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Despite the high-quality, data-rich samples collected by recent large-scale biobanks, the
underrepresentation of participants from minority and disadvantaged groups has limited the
use of biobank data for developing disease risk prediction models that can be generalized to
diverse populations, which may exacerbate existing health disparities. This study addresses
this critical challenge by proposing a transfer learning framework based on random forest
models (TransRF). TransRF can incorporate risk prediction models trained in a source
population to improve the prediction performance in a target underrepresented population
with limited sample size. TransRF is based on an ensemble of multiple transfer learning
approaches, each covering a particular type of similarity between the source and the target
populations, which is shown to be robust and applicable in a broad spectrum of scenarios.
Using extensive simulation studies, we demonstrate the superior performance of TransRF
compared with several benchmark approaches across different data generating mechanisms.
We illustrate the feasibility of TransRF by applying it to build breast cancer risk assessment
models for African-ancestry women and South Asian women, respectively, with UK biobank
data.
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1. Introduction

Risk prediction tools can guide disease prevention, early detection, and intervention. Some
well-known examples include the Gail model for assessing breast cancer risks,1 and the Bach
model for lung cancer risk prediction,2 which are helpful for both risk stratification and
cancer screening recommendations. Over the past few decades, genome-wide association
studies (GWAS) have identified significant genetic loci associated with many complex diseases,
suggesting the great potential for combining genetic information with epidemiological, clinical,
and other risk factors to further improve the performance of risk prediction models.3 With
the development of large-scale biobanks, such as the UK biobank (UKB),4 the Mass General
Brigham (MGB) biobank,5 and the Million Veteran Program (MVP) mega-biobank,6 clinical
information obtained from electronic health records is linked with participants’ genomic data,
health survey data, and other health-related measures, providing unique opportunities to
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develop enhanced risk prediction tools that integrate different types of risk factors.7

However, a long-standing problem is the lack of participants from minority and disadvan-
taged groups in biomedical studies, which may lead to underperformance of risk prediction
models in these underrepresented populations, and might exacerbate health disparities.8,9 For
example, most breast cancer risk prediction models have been developed based on data from
White women, resulting in underestimated risk in Black women and inaccurate estimation for
other racial groups such as American Indian or Alaska Native.10 Many large-scale biobanks also
have disproportionately fewer participants from non-European ancestry than the European
ancestry populations. There are less than 6% participants of non-European ancestry in UKB,
while the MGB biobank only contains 6% African Americans, 5% Hispanics, and 4% Asians.
Such lack of representation has raised significant challenges for developing and evaluating risk
assessment tools for underrepresented populations. More inclusive data collection strategies
are needed to tackle these challenges, while methodological advancements are also essential to
improve the use of existing resources.

Transfer learning methods have been successfully applied in many areas, including text
recognition and imaging classification,11 due to their capability of leveraging shared information
from source populations with relatively sufficient data to build prediction models in a target
population with limited data. Unlike many transfer learning methods that require individual-
level data from both the source and target populations,12,13 we consider the situation where
we can only obtain fitted models from a source population instead of their individual-level
data. This is a common situation in biomedical studies, where data are often protected by
various regularities or rules to be made publicly available, while trained models can be shared
through open-source platforms such as GitHub, or more protected environments such as the
Phenotype Knowledgebase website (PheKB).14 As increasing efforts have been devoted to
building collaborative environments for evaluating and validating machine learning algorithms
across different health care datasets, sharing fitted models is expected to become increasingly
feasible.15 Consequently, model-based transfer learning methods that can leverage existing
fitted models are needed.

Existing model-based transfer learning methods mainly involve parametric models such
as regression,16,17 which may have limited predictive power when the model is misspecified.
Network-based deep transfer learning methods mostly follow the idea of fine-tuning a pre-
trained neural network,18 which often lacks clear model interpretation, practical guidance, and
theoretical justification.19 Among many risk prediction models, tree-based methods such as
random forest (RF) have been widely used in biomedical research, including risk prediction,20,21

disease diagnosis,22,23 and digital phenotyping.24 Tree-based methods enjoy several advantages,
including the ability to handle non-linear relationships, the property to learn feature importance,
and good interpretability. Importantly, recent studies have laid the theoretical foundation of
RF models,25 which further helps researchers to understand how well these methods work
under different scenarios.

