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Precision medicine requires a deep understanding of complex biomedical and healthcare data, which 

is being generated at exponential rates and increasingly made available through public biobanks, 

electronic medical record systems and biomedical databases and knowledgebases. The complexity 
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and sheer amount of data prohibit manual manipulation. Instead, the field depends on artificial 

intelligence approaches to parse, annotate, evaluate and interpret the data to enable applications to 

patient healthcare At the 2023 Pacific Symposium on Biocomputing (PSB) session entitled 

“Precision Medicine: Using Artificial Intelligence (AI) to improve diagnostics and healthcare”, we 

spotlight research that develops and applies computational methodologies to solve biomedical 

problems. 

Keywords: Artificial intelligence; Machine learning; Genomics; Multi-omics 

 

1.  Introduction 

The goal of precision medicine is to tailor medical care to the individual patient, from disease 

prevention to diagnosis to treatment. It holds the key to improve healthcare for all, diminishing 

health disparities. The generation of extensive, comprehensive and diverse medical datasets provide 

the opportunity to develop tools and methods that will advance the medical field through patient-

tailored treatment enabling healthcare equity across diverse populations. Below, we summarize 

research focusing on methodology development and applications to move personalized medicine 

forward. Based on the accepted submissions for the Precision Medicine: Using Artificial 

Intelligence (AI) to improve diagnostics and healthcare session at the Pacific Symposium on 

Biocomputing (PSB) 2023, computational and AI approaches are being used to advance cancer 

research, aid in pregnancy-related healthcare, reduce bias in biomedical data, enhance medical 

imaging and improve immunotherapy strategies. 

2.  AI-driven tools for improving diagnostics and healthcare 

As copious amounts of data are generated at rapidly increasing rates, precision medicine research 

faces the challenge of integrating across the landscape of “multi’s”, including multi-omics, multi-

models, multi-model systems and multi-sample types. (Acosta) The following submissions highlight 

greatly needed methods for analysis of integrated data across diverse datasets, and one submission 

addresses population bias in data. 

 

Hashim et al. developed a self-supervised learning approach for cancer type classification based on 

multi-omics cancer data, particularly for unannotated or unlabeled data. They applied their pre-

training paradigm to The Cancer Genome Atlas pan-cancer dataset. Benefits to their approach is 

that it can handle missing omics data types and is flexible enough to handle different types of 

datasets for pre-training and downstream training. (Hashim et al.) 

 

Bhattacharyya et al. integrate multi-omics and model systems to study cellular mechanisms of 

cancer to discover therapeutic associations. Their hierarchical Bayesian evidence synthesis 

framework, BaySyn, uses Gaussian process models and is suitable for rich datasets. The authors 

applied their framework to multi-omic cancer cell line and patient datasets for pan-gynecological 

cancers, implicating multiple functional genes across cancers. (Bhattacharyya et al.) 
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Trinh et al. address the problem of using multi-omics data from a study to investigate questions 

beyond the scope of that study. To do this, they develop trans-omic knowledge transfer modeling 

and apply it to the case of using information from an ulcerative colitis cohort in the Integrative 

Human Microbiome Project (IHMP) to understand biomarkers for anti-TNF therapy resistance in a 

different ulcerative colitis cohort.  They discuss the advantages and disadvantages of three different 

approaches to knowledge transfer modeling: using a supervised classifier, relative separation, and 

signature transfer. Through the application of these methods, they provide insights into 

implementing trans-omic, cross-cohort biomarker discovery. (Trinh et al.) 

 

An important aspect of precision medicine is efficiently identifying disease and disease risk in a 

patient, and subsequently predicting treatments and therapies that will be effective for that person. 

The following submissions focus on improving methods for detecting and predicting disease and 

treatment efficacy. 

 

Extending conventional causal inference methods, Aoki and colleagues propose a framework to use 

neural networks to estimate multi-treatment effect size. By training a neural network with inputs 

that include treatments, covariates, as well as outcomes, the deep learning approach summarizes the 

impact of each treatment with the expectation that the latent space distills meaningful information 

regarding true treatment effect. Using three synthetic datasets with known true treatment effect, the 

authors show their approach best approximates treatment effect compared multiple standard 

benchmark causal inference methods. (Aoki et al.) 

 

Machine learning algorithms optimize certain accuracy metrics by finding best low-dimensional 

representation of the data. While this approach leads to high predictive power, it can lead to biased 

conclusions when, for example, training data does not represent the target population. This is 

problem is of particular importance in biomedical data when patient's health is at stake. De Paolis 

Kaluza et al. propose a method to identify and quantify bias in a setting where labeled data is known 

to be drawn from a biased population and unlabeled data is drawn from target population. Under a 

mild assumption that data comes from a mixture of Gaussian distribution, they developed a multi-

sample expectation-maximization algorithm to identify and quantify the bias. (De Paolis Kaluza et 

al., 2023) 

 

In genetic testing for disease diagnosis or risk, genes with functional significance for the given 

phenotype are tested to identify what variants a patient possesses. Variant classification following 

guidelines from the American College of Medical Genetics and Genomics (ACMG) and the 

Association for Molecular Pathology (AMP) (Richards) is used to determine if variants found are 

potentially pathogenic, benign or a “variant of unknown significance” (VUS). VUS are inconclusive 

for diagnoses but are commonly assigned due to limited clinical evidence regarding many variants. 

