-up data were collected on 478
participants who did not have dementia from the baseline collection. A comparison of baseline
and follow-up results concluded that of the 478 participants (93%), the depressed mood was
associated with dementia and exhibited symptoms of Alzheimer’s disease.2

Before the turn of the last century, the only way to ascertain if a person has AD was
via posthumous autopsy. Currently, as per the National Institute of Health (NIH), medical
professionals ask the patient and their caregivers about overall health, medications, diet, medi-
cal history, and changes in behavior and personality. They may also administer a psychiatric
evaluation to determine confounding causes and conduct tests on memory, problem-solving,
attention, counting, language, blood, urine, and other standard medical tests. Finally, perform-
ing computed tomography (CT), magnetic resonance imaging (MRI), or positron emission
tomography (PET) supports an AD diagnosis or rules out other plausible causes.3 While
there are other methods, such as accumulation of amyloid plaques and associated genes, these
methods may not be entirely accurate4.5 Nonetheless, all methods listed are cost-prohibitive
or require at least one dedicated medical professional. Consequently, researchers have been
studying and modeling non-invasive methods using speech and linguistic features that do not
necessitate human intervention to detect and evaluate AD patients. In addition, caregivers
experience feelings of depression and being overwhelmed when caring for an older adult lacking
social support mechanisms and are predominantly female and overwhelmingly low-income.1

Thus, with an aging world population negatively impacted by the symptoms associated
with cognitive decline and an overwhelmed caregiving profession, research into technologies to
help alleviate these issues is necessary. As AD affects the acoustics of speech6 and vocabulary,7

natural language processing and machine learning provide promising techniques for reliably
detecting AD. While significant work has been done on detecting AD, this paper will evaluate
and score mental status with ten different linear regression models using a combination of
handcrafted or learned acoustic-linguistic features. The statistical significance and relevance of
each selected feature are also studied.

The rest of the paper covers a review of related works in Section 2. The models, dataset,
feature extraction, feature selection, and training-testing protocol are detailed in Section 3.
The performance of our models and features are compared to a state-of-the-art baseline linear
model in section 4. The final section outlines the conclusion and future work.

2. Related Works

There has been significant research into the symptoms and manifestations of Alzheimer’s
Disease (AD) in medical literature and AD detection in interdisciplinary research. The review
of relevant literature will be divided into two subsections: the first will cover the well-known
acoustic-lingual expression of AD in patients, and the second will cover models and techniques
currently used for evaluating and detecting AD. Furthermore, the first subsection helps
establish the relevance of acoustic and linguistic features for AD progression, whereas the
second subsection supports the reasoning behind our methodology.
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2.1. Acoustic and Linguistic Features in AD

The relation between loss of memory and AD-associated neurodegeneration is well established.
Recent research has studied acoustic and verbal aberrations present in patients with AD. In
particular, dysarthria/slurring, stuttering, monotony, higher delay, and associated acoustic
features with AD.7 Additionally, linguistic features such as paucity of words or aggramatism are
also present with AD.6,8 In severe cases, sentences uttered may comprise only nouns; articles,
auxiliary verbs, and inflectional affixes are absent or replaced in lesser forms. Unsurprisingly,
multiple approaches have utilized acoustic and linguistic features for the automatic detection
of AD. We will discuss a few of these approaches in the following subsection.

2.2. Contemporary Models and Techniques for AD Evaluation

Speech has been used to distinguish between healthy and AD patients.9 Some researchers have
focused on developing dedicated machine learning model architectures10–12 while others have
focused on language models to classify AD.13 Some research has been focused on extracting
acoustic and textual features that capture information indicative of AD, such as the length
of segments and the amount of silence.13 Other researchers have used linguistic and audio
features extracted from English speech.14,15 Prosodic features have been extracted from English
speech16–18 and so have paralinguistic acoustic features.19 Other approaches have attempted
to focus on collecting speech from people performing multiple normative tasks to improve
generalizability.20 However, most of these approaches utilize unbalanced, non-standardized,
and proprietary datasets, which hampers their reproducibility and generalizability. We suggest
the reader peruse this survey21 to get a better understanding of these approaches.

