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Polygenic risk scores (PRS) have led to enthusiasm for precision medicine. However, it is well 
documented that PRS do not generalize across groups differing in ancestry or sample characteristics 
e.g., age. Quantifying performance of PRS across different groups of study participants, using
genome-wide association study (GWAS) summary statistics from multiple ancestry groups and
sample sizes, and using different linkage disequilibrium (LD) reference panels may clarify which
factors are limiting PRS transferability. To evaluate these factors in the PRS generation process,
we generated body mass index (BMI) PRS (PRSBMI) in the Electronic Medical Records and
Genomics (eMERGE) network (N=75,661). Analyses were conducted in two ancestry groups
(European and African) and three age ranges (adult, teenagers, and children). For PRSBMI

calculations, we evaluated five LD reference panels and three sets of GWAS summary statistics of
varying sample size and ancestry. PRSBMI performance increased for both African and European
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ancestry individuals using cross-ancestry GWAS summary statistics compared to European-only 
summary statistics (6.3% and 3.7% relative R2 increase, respectively, pAfrican=0.038, 
pEuropean=6.26x10-4). The effects of LD reference panels were more pronounced in African ancestry 
study datasets. PRSBMI performance degraded in children; R2 was less than half of teenagers or 
adults. The effect of GWAS summary statistics sample size was small when modeled with the other 
factors. Additionally, the potential of using a PRS generated for one trait to predict risk for 
comorbid diseases is not well understood especially in the context of cross-ancestry analyses – we 
explored clinical comorbidities from the electronic health record associated with PRSBMI and 
identified significant associations with type 2 diabetes and coronary atherosclerosis. In summary, 
this study quantifies the effects that ancestry, GWAS summary statistic sample size, and LD 
reference panel have on PRS performance, especially in cross-ancestry and age-specific analyses. 

Keywords: polygenic risk scores (PRS), risk prediction, transferability, diversity

Introduction
Polygenic risk scores (PRS) provide individualized genetic estimates of a phenotype by 
aggregating genetic effects across hundreds or thousands of loci, typically from genome-wide 
association studies (GWAS). PRS are potentially a powerful source of increased prediction 
performance, even when combined with family history (1,2). However, in recent years it has 
become increasingly apparent that performance of PRS is substantially reduced when the 
ancestry of the individuals in whom prediction is being done differs from the ancestry of the 
individuals from the GWAS used to generate SNP weights used for PRS construction. For 
instance, when using GWAS from European ancestry individuals, the prediction accuracy of 
polygenic scores in individuals of African or Hispanic/Latino ancestry have a relative 
performance of 25% and 65% compared to performance in European ancestry individuals (3). 
Additionally, evidence exists suggesting that for some traits, such as adiposity traits, this 
disparity may be further exacerbated by environmental, demographic, or social risk factors 
(including age, physical activity, smoking status, and alcohol use (4–7)). For example, 
differences in the genetic architecture of body mass index (BMI) have been shown to differ 
between age groups (8–11). Thus, the performance of PRS for BMI is also affected by the age of 
the individuals used in the GWAS and the study data where the PRS is evaluated (12). Broad-
sense heritability estimates for BMI in adults ranges from 40%-90% when estimated in adults of 
different cohorts even of homogeneous ancestry (13); even if heritability estimates are similar 
across populations, genetic architecture and enrichment for variants in different functional 
categories may still differ (14,15). 

