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Widespread availability of antiretroviral therapies (ART) for HIV-1 have generated considerable 

interest in understanding the pharmacogenomics of ART. In some individuals, ART has been 

associated with excessive weight gain, which disproportionately affects women of African 

ancestry. The underlying biology of ART-associated weight gain is poorly understood, but some 

genetic markers which modify weight gain risk have been suggested, with more genetic factors 

likely remaining undiscovered. To overcome limitations in available sample sizes for genome-wide 

association studies (GWAS) in people with HIV, we explored whether a multi-ancestry polygenic 

risk score (PRS) derived from large, publicly available non-HIV GWAS for body mass index 

(BMI) can achieve high cross-ancestry performance for predicting baseline BMI in diverse, 

prospective ART clinical trials datasets, and whether that PRSBMI is also associated with change in 

BMI over 48 weeks on ART. We show that PRSBMI explained ~5-7% of variability in baseline 

(pre-ART) BMI, with high performance in both European and African genetic ancestry groups, but 

that PRSBMI was not associated with change in BMI on ART. This study argues against a shared 

genetic predisposition for baseline (pre-ART) BMI and ART-associated weight gain. 
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1. Introduction

1.1.  Many antiretroviral therapies for HIV are associated with weight gain 

There are ~1.2 million individuals in the United States and ~38 million worldwide living with 

HIV-1.1 With >30 FDA-approved antiviral agents for treating HIV-1, many available in 

combination co-formulated tablets, and with long-acting injectable agents now available, HIV is 

now a chronic treatable infection in most patients with access to contemporary antiretroviral 

therapy (ART). However, there remains considerable interindividual variability in HIV treatment 

responses including drug toxicity, immune recovery, and drug-drug interactions. Variable 

responses may be influenced by polymorphisms in drug absorption, distribution, metabolism, and 

Pacific Symposium on Biocomputing 2023

233

mailto:marylyn@pennmedicine.upenn.edu


elimination (ADME) genes and/or off-target genes. Beyond the need to develop novel therapies 

and optimize current therapies are newer priorities which include achieving functional or 

sterilizing cure of HIV and reducing HIV-associated inflammation and immune activation so as to 

prevent end-organ complications. 

Weight gain following ART initiation is common with most modern ART regimens.2 The 

greatest weight gain has been observed in individuals of African ancestry, especially among 

women of African ancestry. While environmental and social factors likely play a role, there is also 

the potential for an underlying genetic predisposition.3 As a few examples among many, it has 

been shown that, among patients who switched from efavirenz- to integrase strand transfer 

inhibitor (INSTI)-based ART, CYP2B6 genotype was associated with weight gain, possibly 

reflecting withdrawal of inhibitory effects of higher efavirenz levels.4 Analyses using Phase 1 

clinical trials data showed that CYP2B6 slow metabolizers who switch from efavirenz to 

dolutegravir will have more prolonged subtherapeutic dolutegravir levels.5 In ART-naïve AIDS 

Clinical Trial Group (ACTG) studies, CYP2B6 slow metabolizers had less weight gain at week 48 

in participants receiving efavirenz with tenofovir disoproxil fumarate (TDF) but not those 

receiving efavirenz with abacavir.4 We previously discovered and replicated an association 

between CYP2B6 15582C→T (rs4803419) and efavirenz Cmin in self-identified Black, Hispanic, 

and white individuals, showed that this single nucleotide polymorphism (SNP) improved 

prediction of efavirenz plasma exposure in individuals living with HIV in South Africa, and 

showed that this polymorphism is associated with decreased plasma nevirapine clearance in 

Asians.6,7 While we and others have identified potential genetic associations with weight gain, a 

large proportion of variation remains unexplained. Given this discrepancy, it is plausible that 

susceptibility to ART-associated excessive weight gain will be affected by each individual’s 

overall genetic predisposition at many genetic loci. 