In 2020, The ADReSS Challenge22 defined shared tasks and standardized datasets with
predefined metrics. Different approaches for automated recognition of AD based on spontaneous
speech and transcripts can be compared with two tasks: AD Classification (AD vs. not-AD)
and the neuropsychological score regression. The challenge provided a baseline using standard
machine learning models such as Random Forest and k-Nearest Neighbors on classification
metrics (accuracy, precision, recall, F-1) and regression Root Mean Square Error (RMSE)
scores. More details pertaining to the dataset are discussed in the Methodology section.

Since the release of the dataset, significant work has been done on the classification task,23–25

the regression task,26 or both.27–30 Of the two tasks, a high degree of accuracy 83% to 92.84%
has been obtained on the classification task. However, the regression task, being the more
challenging of the two, still has room for improvement and is the focus of this paper. Of the
approaches reviewed, the lowest RMSE score of 4.56 was acheived on both training and testing
sets and utilizes a linear Ridge Regressor model on a set of the 30 best correlating features.27

We refer to this work as the baseline and state-of-art for the comparison of our model and
feature set through the remainder of the paper.

3. Methodology

The models, dataset, feature extraction, feature selection, and training-testing protocol are
detailed in the following subsections. All of the tasks performed were performed on a standard
personal laptop machine or a Google Collaboratory notebook.31 No specific accelerators are
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required, however, feature extraction, feature selection, and training-testing could be sped up
through the utilization of more computing cores.

3.1. The ADReSS Dataset and Metrics

To enable comparison with the baseline, the ADReSS Challenge dataset22 is utilized. This
dataset comprises of audio recordings, transcripts from patients performing the Cookie Theft
task from the Boston Diagnostic Aphasia exam.32 Also provided with the dataset are metadata
relating to the subject’s age, gender and Mini Mental Status Examination (MMSE) score for
both non-AD and AD patients. The regression task for this paper is associated with predicting
these MMSE score based on the given audio recording and transcripts. Although the MMSE
was originally designed to screen for dementia, it is an instrument currently used extensively to
assess cognitive status in clinical settings.33 According to the Alzheimer’s Association (2020), an
MMSE score of 20–24 corresponds to mild dementia, 13–20 corresponds to moderate dementia,
and a score < 12 is severe dementia.

Furthermore, the dataset comes divided into a Train Set (108 patients - 54 non-AD and
54 AD) and a Test Set (48 patients - 24 non-AD and 24 AD). As per the original challenge’s
guidelines and our baseline, the RMSE is used to determine and compare the performance of
our approach. Since the dataset comes with many-to-one mapping of audio file to transcript
files, in contrast to previous work, we opted to consider each unique audio-transcript file pair
as a distinct observation. While this approach does limit us to shorter audio files with few
utterances per file, the number of observations increases to 1447 for training and 569 for testing.

3.2. Modeling and Train-Validation-Test Protocol

Although the we were able to increase the sample size by considering audio-transcript file
pairs, the number is still smaller than is demanded by most deep learning methods. While
work such as34 has been done on small sample learning, these methods are still a black box.
Interpretability is required to evaluate the association between features and the output of the
model. While conventional, non-linear machine learning models such as Random Forest and
k-Nearest Neighbors were originally the benchmark provided with the dataset,22 they have been
outperformed by the baseline’s linear models27 likely owing to the small sample size. Thus, we
also opt for linear modeling. Similar to,27 we use regression models with in-built regularization
or specific optimizations namely Ridge.35 Additionally, we also employ Lasso,36 ElasticNet,37

LassoLars,38 Bayesian Ridge,39 Bayesian Automatic Relevance Determination,40 Orthogonal
Matching Pursuit,41 Huber,42 TheilSen,43 and Stochastic Gradient Descent optimization.44

The models were trained and evaluated using a combination of the BSD-licensed scikit-learn,45

numpy,46 seaborn,47 scipy,48 and pandas49 package, and the PSF-licensed matplotlib.50 The
ISF-licensed regressors51 was used to evaluate the statiscal signficance of each selected feature .
Beyond the default, the hyperparameters for each model can be found through the Appendix.

