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This PSB 2023 session discusses challenges in clinical implication and application of risk 
prediction models, which includes but is not limited to: implementation of risk models, responsible 
use of polygenic risk scores (PGS), and other risk prediction strategies. We focus on the 
development and use of new, scalable methods for harmonizing and refining risk prediction models 
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by incorporating genetic and non-genetic risk factors, applying new phenotyping strategies, and 
integrating clinical factors and biomarkers. Lastly, we will discuss innovation in expanding the 
utility of these prediction models to underrepresented populations. This session focuses on the 
overarching theme of enabling early diagnosis, and treatment and preventive measures related to 
complex diseases and comorbidities.  
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1. Introduction:  
  
Genetic variants each harboring small phenotypic effects are shown to collectively contribute to 
complex trait and disease risk. Genome-wide association studies (GWAS), a mainstay of genetics 
research, are widely used to identify such common genetic variants (single nucleotide 
polymorphisms or SNPs) that convey increased or decreased risk for complex traits in populations. 
Due to the polygenic nature of complex traits, reliably predicting disease susceptibility or risk 
often requires studies of large sample sizes. To address this, large biobanks such as the Million 
Veteran Program (MVP) and UK Biobank, and consortia such as the Global Lipids Genetics 
Consortium (Graham et al., 2021), Global Biobank Meta-Analysis Initiative (Zhou et al., 2021), 
and Genetic Investigation of Anthropometric Traits (Yengo et al., 2018), among several others, 
have been successful at identifying and validating genetic components of complex traits based on 
sample sizes ranging from hundreds of thousands to over a million. Nevertheless, identifying 
people at risk of disease prior to the presentation of symptoms remains one of the main challenges 
and goals of precision medicine. Countless hours and resources are spent in understanding the 
pathophysiology of complex diseases and identifying clinical, genetic, and exposure risk factors 
that influence the risk of prevalent diseases that substantially impact public health such as breast 
cancer, coronary artery disease (CAD), obesity, and type 2 diabetes.  
  
Consequently, estimating the disease risk of patients based on their common genetic variants by 
aggregating the weighted sum of the trait-affected alleles from GWAS into polygenic scores [PGS, 
also known as genetic risk scores (GRS) or polygenic risk scores (PRS)] has gained popularity 
(Wand et al., 2021). PGS provides an opportunity to estimate an individual’s genetic risk (or 
predisposition) for complex diseases or traits. This is set as a non-modifiable lifetime risk and 
could be utilized prior to symptom onset to improve patients’ health by predicting relatively 
modifiable factors such as lifestyle, nutrition, clinical, and other cumulative non-genetic risks that 
may act over multiple years (Torkamani et al., 2018). PGS capture a larger proportion of genetic 
liability than individual SNPs alone and have already been used to identify patients with disease 
risk equivalent to monogenic mutations, predict mortality, identify cases with earlier disease onset, 
and provide evidence for cross-trait associations. Recently, focus and interest have shifted from 
the theoretical application of PGS post hoc in large populations to the implementation of these 
methods for individual patients in clinical practices. Risk models such as BOADECIA for breast 
cancer (Lee et al., 2019) and cardioriskSCORE for CAD include PGS along with other clinical 
risk factors such as family history. Models for cancer risk have been integrated into wider gene 
screening panels such as PGLNext and ColoNext that test a subset of genes to provide cancer-type 
specific testing as a consumer product.  
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We are in a golden digital age for medicine in which individuals have access to their health records 
and genetic data at their fingertips. There is a strong public interest in better understanding personal 
genetics made clear in the various companies that have been founded in the last decade to bridge 
the gap between consumer and clinician. Companies like 23&Me provide genetic insight into trait 
and disease risks, while others focus on aspects of genetics including ancestry, embryo screening, 
fertility, cancer risk, allergy predispositions, diet optimization and weight loss, immune health, 
and cardiovascular event prediction. PGS have become a particular focus area of the health 
technology sector as a means of data-driven disease prevention. Numerous companies are geared 
towards providing genetics-based health risk predictions based on the application of PGS. These 
have been designed not only for the average individual but also for companies looking to build 
wellness incentive programs within their own businesses. Some PGS-focused companies provide 
risk score prediction as a clinical tool or platform for health systems and healthcare providers to 
implement in their clinics and hospitals. The wide scope of commercial applications underscores 
the keen interest in exploring genetic risk prediction. The direct-to-consumer model, however, 
comes with a great responsibility to critically examine the methodology with respect to health 
equity and diversity.  

Despite recent advancements, a number of aspects of PGS require evaluation. PGS generated from 
currently available GWAS typically explain only a small proportion, 2-10%, of trait variation 
(Stringer et al., 2011). Moreover, a disproportionate majority (>78%) of participants in genetic 
studies are of European descent, limiting applications of PGS for many traits to individuals from 
this ancestry only (Sirugo et al., 2019). Also, many questions remain regarding best practices for 
the harmonization of multiple risk factors into clinically relevant models, particularly when 
including genetic factors in non-European populations or in longitudinal cumulative risk 
predictions. 