Several outstanding questions surrounding PRS, especially within the context of adiposity 
traits and BMI, warrant further investigation. For instance, when cross-ancestry summary 
statistics (i.e., those including individuals of multiple ancestry groups in the GWAS) are 
available, can they be used to improve prediction performance in individuals from one or more 
different ancestry groups? We need a more thorough evaluation of the potential prediction 
performance gain (or loss) in African ancestry individuals when cross-ancestry GWAS summary 
statistics are used to estimate the SNP weights. In addition, we need to improve our 
understanding of the impact of the composition of the linkage disequilibrium (LD) reference 
panel in combination with cross-ancestry GWAS summary statistics on PRS prediction 
performance. For prediction of BMI specifically, how does prediction performance differ for 
individuals in different age groups, especially those who are not adults (i.e., less than age 18)? 
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Additionally, how much these different variables impact the PRS performance when considered 
together is important to explore. Developing a deeper understanding of which features (ancestry 
of individuals in the GWAS, ancestry of the individuals generating the LD references panel, 
ancestry of the study data, age of the study data) have the greatest impact of PRS performance 
will help the field develop future studies and strategies around clinical risk prediction with PRS. 
The degree to which increased GWAS sample size increases prediction performance regardless 
of these other factors is also important to determine. Finally, there is potential for using a PRS 
generated for one trait to predict risk for comorbid traits.  Understanding how much the different 
elements of PRS generation affects associations with clinical comorbidities of obesity is of great 
importance for precision medicine.  
 We comprehensively investigated the influence of these factors on the performance of PRS 
using the Electronic Medical Records and Genomics (eMERGE) Network dataset. eMERGE is 
an NIH funded consortium that combines participants from multiple electronic health record 
(EHR) linked biobanks (16). In the present study, we included 75,661 individuals of diverse 
ancestry and age (14% African ancestry, 55% female, and 12% children age < 13). These 
individuals were from the eMERGE III imputed array dataset (N=83,717) (dbGaP Study: 
phs001584.v2.p2), estimated European or African ancestry, and had BMI measurements 
available. For these analyses, we used published BMI GWAS summary statistics from the 
GIANT (Genetic Investigation of ANthropometric Traits) consortium, an international 
consortium that primarily studies anthropometric traits, which included participants (max 
N=339,224, mean N per variant=226,960) from European, African, and Asian ancestry groups 
(17). We also used summary statistics from a European ancestry BMI GWAS (18) in UK 
Biobank (UKBB) individuals (N=339,721), which was conducted using both the full sample size 
of the European ancestry UKBB, as well as after down-sampling to the same number of 
individuals in the GIANT GWAS. This comparison allowed us to better evaluate whether it was 
the ancestry composition or the sample size of the dataset where the GWAS summary statistics 
were derived that affected the results of the PRS performance. We calculated PRS for BMI 
(PRSBMI) across 90 different combinations of analyses (described more in Methods) – six 
different groupings based on ancestry and age, five different LD reference panels (of varying 
ancestry and from three different cohorts), and the three mentioned sets of GWAS summary 
statistics. We then statistically compared the different sets of analyses to see what factors most 
influence PRSBMI performance across various groupings of individuals based on ancestry and 
age. Lastly, we also tested the association of the best performing PRSBMI with common 
comorbidities across ancestry groups to identify the clinical relevance of the PRSBMI in 
phenotypes derived from an Electronic Health Record (EHR). Investigation of these variables 
elucidates our understanding of the factors that affect PRS performance and transferability across 
ancestries and populations, especially within the context of BMI, as well as the potential of using 
PRSBMI to predict risk for comorbid disease. 

Methods 
Overall study design 
The electronic Medical Records and Genomics (eMERGE) network dataset is an NIH funded 
consortium that combines participants from multiple electronic health record (EHR) linked 
biobanks. In this study, we included 75,661 individuals with available genetic and phenotypic 
data. The individuals in the eMERGE dataset include multiple ancestry groups – genetically 
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inferred ancestry was assigned by the eMERGE consortium (16) – and a large age distribution 
(14% African ancestry, 19% less than age 18, Figure 1). Briefly, we calculated PRSBMI for all 
individuals within each combination where the following elements of the model varied: 1) LD 
panels that differed in ancestry, 2) GWAS summary statistics with variable ancestry 
composition, and 3) GWAS summary statistics for two different sample sizes. The details for 
each of these are provided more below. The data was also split by ancestry and age group, and 
we statistically compared PRSBMI performance between all the different groups – in total, 90 sets 
of PRSBMI were calculated separately and then compared. We first estimated the effect and 
significance of each variable (i.e., ancestry of GWAS summary statistics and test data, LD panel 
ancestry, size of GWAS summary statistics, and age of test individuals) on PRS performance. 
Next, we estimated how much each variable affects PRSBMI performance when all are modeled 
together, and finally we analyzed the potential clinical associations by testing the PRSBMI for 
association with common comorbid conditions from the EHR. For the primary results related to 
LD panel or ancestry of summary statistics and test data, we restricted analyses to adults as the 
other age groups were limited in sample size. In the following sections, we describe all these 
elements in more detail. 

Figure 1. Flowchart of project. Max size of LD panel was 5,000 individuals. UK Biobank (UKBB) 
European GWAS summary statistics were down-sampled to the mean sample size per variant of GIANT 

(N=226,960), full size of UKBB European was N=377,921. 1000 Genomes is abbreviated as 1KG. 