The development of model-based transfer learning methods built upon RF models is still
an open area due to the non-parametric nature of RF. Recently, a few strategies have been
proposed based on using target data to either refine each source tree’s structure or adjust
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the numeric threshold of each split.26,27 Such structure-based transfer learning methods may
not perform well in cases where the optimal tree structures in the two populations are highly
different and each source tree performs relatively poorly in the target population. In addition,
pruning and adjusting a large number of trees with limited target data may be inefficient. The
lack of performance of the structure-based transfer learning methods are demonstrated in our
data application.

In this paper, we propose a RF-based transfer learning framework termed TransRF. Our
method is based on an ensemble of multiple transfer learning approaches covering various
types of similarity between the source and target models. Unlike existing work that relies on
tree structural similarities, our method is more robust and applicable to different scenarios.
More importantly, with slight modifications, our approach can be extended to adapt a broader
range of prediction models beyond RF. We evaluate our method using extensive simulation
studies and apply it to predict breast cancer patients in African-ancestry (AFR) women and
South Asian (SAS) women, respectively, using UKB data.

Fig. 1. The schematic illustration of TransRF, an ensemble of a forest trained using only the target
data (scenario 0) and multiple forests that transferred information from a source forest (described by
scenarios 1-3).

2. Method

2.1. Overview and notation

We start with an overview of the proposed framework. TransRF aims to improve the prediction
performance in an underrepresented population with limited data by incorporating a RF model
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trained in a source population with relatively more sufficient data. To leverage the information
contained in the source model, we develop transfer learning models that cover several practical
scenarios, in which the source model shares certain similarities with the target population. An
ensemble learning strategy is used to combine multiple transfer learning models to improve
the method’s robustness. A schematic illustration is presented in Fig. 1.

We denote (Y,X) as the target data, where Y ∈ Rn is the outcome variable and X ∈ Rn×p is
the p-dimensional feature variables. Correspondingly, we denote data from the source population
as (Ys, Xs). To improve the applicability of the method, we consider the case where only a fitted
source model m̂s(x) is available, which is an estimator of the true conditional mean function
ms(x) = E(Ys|Xs = x). The distribution of the target data can be different from the source
data, i.e., either the feature distribution or the conditional distribution mt(x) = E(Y |X = x)

could be different from the source. Our goal is to estimate mt(x), using target data (Y,X) and
the fitted source model m̂s(x).

2.2. Three ways to incorporate the source model

Leveraging feature importance. One potential similarity between the source and the target
models is that they may have similar feature importance rankings (see Scenario 1 in Fig. 1).
When training a RF model with limited target data, we can use the variable importance scores
obtained from the source model, which we denoted by S = (s1, . . . , sp). This is especially useful
when the number of features is large. The importance scores can be normalized to weights
to determine the probabilities of selecting the features in each tree.28 We denote the fitted
model as m̂(1)

t (x), and refer it to Model 1. Intuitively, Model 1 is expected to perform well if the
source and target share similar feature importance rankings, even if the underlying mt(x) and
ms(x) are highly different. When ms(x) and mt(x) are close, Model 1 might be less effective as
it does not directly use the predicted values from the source model. Thus, we introduce the
following two scenarios.

Calibration of the source model by learning the discrepancy. Due to population
heterogeneity, the predicted values m̂s(X) may not be accurate when directly applying the
source model to the target data. We propose to use the target data to calibrate the source model.
Denote the discrepancy between the two underlying true models as δ(X) = mt(X)−ms(X). One
possible situation is that δ(X) is independent or weakly correlated with ms(X) (see Scenario
2 in Fig. 1), meaning that the discrepancy term captures complementary information of the
source model. In such a case, instead of fitting a model using the original outcome Y , we
propose to obtain the residual term, defined as Y − m̂s(X), which is the difference between the
observed outcomes and the predicted values. Treating the source model as an anchor, we fit
a RF model using the residual term as the outcome and X as the features. When δ(X) has
some sparse or low-dimensional structure, we can benefit from such sparsity by targeting the
discrepancy term.29 Finally, we obtain m̂

(2)
t (X) = δ̂(X) + m̂s(X), which we refer to as Model 2

hereafter.