1.2.  Polygenic risk scores allow for prediction of complex traits such as body mass index 

Polygenic risk scores (PRS) are the cumulative, mathematical aggregation of risk derived from the 

contributions of many DNA variants across the genome. PRS are a powerful technology in the 

field of disease risk prediction and have been shown to be correlated with disease incidence in 

coronary artery disease, type 2 diabetes, atrial fibrillation, breast cancer, schizophrenia, and many 

other traits.8–15  In recent years there have been advances in PRS methodology that incorporate 

diverse ancestry groups, quantitative and qualitative phenotypes, and consider different linkage 

disequilibrium (LD) reference panels.16–19 In addition, PRS and SNP-based heritability estimation 

have been applied to body mass index (BMI) in large biobank populations and genome-wide 

significant SNPs have been shown to explain ~6% of trait interindividual variation in BMI (while 

considering all common SNPs, the estimate is greater than 20%).20,21 When considering the 

underlying genetic predisposition to weight gain in response to ART, is it possible that the 

underlying genetic background for BMI in populations without HIV will also be predictive of 

weight gain in response to ART? In this paper, we explore whether susceptibility to ART-

associated weight gain is influenced by each individual’s overall genetic predisposition to higher 

BMI as reflected by PRS for BMI (PRSBMI) derived from large datasets from populations without 
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HIV. Figure 1 shows an overview of our study design, which is described in more details in 

Methods. 

2. Methods

Fig. 1.  Study Overview 

2.1.  Data and Study Participants 

2.1.1.  GWAS Summary Statistics 

We used publicly available summary statistics from existing genome-wide association studies 

(GWAS) for BMI in European and African ancestry populations. The European ancestry summary 

statistics come from the GIANT consortium’s meta-analysis of ~700,000 individuals of European 

ancestry which contained 2,336,269 SNPs.21 The African ancestry summary statistics come from 

the African American Anthropometry Genetics Consortium’s GWAS of 42,752 individuals which 

included ~18,000,000 variants.22 Both sets of summary statistics were subset to the ~1.1 million 

HapMap3 SNPs included in the PRS-CSx LD reference for the PRS-CSx analysis.18 

2.1.2.  AIDS Clinical Trials Group Data 

These study data are from a retrospective analysis of a clinical trials cohort from efavirenz-

containing arms of prospective, randomized ACTG protocols. Data were from ART-naïve 

individuals who initiated efavirenz-containing regimens in ACTG studies A5095 (NCT00013520), 

A5142 (NCT00050895), and A5202 (NCT00118898) in the United States and consented to 

genetic testing.23–27 All participants provided written informed consent for genetic research and 
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provided DNA for analysis. Drug class components of regimens were randomly assigned 

(efavirenz-based versus comparator) except for nucleoside reverse transcriptase inhibitor (NRTI) 

choice in A5142. Eligible individuals met the following criteria: initial efavirenz-containing 

regimens included TDF or abacavir; available weight data at entry and week 48 (± 4 weeks); >100 

CD4 T-cells/mm3 at baseline and week 48; HIV-1 RNA <400 copies/mL at week 48; and 

available CYP2B6 genotypes. This cohort did not receive INSTIs. The participants’ sex was 

78.4% male (n = 413) and 21.6% female (n = 114). Data on participants’ gender was not available. 

2.2.  Quality Control 

2.2.1.  Genotypic Data 

DNA was extracted from whole blood collected from consenting participants, and DNA extracted. 

Samples were labelled with coded identifiers. Stored DNA was genotyped in seven different 

phases using different genotyping arrays. Phases 1, 2, and 3 were genotyped at the Broad Institute 

with HumanHap650Yv3_A for phases 1 and 2, and Human1M-Duov3_B for phase 3. For phases 

4-7, genotyping was performed at the Vanderbilt Technologies for Advanced Genomics

(VANTAGE) facility using the Human Core Exome chip for phase 4, HumanOmni2.5Exome-8-

v1.1_A1 chip for phase 5, the HumanOmni25-8v1-2_A1 chip for phase 6, and the Illumina

Infinium Multi-Ethnic Global BeadChip (MEGAEX) for phase 7.