The training and testing protocol utilizes the provided disjoint sets provided with the
dataset. Similar to the baseline, each model is trained using Leave One Subject Out (LOSO)
Cross Validation on the training set and the RMSE is evaluated on both the training and test
set. Of the models, Ridge, Lasso, ElasticNet, LassoLars, and Orthogonal Matching Pursuit’s
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L1 or L2 regularization parameters were evaluated during this cross-validation. Additionally, a
random 80-20 train-validation split of only the training set is used for feature selection.

3.3. Feature Extraction, Pre-processing, and Feature Selection

3.3.1. Feature Extraction

To learn from both the audio recording and text transcripts, feature extraction is necessary.
The dataset provides audio broken up into normalized audio chunks of the subject’s sen-
tences/utterances. Text from each participant’s transcripts was combined into one large string
separated by a new line for linguistic feature extraction. To aid in our feature extraction a
combination of software, and python libraries was used. Each of these third-party software,
libraries, and their associated licenses are detailed in the Appendix.

We further classify each feature into Audio Features and Linguistic Features. Each of
these features may also either be handcrafted or learned. In total, each audio-transcript pair
produced just over 13,000 features. To the best of our knowledge, a significant subset of these
features are novel applications for the current task of MMSE score prediction.

* Audio Features (11,659 Features):
The learned audio features derived from audio recordings include Articulation,52,53 Phona-

tion,52,54 and Prosody52,55 Features. Articulation features are made up of Bark band energies.
Phonation features are composed up of pitch perturbation quotient, logarithmic energy, and
derivatives of fundamental frequencies account for 28 features. Prosody features, based on
energy and duration, include 103 features. The handcrafted audio features include spectral,
Mel Frequency Cepstral Coefficients (MFCCs), and Chroma Vector/Deviation features. While
all together these features total to 138, we utilized 80 different combinations of frame sizes and
overlaps when the average feature are calculated. This was done to find the optimal frame size
and overlap which would provide the most significant association with the given task during
feature selection.

* Linguistic Features (1,693 Features) Linguistic features include, but are not limited to,
Word/Sentence Count, Vocab Set, reading scales, and emotion analysis. These features were
all extracted from the textual transcript files and totaled up to 1,693 features.

3.3.2. Pre-processing

Since audio data was retrieved from a normalized chunks no further pre-processing was required
beyond feature extraction. Each participant’s transcript was parsed and combined into one
large string separated by a new line characters which was used for linguistic feature extraction.
Lacking previous background and for convenient modeling, the features were divided by the
maximum value. The scaled features were normalized as required by the modeling library
before training. No other pre-processing was performed.

3.3.3. Feature Selection

While extracting over 13,000 features provides us with a significant amount of data. Linear
models, even with strong regularization, tend to get over-parameterized at this scale and

Pacific Symposium on Biocomputing 2023

339



Fig. 1. Validation RMSE vs Num Features using Correlation and Recursive Elimination

require specific adaptation. Thus, we opt to select a subset of 100 due to limitations in available
computing power and time. We utilized two methods from45 for selecting the best features for
this problem: (1) Recursive Feature Elimination using a standard Linear Regression estimator
and (2) Correlation Scores. For the first method, the best set of features which decreased the
RMSE on a standard linear regression model trained on 80% of the training set and minimized
RMSE on the 20% validation set was used. We could not get to 100 features since the method
only lets us select a minimum number of features required and outputted a set of features
> 100. For the second method, we simply selected a the top 100 most correlated features
with the output. In order, to further simply the model we trained and validated the models
on features from the top 2 features until the all top 100 features selected by the algorithms.
Plots of validation RMSE for each of the methods can be seen in Figure 1. As expected, the
error does incrementally decrease with the addition of each feature. However, we are better
suited taking a cut off around at a few feature after the steep decrease in RMSE. We chose to
set this limit at 54 features which is half the number of subjects in the training set. Lacking
precedence, we used P-values < 0.05 and coefficient > 0.01 were considered significant. Given
page limitations, model summaries, source code, and additional plots are provided via the
Appendix. In the following section, we will cover the results of our modeling experiments and
perform comparisons with the baseline.

4. Results

All of the models using features selected by both RFECV and Correlation outperformed the
baseline model on the training set. Of these models, the standard linear regression model
performed the best with an RMSE improvement of 2.37 compared to the baseline of 4.56. The
RMSE plot for each model can be seen in Figure 2.