Calibration of the source model by adding a new feature. We now consider the case
where the discrepancy term δ(X) is correlated with the source model m̂s(X) so that the above
Model 2 might not be able to learn δ(X) accurately. In other words, m̂s(X) could be an
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important feature for predicting the discrepancy so as to predict Y . In this case, we propose to
add m̂s(X) as an additional feature for predicting Y (see Scenario 3 in Fig. 1). Since m̂s(X)

is likely an important feature, we propose using weighted RF and assigning it a large weight.
We can assign equal or different weights for other features, X, according to prior knowledge of
whether certain features have different effects in two populations. We denote the fitted model
as m

(3)
t (x), and refer it to Model 3.

2.3. Ensemble learning to boost the robustness and prevent negative transfer

Each of the models described above relies on certain assumptions about the true underlying
functions mt(x) and ms(x), where the validity of the assumptions is unverifiable in practice.
As we will later show in the simulation studies, the performance of Models 1-3 varies under
different settings. In addition, when the source population is highly different from the target
population, the source model could not provide any useful information to the training of the
target model, and the above models may even have lower performance compared to a RF
model trained by using the target data alone (the target-only model, or Model 0 shown in Fig.1,
denoted as m̂

(0)
t ). To prevent such “negative transfer” and to leverage the strength of each

model, we propose to obtain an ensemble model which is a linear combination of m̂(0)
t , m̂

(1)
t , m̂

(2)
t

and m̂
(3)
t . We denote the TransRF model as

m̂t(x) =

3∑
i=0

wim̂
(i)
t (x)

where wi is the weight of the i-th model. Many existing methods can be used to obtain the
ensemble weights. For example, with a small validation dataset (X̃, Ỹ ), we can obtain the
ensemble model by fitting a linear regression model treating m̂

(0)
t (X̃), m̂

(1)
t (X̃), m̂

(2)
t (X̃) and

m̂
(3)
t (X̃) as features. Alternatively, we can use methods such as Q-aggregation30 to learn the

weights. The sample size of the validation dataset can be relatively small compared to the
training data, and a cross-fitting strategy can be used to potentially achieve better accuracy.

As illustrated in Fig. 1, TransRF requires only the fitted RF model and the corresponding
feature importance scores from the source population, especially preferable in settings where
individual-level data is not shareable across sites. Our framework can be modified to incorporate
other possible transfer learning models that might work better in scenarios not described above,
such as the structure-based transfer learning models.26

3. Simulation studies

We conduct Monte Carlo simulations to assess TransRF and several comparisons under three
settings. Due to space limitations, we outline the data generating procedures in this section
and leave the detailed choices of parameters, transformation, and distribution functions in the
online Supplementary Materials. In each setting, we generate X and Xs from a multivariate
truncated normal distribution with different means to mimic the potential shifts in feature
distributions. The dimension of features is set to p = 20. The mean function ms(x) and mt(x)

are set to be some non-linear functions of X, which are different across settings. We then add
random noise to the mean functions ms(x) and mt(x) to obtain the outcomes in the source and
the target populations. For each simulated dataset, we generate target data of size n = 200 for
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the training purpose and an independent testing set with ntest = 100. A source sample of size
nsrc = 1000 is generated to fit the source model. We evaluate the model performance using the
mean squared prediction error (MSE) of the testing set over 200 simulation replications. We
now describe the three simulation settings:

(i) In Setting 1, we consider that the source and the target populations share a similar variable
importance ranking, where the similarity between the two populations is measured by the
correlation of their variable importance rankings. To generate ms(x) and mt(x), we apply
some non-linear transformations on each feature in X and obtain the transformed features
Z. We then combine the transformed features through a linear combination to obtain ms(x)

and mt(x), i.e., ms(x) = Zβs and mt(x) = Zβt, where βs and βt are p-dimensional vectors
whose magnitude determines the feature importance. By changing the correlation between
βt and βs, we vary the similarity degree of their feature importance.

(ii) In Setting 2, we consider that the discrepancy between ms(X) and mt(X) is independent
or weakly correlated with ms(X). To achieve this, we first generate ms(x) in the same
way described in Setting 1. We then generate δ(x), the function of a random subset of all
the features, on which we apply different feature transformations and linear combinations
compared to ms(x). We obtain mt(x) = ms(x) + δ(x). We vary the variance explained by the
source model ms(x) to control the similarity between the source and the target populations.