Consented EHR-linked biobanks provide a vast and continuously growing repository of 
longitudinal data on diverse clinical populations that can fuel clinical, genetic, and epidemiologic 
research. Risk prediction models are not limited to a single phenotype or to a cross-sectional 
analysis of patient health. With the availability of multidimensional genomic and EHR data, 
longitudinal and time-series analyses can be conducted to investigate patient disease trajectories 
(Jensen et al., 2014). Complex genetic diseases often do not present phenotypically in the same 
way, in the same timeframe, in all patients (Woodward et al., 2022). Understanding which types 
of individuals develop certain conditions– and when– is essential for prognostics and disease 
prevention. Moreover, linking phenotypic patterns with genetic underpinnings can improve the 
predictive power of risk models. Such integrated risk prediction could be built upon a variety of 
machine learning methodologies and clinical and genomic data types. This is especially useful for 
understanding both the etiological basis for disease comorbidity and the architecture of disease co-
occurrence (Monchka et al., 2022). Various network and statistical approaches have been applied 
to determine shared genetic components of comorbid conditions and the interactions between 
disease-associated gene products (Barabási et al., 2011). Leveraging longitudinal data in these 
analyses can provide a predictive aspect for disease onset. In addition, other kinds of omics data 
(e.g., transcriptomics, proteomics, metabolomics) can explain variance attributable to genetics as 
well as some lifestyle/environmental factors (Kim et al., 2015). Furthermore, the fact that EHR 
data are collected in real-world clinical settings makes them particularly valuable for research 
aimed at reflecting population diversity. 
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2. Overview of the contributions 
 
The SALUD session keynote talk by Dr. Cooke-Bailey entitled “Pause, Reflect, Redirect: Clinical 
Scalability of Genetic Risk Scores Remains Limited due to Lack of Diversity” will focus on the 
utility of risk scores across disease, model, and scope of genetic data, as well as and what remains 
lacking across the breadth of these approaches in clinical scalability and broad applicability. While 
future GRS and PRS may serve as surrogate measures for disease risk, the current landscape leaves 
much room for improvement in clinical implementation across different ancestral groups. Key to 
realizing the true power of clinical and genetic risk models is intentional focus on improving 
representation of data from populations that have historically been underrepresented in research. 
This session will be focused on the utility of risk scores across several common and complex 
disorders as described briefly below.  

 
One of the goals of precision medicine is to be able to stratify patients based on their genetic risk 
for a disease using GRS to inform future screening and intervention strategies. However, the 
variants used to calculate these scores are often based on European (EUR) ancestry individuals, 
limiting their clinical utility. Study titled “Diversity is key for cross-ancestry transferability of 
glaucoma genetic risk scores in Hispanic Veterans in the Million Veteran Program” by 
Waksmunski et al.  addresses the challenges of applying GRS in complex conditions like primary 
open-angle glaucoma (POAG). POAG disproportionately affects individuals of African and 
Hispanic (HIS) ancestries. This study evaluates the risk stratification performance of POAG GRS 
based on cross-ancestry variants in EUR and HIS individuals. 
  
Abdominal aortic aneurysms (AAA) are common enlargements of the abdominal aorta which can 
grow larger until rupture, often leading to death. Recent large-scale genome-wide association 
studies have identified genetic loci associated with AAA risk. Study titled “Predictive models for 
abdominal aortic aneurysms using polygenic scores and PheWAS- derived risk factors” by 
Hellwege et al. combines known risk factors, PRS, and precedent clinical diagnoses from 
electronic health records (EHR) to develop predictive models for AAA. The resulting models 
improve identification of people at risk of a AAA diagnosis compared with existing guidelines. 
       
Study titled “Quantifying factors that affect polygenic risk score performance across diverse 
ancestries and age groups for body mass index” by Hui and Xiao et al. addresses the challenge of 
limited transferability of PRS across groups that differ in ancestry or sample characteristics. To 
evaluate these factors in the PRS generation process, the authors quantified the effects of ancestry, 
genome-wide association study summary statistics sample size, and LD reference panel on PRS 
performance. This was done using a cross-ancestry and age-specific approach. PRS for body mass 
index (BMI) was generated for this analysis. Furthermore, comorbidities and clinical associations 
in electronic health records with PRS for BMI were explored.    
  
Late-onset Alzheimer’s disease (LOAD) is a polygenic disorder with a long prodromal phase, 
making early diagnosis challenging. PRS leverage combined effects of many loci to predict LOAD 
risk, but often lack sensitivity to preclinical disease changes, limiting clinical utility. Study titled 
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“Resilience polygenic risk score may be sensitive to preclinical disease changes” by Eissman et 
al. generates a resilience phenotype to model better-than-expected cognition given LOAD 
biomarker levels in order to bolster preclinical polygenic risk prediction. The resulting LOAD PRS 
and resilience PRS models together are evaluated for prediction of preclinical disease status among 
dementia-free and biomarker-positive individuals.  
     
3. Conclusion 
 
Developing accurate risk prediction models for disease is one of the main goals of precision 
medicine. The addition of genetic data to these models could enhance their performance. However, 
there are many questions about appropriate implementation, interpretation, and derivation of 
genetic risk prediction models. The studies presented in this session explore these issues by 
combining genetic scores with known risk factors to test the improvement in performance, enhance 
transferability of genetic scores in diverse ancestries, and evaluate the ability of models including 
genetic scores to predict preclinical disease status. This research is essential as we move towards 
incorporating genetic risk prediction models in clinical practice.  
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