However, for the test set, not all models outperformed the baseline. Interestingly, none of
the models which used features selected by recursive elimination outperformed the baseline
whereas five models using correlation features outperformed the baseline despite the two
methods having an overlap of 17 features selected out of the total 54. Of these models that
outperformed the baseline, the stochastic gradient descent optimized model performed the
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Fig. 2. Train RMSE for each model and each feature selection method

Fig. 3. Test RMSE for each model and each feature selection method

best with an RMSE improvement of 0.66 compared to the baseline RMSE of 4.56. The plot of
RMSE can be seen in Figure 3.

Upon a closer look into the the box in Figure 4 and histogram plots in Figure 5 of the
residuals of each of the models that outperformed the baseline, we notice that stochastic gradient
descent optimization has the most reliable performance. However, the range of prediction is
currently too large and unreliable in all of these models for real world application.

Moreover, of the 54 features selected by the methods, it was noticed that all were handcrafted
linguistic features related to word usage, readability, and character frequencies. This observation
is inline with the observations of both the baseline and speech pathological research6,8 that
linguistic features are better predictors for this task in comparison to acoustic features and is
supported. Details results of feature selection can be found via the Appendix
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Fig. 4. Boxplot of Residuals on the Test set

Fig. 5. Histogram of Residuals on the Test set

5. Limitations and Future Work

The major limitation of this work stems from data source. Since the dataset consists of audio
recordings of the participants performing a specific task, it is unlikely these findings may be
generalizable to recordings that are not obtained from the same task or for non-native English
speakers. Furthermore, the standardization based on this task might also explain the proclivity
of models to find significance of linguistic features over acoustic features for the prediction
of MMSE scores. It is possible that other modes of data capture may be better suited to a
general approach for evaluating AD patients.20

Although the current dataset is remarkable, the sample size limits researchers from fully
realizing and utilizing the most recent advancement in machine learning. While approaches
such as early stopping and dropouts could be utilizes, one must question the external validity
of such approaches within such a small sample size. Perhaps research into small sample size
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algorithms34 could be applied; however the issues related to interpretability still persists.
Contemporary research has shown the continued need to advance further the study of aging-

associated disease effects on cognitive impairment in older adults.56 Researchers studied older
adults who were already enrolled in research projects investigating the onset of Alzheimer’s
Disease (AD) on cognition under the assumption that the Functional Activities Questionnaire
(FAQ) using the Instrumental Activities of Daily Living (IADL) scale to detect and track
diminishing capability in managing and remembering daily household tasks and personal
responsibilities. Difficulties in managing IADL identified in the FAQ proved helpful in detecting
and tracking changes in cognition in healthy older adults at risk for Alzheimer’s Disease.57

Furthermore, social determinants of health such as transportation, education, diet, and other
daily factors negatively impact a person’s health outlook. Black and Brown persons in the
United States are adversely affected by schooling, diet, and disease symptoms associated
with hypertension and diabetes that might cause cognitive decline.58 To further improve the
reliability of the models social determinants, facial features, depression, and other correlates
can be considered in conjunction with an in-home monitoring and audio-video capture device.

While we do believe that this paper sufficiently advance the state-of-the-art for this task,
explores the largest feature space to date, and guides us towards automating the diagnosis
of AD and modeling of cognitive status in the elderly, we must note that with automation
we should not intend to replace trained medical professionals. We firmly believe that any
technology stemming from research should be used as a tool to guide, assist, and ease medical
professionals and caregivers to provide the best care possible.

6. Conclusion

While we were able to outperform the baseline with 5 different models, the performance of
these models are still not fully suited for real world application. More research needs to be
done to find models that work on low resource problems such as neurological evaluation of AD
patients using audio and textual features.

7. Acknowledgement

This project was supported (in part) by the National Institute on Minority Health and Health
Disparities of the National Institutes of Health under Award Number 2U54MD007597, and
the Office of Data Science Strategy of the National Institutes of Health under OTA OT2
OD32581-01, and a 2021 Amazon Research Award. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the funding organizations.

8. Appendix

All supplemental materials can be found in the link below: https://bit.ly/3Skbaij
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