(iii) In Setting 3, we consider that the discrepancy term is correlated with ms(X). We generate
Ys following the same data generating mechanism in Setting 2 except that we set mt(X) =

Cms(X)+δ(X), where C is a constant. In this case, the true discrepancy is mt(X)−ms(X) =

(C − 1) ∗ms(X) + δ(X). With C ≠ 1, ms(X) is correlated with the discrepancy, and we vary
C to alter the strength of the correlation.

Fig. 2. MSE ratio compared to Model 0 (the target-only model) in simulation settings 1 (left), 2
(middle), and 3 (right).

In each setting, we use Model 0, i.e., the target-only model, as the reference and compare the
performance of six models with it: (1) Source-only: m̂s(x); (2) Weighted: a weighted average of
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predictions from source-only model and target-only model, using inverse MSE of validation data
as weights; (3) Model 1: m̂(1)

t (x); (4) Model 2: m̂(2)
t (x); (5) Model 3: m̂(3)

t (x); and (6) TransRF:
the proposed method, combining Models 0-3. Note that for methods (2) and (6), a validation
dataset is needed to train the weights, where we randomly split nval = 50 samples from the
training data. For each method (k), k ∈ {1, . . . , 6} described above, we report its MSE ratio
compared to the reference, denoted as MSEk/MSE0, where a ratio larger than 1 represents
worse performance than the reference. In contrast, a ratio smaller than 1 represents improved
prediction compared to the reference. We build TransRF algorithm in R software31 on the
basis of viRandomForests package. Code to implement TransRF along with the example data,
and Supplementary Materials are available at https://github.com/gutian-tiangu/TransRF.

3.1. Simulation results

Results of Setting 1 (the left panel of Fig. 2) show that the performance of Model 1 improves
over the increasing correlation of feature importance. When the correlation is large, Model
1 outperforms most of the compared methods, while it performs slightly worse than Model
0 when the correlation is low. Interestingly, Model 2 performs well across all settings, which
might be due to the discrepancy term mt(x)−ms(x) under this setting is weakly correlated
with the source mean structure when we alter the correlations between the feature importance.
TransRF has the best performance over different correlation levels and the MSE ratios to
Model 0 range from 0.66 to 0.76.

In Setting 2 (the middle panel of Fig. 2), we observe that when the performance of the
source model increases, Model 2 outperforms all the compared methods. Since Model 2 has
much better performance than Models 0, 1, and 3, TransRF has nearly identical performance
as Model 2, with a MSE of 0.78 times that of Model 0.

In Setting 3 (the right panel of Fig. 2), we alter the parameter C in mt(X) = Cms(X)+ δ(X)

from 10 to 1 corresponding to three levels shown in the x-axis. When C is getting closer to
1, the variance explained by the source model increases (from low to high), and so as the
performance of the source-only model. When C is larger than 1, Model 3 performs better
than other methods and similarly to TransRF. When C = 1, the performance of all the other
methods improves, and therefore TransRF has better performance, where its MSE ratios to
Model 0 range between 0.08 and 0.30.

In summary, the performance of each transfer learning model varies in different settings,
where each model has the best performance in a specific scenario. TransRF that combines
Models 0-3 often outperforms its underlying constituents and is robust against negative transfer.

4. Application using UKB data

We apply TransRF to UKB breast cancer data, treating European (EUR) women as the source
population, and AFR women SAS women as the target population, respectively.

4.1. Defining breast cancer case and control, ancestry, and other variables

We identify breast cancer cases using the ICD-10 code (C50) following a recently released
UKB disease phenotyping definition.32 When using retrospective data like UKB to build risk
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prediction models, one should exclude the prevalent cases where observations already had
breast cancer diagnosed before they entered the study, and only keep incident cases who
developed breast cancer after entering the study. In our example, as the target sample size
is minimal, we want to keep as many target samples as possible. We decide to include both
incident and prevalent cases and only use time-invariant predictors (excluding variables that
can potentially happen after the diagnosis). When selecting candidate controls, we identify
women who have not been diagnosed with breast cancer or ovarian cancer (ICD-10 code, C56)
as these cancers are closely related.33 We select a subset of subjects to obtain controls with a
case-control ratio approximately equal to 1:2.