Summary statistics to generate PRSBMI 

We obtained published GWAS summary statistics from the GIANT consortium (17) to use as 
one set of BMI GWAS summary statistics. Up to 322,154 adults of European ancestry, as well as 
an additional 17,072 adults of non-European ancestry (adults of African, East Asian, and South 
Asian ancestry), were included in the GIANT GWAS analysis. 

For the second set of summary statistics, we performed a GWAS in the individuals of 
European ancestry from the UK Biobank (UKBB). Individuals were first filtered by low quality 
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samples (sex mismatch between genetically inferred and self-reported, variant missingness > 
5%), relatedness (no 2nd degree relatives or higher), and within the White British ancestry subset 
(with these individuals being defined by UKBB and selected based on self-reports and 
genetically determined ancestry) (18); a total of 377,921 individuals initially remained. Variants 
were filtered on imputation quality score (using the INFO metric (19)) > 0.30, and minor allele 
frequency > 1% within this subset of individuals. In addition, we generated a second set of 
GWAS summary statistics from the UKBB, where we randomly down-sampled individuals to 
the sample size in the GIANT GWAS dataset (N=226,960). In each UKBB GWAS, data 
processing and modeling were performed similarly as in the GIANT GWAS – summary statistics 
were calculated using linear regression, with age, age2, sex, and the first 5 genetic principal 
components (PCs) included as covariates. BMI, defined as weight in kilograms divided by 
squared height in meters, was first inverse-rank normal transformed.  

After calculation of BMI GWAS summary statistics in each of the two datasets of UKBB 
individuals of European ancestry, we harmonized variants across all datasets used (UKBB, 
eMERGE, GIANT, and 1000 Genomes Phase 3). For the remainder of downstream analyses, we 
kept only those variants that were present in all datasets, and additionally excluded any strand-
ambiguous SNPs (alleles A/T or C/G), and retained only biallelic variants; in total, 2,014,457 
variants were retained for analyses. 

LD reference panels 
Five different LD reference panels were used for each set of PRSBMI calculations: 1) all of 1000 
Genomes (1KGAll) (N=2,504), 2) 1000 Genomes European ancestry (1KGEUR) (N=503), 3) 5,000 
randomly selected European ancestry individuals from the UK Biobank (UKBBEUR), 4) 5,000 
randomly selected individuals from all of UK Biobank (UKBBAll), and 5) up to 5,000 randomly 
selected individuals from the dataset for which PRSBMI were being calculated for in the eMERGE 
dataset (referred to as test data henceforward). These panels were chosen to test for differences in 
ancestry distribution and sample size on PRS performance. 

Statistical methods 
PRS software 

For each comparison set, PRSBMI were calculated using pruning and thresholding method via 
PRSice v2.1.9 (20). We chose to use PRSice due to the flexibility it provides in choosing 
external LD panels and allowed us to easily include multi-ancestry LD panels in our analyses. 
Default parameters were used in all analyses (clumping performed in 250 kb windows using an 
R2 of 0.1, p-value step size of 0.00005 between p-values of .0001 up to .10 and step size of .0001 
between p-values of .10 up to .50).  

Statistical comparisons 

Incremental R2 for PRSBMI was calculated by subtracting the R2 using a model with only the 
covariates from the R2 of the model using the covariates and the PRSBMI (the default option in 
PRSice). Statistical differences between model performances from different iterations were 
determined using the Wilcoxon rank-sum test to compare the distributions of the squared 
residuals generated from the model for all individuals in the iteration; for comparisons between 
the same set of individuals, the paired Wilcoxon rank-sum test was used. When testing which of 
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the five LD panels performed the best, we used a Bonferroni-corrected threshold of 0.05/10 = 
0.005 (ten comparisons between five LD panels). When comparing the best performing PRSBMI 
across ancestries and summary statistics using their best LD panel, we used a Bonferroni 
threshold of 0.05/25 = 0.002 (25 comparisons between the five LD panels used). 

Proportion of variance explained by each individual variable 

We modeled all evaluated features together in the following linear regression model: 
R2 ~ LD panel + NSumstat + AgeTest + AncestrySumstat + AncestryTest + AncestrySumstat*AncestryTest 

Where the Sumstat subscript is defined as a set of GWAS summary statistics, and the Test 
subscript is defined as a set of test individuals that PRS prediction is being assessed in. We 
quantified the variance in R2 that could be explained by each of these different variables using 
type II sum of squares from ANOVA. The sum of squares of variables involving ancestry were 
summed together; an interaction term between summary statistics ancestry and test data ancestry 
was included to identify whether the ancestry of summary statistics and test data matched. 