High throughput assays can be leveraged to molecularly characterize variants lacking sufficient 

clinical evidence to improve variant classification. The work of Chen and Jain et al. aims to use 

clinical objectives and in silico variant pathogenicity prediction to prioritize genes for high 

throughput assays. The authors found they could improve on current knowledge-driven and data-
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driven strategies for variant classification by using a combined score from three metrics quantifying 

the importance of genes in satisfying specific clinical objectives. (Chen and Jain et al.) 

 

As researchers find ways to vectorize different data modalities we observe more and more creative 

applications of machine learning for detecting health conditions. In particular, Aryal et al. developed 

a set of algorithms for quantifying acoustic-linguistic signals and used them to predict status of 

Alzheimer's disease. Given the dataset of over 1000 patients, they found that in their setting human-

engineered linguistic features were more predictive of the disease than acoustic and learned features. 

(Aryal et al.) 

 

Zhang et al. focused on improving immunotherapy strategies by developing a pipeline for predicting 

binding affinity for T cell receptor (TCR) and epitope sequences.  Computational binding prediction 

could help streamline the T cell design process. The authors created PiTE -- Pipeline leveraging 

Transformer-like Encoders -- that uses large numbers of TCR amino acid sequences to pre-train the 

model and an advanced sequence encoder. (Zhang et al.) 

 

In the past several years, a spotlight has been shown on racial and ethnic disparities in pregnancy-

related conditions. (Carty et al.) In fact, pregnancy-related complications and deaths in general in 

the U.S. continue to rise. (Heavey) The following two submissions discuss computational 

applications to gestational diabetes and pre-eclampsia. 

 

Mathur et al. demonstrate reasonable and useful applications of Bayesian network modeling 

approaches that can incorporate both data-driven learning and domain knowledge in the form of 

network constraints (independence and monotonicity). The methods are well-summarized and 

demonstrated in a concrete application for gestational diabetes that illustrate the value of multiple 

different learning and knowledge modeling techniques beyond purely data-driven models. (Mathur 

et al.) 

 

For many diseases, transcriptional profiling has been used to identify differentially expressed genes 

(DEGs). The ignorome is the set of genes that have been experimentally identified as associated 

with disease but for which no established mechanistic relationship exists. In “Knowledge-Driven 

Mechanistic Enrichment of the Preecomplasia Ignorome”, Callahan et al. use a biomedical 

knowledge graph to gain insights into the molecular mechanisms behind pre-eclampsia and to 

connect experimental findings with previously described disease mechanisms in the literature. Their 

model provides an approach that could be generalizable to other complex disease processes. 

(Callahan et al.) 

 

Additional submissions in this session focus on improving data representation of genomic variation 

and deep learning segmentation modeling in medical imaging. 

 

In practice, the use of genomics terms and vocabulary can be community or context dependent. 

Annotation and representation of genetic variants and their states (e.g., genotypes, alleles, 
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haplotypes) vary widely across domains including somatic cancer, Mendelian disease and 

pharmacogenomics. There are multiple formats for genetic data exchange, some predominantly used 

in each domain, but each has its limitations especially for application to a different domain. 

(Pawliczek et al., Holmes et al., den Dunnen et al., Gaedigk et al.) To promote standardized and 

interoperable representation of genetic variants for precision medicine, the Global Alliance for 

Genomics and Health (GA4GH) Variation Representation Specification (VRS) developed a 

Genotype model designed to unambiguously represent the allelic composition of a genetic locus. 

Here, the Goar et al. describe their Genotype model along with their Haplotype model in the context 

of several relevant precision medicine settings, including pharmacogenomics. (Goar et al.) 

 

Despite extensive progress in segmentation models in medical imaging, deep learning segmentation 

models are prone to catastrophic mis-annotation in out-of-domain or foreign examples. Given 

known clinical priors (such as there is only one prostate or most biological structures are convex), 

Wooten et al. propose a set of shape features that can identify poor quality segmentation in medical 

imaging. Features related to area, perimeter, volume, compactness, and convexity are shown to be 

able to distinguish between acceptable and unacceptable segmentation of the kidney. Using a set of 

acceptable and unacceptable segmentations of the kidney on CT imaging from radiotherapy 

treatment plans, the authors show simple heuristics and clustering algorithms can partition between  

acceptable and unacceptable segmentations, which can be used to quality check deep learning 

models. (Wooten et al.) 

3.  Conclusion 

Paralleling continued progress in general artificial intelligence, we find there is steady and rapid 

progress in the application of machine learning to healthcare. Precision medicine is a combination 

of precision therapeutics - targeting the right treatments to address specific mechanisms of action or 

response - as well as precision diagnostics - identifying the right patients to the right therapeutics. 

In this year’s session of Precision Medicine: Using Artificial Intelligence to improve diagnostics 

and healthcare at PSB 2023, we find wide ranging innovations in many modalities and medical 

datasets. From imaging to genetic data to modeling of clinical treatments, the application of 

algorithms in the space of healthcare allows a deeper understanding of complex questions.  
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