To define the ancestry population for EUR, AFR and SAS, we use a mutual set of self-
reported ancestry through UKB survey data and the principal component-based ancestry
prediction proposed by Zhang, Dey, and Lee.34 Only those whose self-claimed ancestry matched
the ancestry prediction are included. We define the following clinical variables that are commonly
known as breast cancer risk factors: ever smoking (yes or no), age at the start of menstruation
in years, had a college degree (yes or no), ever had a live birth (yes or no).35,36 For a small
percentage of participants who had missing age at the start of menstruation (<3%), we impute
the missingness with a mean age of 13. We identify 479 SAS samples (173 cases and 306
controls), 440 AFR samples (126 cases and 314 controls), and 43,576 EUR samples (14,240
cases and 29,336 controls) that contain complete data of outcomes and clinical variables. For
each target population, we randomly split a validation set of size 50 (20 cases and 30 controls)
and a testing set of size 90 (30 cases and 60 controls), whereas the remaining samples are used
as training data (339 samples including 123 cases and 216 controls when using SAS as the
target; and 300 samples including 76 cases and 224 controls when using AFR as the target).

4.2. Genotyping, quality control and imputation

Details on genotype calling and quality control for UKB data are described elsewhere.4 We
include 330 novel breast cancer susceptibility single-nucleotide polymorphisms (SNPs) identified
in a GWAS study.37 We perform standard quality control, including removing participants
who have mismatched self-reported sex versus biological sex, those who failed UKB official
genotype quality control, and all pairs of participants who are estimated to be genetically
related. A total of 272 SNPs are found in the UKB data, used as genetic predictors, among
which 151 contain a small percent of missingness (over 90% SNPs with missingness have a
missing rate < 5%). For each SNP with missingness, we impute the missingness using the value
with the largest frequency.

4.3. Results

Fig. 3 shows the area under the operating characteristic curve (AUC) of different transfer
learning methods after incorporating source model information for SAS as the target model in
the left panel and AFR as the target model in the right panel. When using AFR as the target
population, compared with Model 0 (dashed vertical line, AUC=0.61), Model 1 by directly
sharing the variable importance score has the highest AUC, equal to 0.70. Model 2 that learns
the discrepancy term has an AUC of 0.69, while Model 3 by including source predicted values
as the most important feature does not show improved performance with AUC equal to 0.60.
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TransRF by aggregating Models 0-3 shows an AUC of 0.70, a 10% improvement compared
to the target-only model and a 5% improvement compared to the weighted model by naively
aggregating Model 0 and the source-only predictions. On the contrary, the SER model by using
the target data to fine-tune the source tree structure26 shows the worst performance among
others. This may result from insu�cient target data to refine the tree or dissimilarity between
the source and the target tree structure.

When comparing the results that each uses SAS and AFR as the target population, we
observe that each transfer learning model performs di↵erently, e.g., Model 3 has the worst
performance in transferring EUR information to AFR while it has the best performance when
leveraging EUR information to SAS. This might be due to di↵erent similarities of genetic
architectures between EUR and AFR versus EUR and SAS.38

Fig. 3. AUC of transfer learning methods compared to Model 0 (the
target-only model) for SAS (left) and AFR (right).

In Table 1, we present
the top 20 important
variables from the source
and each target-only
model, along with the
corresponding variable
importance scores. Age
at the start of menar-
che is found in all three
models, and it is the
most important variable
in both the EUR model
and AFR Model 0. Two predictors, rs16886165 and “Ever had a college degree”, overlap in
EUR model and AFR Model 0, while the top one feature of SAS Model 0, rs4784227, is also
found important in the EUR model. In addition, rs9315973 is identified with high importance
in both AFR and SAS Model 0’s, an intron variant belongs to gene EPSTI1 that is known to
be associated with many traits and diseases, including breast cancer in European and East
Asian.39

It is worth noting that rs16886165 is an intergenic variant identified as associated with
breast cancer in European populations.40,41 The known risk e↵ect of rs4784227, an intron variant
mapped to gene CASC16, associated with breast cancer has been validated in European42,43

and East Asian ancestries.44–46 Other than these two SNPs, the ranking of the rest of the top
SNPs between the target and the source populations is not consistent, which might suggest
underlying di↵erences in genetic architectures across populations.38 However, with a limited
sample size in the target population, the estimated feature importance scores may have large
variability.