Association of PRSBMI with comorbidities 

We selected the ten most frequent Phecodes (21) from the EHR data in the eMERGE dataset 
(which includes obesity as a positive control) to test their association with the PRSBMI. For each 
Phecode, individuals were classified as a case for the condition if there was at least one 
occurrence of the respective Phecode in their EHR record; individuals were classified as a 
control for that condition if there was no occurrence of the Phecode. This classification is a rule-
of-one instance of a Phecode to define case status. For each eMERGE ancestry subgroup, we 
selected the best performing PRSBMI i.e., the PRSBMI with the highest R2, and tested the 
association of the PRSBMI with these ten clinical conditions using a logistic regression model. 
PRSBMI was first mean-centered and standard deviation was set to 1. Sex, age, age2, and the first 
five genetic PCs were included as covariates. 

Data visualization 

The ‘ggplot2’ R package was used for plotting, with the ‘geom_signif’ package used to include 
significance bars. The association results were plotted using PheWAS-View (22). 

Results 
Effect of LD panel 
For adults of African ancestry, when using the down-sampled UKBB GWAS summary statistics, 
using either cross-ancestry or African ancestry test data LD panels significantly improved 
PRSBMI performance compared to European ancestry LD panels (Figure 2). When using the 
UKBB summary statistics, the top PRSBMI R2 was 0.0140 using the test data as LD panel, while 
the second-best performing LD panel (UKBB European) had an R2 of 0.0109 (p = 4.94x10-20). 
When using the GIANT summary statistics, the top PRSBMI R2 was 0.0149 using 1KGAll as the 
reference panel. The PRSBMI calculated using the best European ancestry panel (1KGEUR) resulted 
in a R2 of 0.0141, but this difference between these two reference panels was not Bonferroni 
significant (p = 0.037). However, the 1KGall LD panel performed significantly better than the two 
UKBB LD panels (UKBBAll: R2 = 0.0134, p = 3.65x10-5; UKBB European: R2 = 0.0128, p = 
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3.65x10-9). The test data LD panel performed the second-best with an R2 of 0.0142, and 
significantly outperformed the UKBB European LD panel (p = 4.78x10-5). For adults of 
European ancestry, we observed more significant differences in performance when using the 
GIANT summary statistics compared to the down-sampled UKBB summary statistics. The 
1KGAll LD panel performed the best with a R2 of 0.0612. It also significantly outperformed all 
other LD panels (1KGEUR: R2 = 0.0560, p = 5.54x10-104; Test data: R2 = 0.0564, p = 6.50x10-67; 
UKBBAll: R2 = 0.0561, 8.09x10-107; UKBBEUR: R2 = 0.0561, p = 3.02x10-77). We note that this 
increase was larger when using the GIANT summary statistics but was still present when using 
the UKBB summary statistics. When using the UKBB summary statistics, the choice of LD 
panel had a much smaller impact on prediction performance. While the 1KGAll LD panel 
performed the best, the difference in performance was much less significant between the next 
best performing LD panel (R2

1KGAll = 0.0590, R2
UKBBAll = 0.0583, p = 3.48x10-4). The difference 

between the best and worst performing scores – LD panel using 1KG all versus 1KG European – 
was also much less significant (p= 1.15x10-12). These results suggest that the choice of LD panel 
particularly matters when calculating PRSBMI using cross-ancestry GWAS, or for African 
ancestry individuals when the GWAS summary statistics are derived from European ancestry 
individuals. 

      However, we did observe a slight decrease in the impact of the choice of LD panel when 
using the full UKBB summary statistics for adults; again, the largest differences were observed 
in adults of African ancestry, but differences in performance across LD panels were not as 
significant. The test LD panel performed second best with the 1KGEUR LD panel performing best 
(R2

Test = 0.0197, R2
1KGEUR = 0.0200, p = 0.18). The 1KGAll LD panel was the worst performing LD 

panel with an R2 of 0.0185, and this difference between the 1KGEUR LD panel was significant 
after multiple hypothesis correction (p = 5.08x10-7). 

Figure 2. PRS R2 values across all runs in adults. Asterisks without bars indicate significantly different R2 
values between the other 4 LD panels used. Bars are present for significant differences between specific 

R2 values. 

EUR Adults AFR Adults
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Effect of summary statistics and ancestry of test data 

As expected, the R2 values of the PRSBMI were significantly higher when calculated for European 
ancestry adults than adults of African ancestry, even when using the cross-ancestry GIANT 
summary statistics (Figure 2). When using the GIANT summary statistics, the best performing 
PRSBMI in adults of European ancestry had an R2 of 0.0612, which was significantly higher than 
the R2 from the best performing PRSBMI in African ancestry adults (R2 = 0.0149, p < 4.9x10-324). 

In African ancestry adults, the R2 when using the GIANT summary statistics was higher than 
the R2 when using the down-sampled UKBB summary statistics with their respective best LD 
panel (GIANT (1KGAll LD panel): R2 = 0.0149, UKBB (test data LD panel): R2 = 0.0140; p = 
0.038). This difference was not statistically significant after multiple hypothesis correction. 
However, the GIANT summary statistics with the 1KGAll LD panel did significantly outperform 
the UKBB summary statistics with all other LD panels. When keeping the LD panel constant, the 
PRSBMI calculated using the GIANT summary statistics resulted in higher R2 than using the 
UKBB summary statistics for all LD panels except for the test data LD panel, and this difference 
was statistically significant for the 1KGAll (p = 1.55x10-33), 1KGEUR (p = 6.78x10-18), and 
UKBBAll (p = 1.28x10-15) LD panels. Somewhat surprisingly, we observed higher R2 values for 
European ancestry adults when using the cross-ancestry GIANT summary statistics versus the 
down-sampled European UKBB summary statistics (R2

GIANT = 0.0612 versus R2
UKBB = 0.0590), 

with this difference being statistically significant (p = 6.26x10-4); the best performing LD panel 
for both set of summary statistics was 1KGAll.  

We also compared prediction performance in all individuals using the full (N=377,921) 
European UKBB GWAS versus the European UKBB GWAS down-sampled to GIANT’s sample 
size (N=226,960) (Figure 2, Supplemental Table 1). For consistency, UKBB European 
individuals were used for the European test ancestry comparisons, and for the African ancestry 
comparisons the test sets (i.e., African ancestry LD panels) were used as LD panels. Uniformly 
across test ancestry and age groups, we observed higher and statistically significant increases in 
R2. 

Prediction performance across different age groups 
Across different ancestries and summary statistics, we broadly observed similar R2 values for 
adults and teenagers, with substantially reduced performance in children (Supplemental Figure 
1). R2 values in children were consistently less than half of that in adults and teenagers, with 
differences in R2 values for adults and teenagers being minimal (except in the case of African 
ancestry individuals using the GIANT summary statistics, with teenagers having more than 
double the R2 of adults). Somewhat surprisingly, teenagers consistently had higher R2 than adults 
across all analyses, although these differences were much less significant than those compared 
with children. 

Proportion of variance explained by each assessed factor  
While we observed significant differences due to ancestry, age, and number of individuals used 
to calculate summary statistics, we aimed to quantify the effect of these different variables on 
PRSBMI performance when considered together (Table 1). We observed that 89.5% of the 
variance in PRSBMI R2 could be explained using these variables, indicating that the majority of 
the effects of LD panel, ancestry, age, and sample size could be explained through linear 
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relationships with PRSBMI R2. In the context of these comparisons, the ancestry of the summary 
statistics or test data accounts for 55.1% of the variance explained in PRSBMI R2. Choice of LD 
panel and age of test individuals accounted for similar amounts of variance explained in PRSBMI 
R2 (16.5% and 15.9%, respectively), while the number of individuals used to calculate the 
GWAS summary statistics only accounted for 1.9% of variance explained in PRSBMI R2. Per 
previous sections, while number of individuals used for summary statistics resulted in significant 
differences in PRSBMI performance, its overall impact when modeled jointly with all the other 
factors in the context of these analyses seemed to be small. 

 
Table 1. Proportion of variance in R2 that can be explained by different variables using type II sum of 

squares from ANOVA. 