5. Discussion

In this study, we propose TransRF, a RF-based transfer learning framework targeting risk
prediction in underrepresented populations. By incorporating fitted models from a large source
population, TransRF combines the strengths of several novel transfer learning models motivated
by various practical situations. Our simulation studies reveal that the e↵ectiveness of di↵erent
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Table 1. Top 20 variables (importance score) from the fitted EUR model, Model 0 treating
South Asian (SAS) as the target population, and Model 0 treating African Ancestry (AFR)
as the target population. Variables identified from all three populations indicated in bold text.
Variables shared by the EUR and SAS populations are indicated in blue. Variables shared by
the EUR and AFR populations are indicated in red. Variables shared by the SAS and AFR
populations are indicated in orange.

Rank Fitted EUR model (score) SAS Model 0 (score) AFR Model 0 (score)

1 Menarche age (0.056) rs4784227 (0.043) Menarche age (0.148)
2 rs4442975 (0.021) rs7848334 (0.04) Had a college degree (0.048)
3 rs630965 (0.02) rs12472404 (0.031) rs2454399 (0.045)
4 rs10941679 (0.017) rs12422552 (0.031) rs144767203 (0.031)
5 rs16886165 (0.016) rs332529 (0.03) rs2181965 (0.028)
6 rs910416 (0.016) Menarche age (0.029) rs2403907 (0.02)
7 rs6913578 (0.016) rs4866496 (0.028) rs9693444 (0.019)
8 rs10096351 (0.015) rs78540526 (0.027) rs56387622 (0.018)
9 rs7072776 (0.014) rs4868701 (0.026) rs35542655 (0.018)
10 Had a college degree (0.014) rs719338 (0.02) rs7924772 (0.018)
11 rs9931038 (0.014) rs7842619 (0.02) rs16886165 (0.018)
12 rs35668161 (0.014) rs3010266 (0.019) rs3819405 (0.017)
13 rs552647 (0.014) rs10832963 (0.019) rs2356656 (0.016)
14 rs661204 (0.012) rs9315973 (0.018) rs9364472 (0.016)
15 rs4784227 (0.012) rs55872725 (0.018) rs9315973 (0.016)
16 rs17343002 (0.012) rs7830152 (0.018) rs11693806 (0.015)
17 rs11249433 (0.012) rs28539243 (0.016) rs7800548 (0.014)
18 rs10164323 (0.011) rs335160 (0.015) rs665889 (0.013)
19 rs10197246 (0.011) rs9712235 (0.015) rs889310 (0.012)
20 rs4602255 (0.011) rs7121616 (0.014) Ever had a live birth (0.012)

transfer learning models varies with the underlying relationship between the source and the
target models. TransRF reaches comparable performance to the transfer learning method with
the best performance across different scenarios, demonstrated by both simulation studies and
the application to UKB data.

Our paper considers the practical situation where we can only obtain a fitted model from
the source population, whereas the individual-level data are unavailable. A relevant problem is
transfer learning in a federated setting, where summary-level statistics (not necessarily the
trained model) can be shared across populations. In such a setting, Li et al.47 proposed a
federated transfer learning algorithm based on penalized generalized linear regression models,
which requires sharing the gradients of likelihood functions iteratively across populations, and
we refer to the relevant works discussed therein. This type of method is more applicable to
research networks with specific infrastructures to facilitate timely information sharing and
model updating. In contrast, the model-based transfer learning framework proposed in this
paper can be helpful in a broader range of applications.

There are several limitations to this study. In the breast cancer example, both instant and
prevalent cases are included. Due to the limited sample size in the target population, only
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including the breast cancer incidents will result in too few target samples. Although we only
use time-invariant features or features that are most likely to happen before breast cancer
diagnosis, such as education level and menarche age, there is still uncertainty in terms of
their actual temporal relationships. We aim to use this data example to show the feasibility
of TransRF. As a future direction, we will explore the potential of TransRF for disease
risk prediction by incorporating more precise temporal information based on codified and
unstructured information in biobank data.
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