PRSBMI association with comorbid traits 
To determine whether the PRSBMI was associated with clinical comorbidities, we performed a 
Phenome-Wide Association Study for ten clinical conditions (Supplemental Table 2, described 
more in Methods).  Here, the PRSBMI was tested for association with diagnosis codes (Phecodes) 
to evaluate whether the polygenic background for BMI associates with these clinical diagnoses.  
The PRSBMI was significantly associated with several of the most frequent Phecodes in eMERGE, 
particularly in European adults (Figure 3a). As expected, obesity had the strongest association 
with PRSBMI in all ancestry groups (pEUR < 4.9x10-324; pAFR = 5.17x10-8); this was a positive 
control. In European ancestry individuals, the best performing PRSBMI was also significantly 
positively associated with type 2 diabetes (pEUR = 1.04x10-102), essential hypertension (pEUR = 
7.12x10-56), coronary atherosclerosis (pEUR = 3.61x10-26), hyperlipidemia (pEUR = 4.38x10-16), 
depression (pEUR = 1.95x10-13), hypercholesteremia (pEUR = 3.64x10-15), asthma (pEUR = 3.13x10-

13), and diverticulosis (pEUR = 0.0017). These associations were less statistically significant in 
African ancestry individuals, which had much lower sample size, and many associations were no 
longer significant after Bonferroni correction. Only type 2 diabetes (pAFR = 1.2x10-5) and 
coronary atherosclerosis (pAFR = 0.001) were significantly associated with the PRSBMI in African 
ancestry adults. We also looked at the prevalence of each condition per PRS quintile for the most 
significantly associated conditions (Figure 3b). The case prevalence generally increased in higher 
PRSBMI quintile groups for conditions significantly associated with the PRSBMI, a trend matching 
the results we obtained from the association analysis. Phenotypes with downward trends were 
not significantly associated with PRSBMI, and low sample sizes in earlier quintile groups may 
have contributed to this seemingly decreasing prevalence. We performed similar analyses in 
teens and children but identified no statistically significant associations (results not shown). The 
much smaller sample sizes of the Phecodes in these age groups may have also contributed to the 
lack of statistically significant results – most of these diagnoses are adult-onset conditions. 
 

Variable Proportion of explained variance 
Ancestry of summary statistics or test data 0.5510 
Choice of LD reference panel 0.1650 
Age of test individuals 0.1590 
N individuals used to calculate summary statistics 0.0195 
Residuals (unexplained variance) 0.1050 
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Figure 3. a) Best PRSBMI associations with top 9 most prevalent conditions overall in eMERGE adults. 
Note the association with obesity is not included in the plot because the p-value in European ancestry 

individuals was pEUR < 4.9x10-324  which was off the scale of the plot. b) Prevalence plots of significantly 
associated conditions in eMERGE adults by best performing PRS quintile 

Discussion 
Somewhat unintuitively, African ancestry LD panels performed best for African ancestry 
individuals, regardless of whether European ancestry or cross-ancestry GWAS summary 
statistics were used. We observed minimal impact of the choice of LD panel when both test data 
and summary statistics were of European ancestry. These results suggest that as long as either the 
test data or GWAS summary statistics are of similar ancestry, or the test data and LD panel are 
of similar ancestry, the difference in PRS performance may be minimal as compared to if all the 
GWAS summary statistics, test data, and LD panel are all of the same ancestry. We also 
observed significantly decreased PRS performance in children compared to adults and teens, 
with the GWAS used in this study being conducted on adult populations. 

While the findings in this study highlight many important strategies for performing PRS in 
different ancestry and age groups, there are limitations that should be addressed in future studies.  

a) 

EUR Adults AFR Adultsb) 
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First, inclusion of analyses that evaluate how different proportions of non-European ancestry 
individuals affect the prediction performance of PRS would be useful. The GIANT summary 
statistics we used in this study are only about 6% non-European ancestry. It may be useful to see 
how the PRS prediction performance changes in both non-European and European ancestry 
datasets as a function of the proportion of non-European ancestry samples included in the 
GWAS. Such analyses may be possible by combining African ancestry individuals from these 
different datasets. These analyses will be possible once larger datasets that include non-European 
ancestry cohorts are publicly available or could be tested by analyzing other traits with larger 
African ancestry GWAS. Future analyses could also include sex-stratified GWAS and 
comparison sets to evaluate the influence of sex on PRSBMI performance.  Finally, repeating these 
types of analyses with different PRS methods would be useful as novel PRS methods are being 
developed on a regular basis, many of which incorporate ancestry in different ways. 

Overall, this study demonstrates the importance of expanding non-European ancestry data 
resources for PRS, specifically in the generation of GWAS summary statistics and LD reference 
panels.  Failure to do so reduces the impact of PRS in diverse populations and increases the 
potential for continued health disparities, especially in precision medicine where genetics is 
being integrated into clinical care.   
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