Post-genotype quality control was performed by Vanderbilt Technologies for Advanced 

Genomics Analysis and Research Design (VANGARD).  All quality control steps were performed 

using PLINK version 1.9.28 Genotyping efficiency per participant was > 99% for all samples, and 

discordant samples between genotype sex and reported sex were removed from the datasets prior 

to imputation. After quality control steps, each genotyping phase was imputed separately using the 

TOPMed reference panel after transforming to genome build 38 using liftOver and stratification 

by chromosome to parallelize the imputation process.29 The seven imputed datasets were merged 

using PLINK, and we excluded imputed polymorphisms with imputation R2 scores < 0.3, 

genotyping call rates < 95%, or minor allele frequency (MAF) < 0.05.28 Genotype data were 

transformed back to genome build 37 using liftOver to allow compatibility with the PRS-CSx LD 

reference panels. Genetic ancestry was inferred using principal component analysis with 1000 

Genomes as the reference, to assign each participant to a superpopulation of African (AFR), 

Admixed American (AMR), East Asian (EAS), European (EUR), South Asian (SAS), or Other.  

2.3.  Polygenic Risk Score Construction 

2.3.1.  Pruning and thresholding 

A PRS for baseline BMI (PRSBMI) was created using PRSice 2.3.5 (2021-09-20) for LD clumping 

and p-value thresholding with default optimization parameters.17 A multi-ancestry LD reference 

was generated using data from the 1000 Genomes Project.30 Optimal p-value thresholds were 

estimated in a subset of the target data comprising 20% of the total target set (n=105/527) for both 

the European and African ancestry summary statistics. This threshold was then used to calculate 

an EUR-derived PRSBMI and AFR-derived PRSBMI for the remaining 80% of individuals. This 

approach was also used to separately optimize p-value thresholds for predicting BMI change on 

ART. 

Pacific Symposium on Biocomputing 2023

236



2.3.2.  PRS-CSx 

PRS-CSx (version July 29, 2021) was used to construct a multi-ancestry PRSBMI, where both the 

European and African ancestry summary statistics were jointly adjusted by the model using 

default optimization parameters to learn the shrinkage factor.18 The output was then converted to 

risk scores using the PLINK ‘--score’ function as described in the PRS-CSx documentation.28 The 

resulting PRSs were analyzed independently for their performance in each ancestry group and 

were also linearly combined to create a multi-ancestry PRSBMI. A mixing parameter for the 

combined PRSBMI was optimized in a subset of the target data comprising 20% of the total target 

set (n=105/527) and was optimized to minimize the difference in mean PRSBMI between the AFR 

and EUR ancestry groups. The resulting PRSCOMB took the form of PRSCOMB = PRSEUR + 

α*PRSAFR where α is the mixing parameter. 

2.4.  Computational and statistical analysis 

All data analyses were performed using python3, scipy, and pandas in a jupyter notebook.31–33 The 

distribution of PRSBMI scores was compared between ancestry groups to evaluate systematic 

ancestry-dependent trends and biases. Performance of each PRSBMI was evaluated as the R2 value 

of the PRSBMI in the test set against the phenotype of interest (baseline BMI or change in BMI). 

Linear regression was used to calculate a p-value for each PRSBMI. For the pre-ART BMI 

phenotype, we also adjusted for the first 10 principal components, age, sex, and baseline weight in 

our regression and calculated the incremental performance of our PRSBMI by comparing the 

PRSBMI + covariates R2 to the covariates-only model and recorded the p-value for the PRSBMI 

parameter in the PRSBMI + covariates model. For BMI change, we also adjusted for the first 10 

principal components, age and sex, as well as baseline BMI. 
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3. Results

3.1.  PRS-CSx produces a high-performing multi-ancestry PRS for baseline BMI 

Fig. 2.  Distribution of PRSBMI from PRS-CSx in each ancestry group. (A) European-derived PRSBMI 

vs baseline BMI. (B) African-derived PRSAFR vs baseline BMI. (C) Combined PRSAFR + PRSEUR vs 

baseline BMI. (D) Combined PRSAFR + PRSEUR vs BMI change from baseline to week 48 on ART. 

3.1.1.  PRSBMI generated from European summary statistics systematically overestimate BMI 

in African ancestry individuals 

Consistent with other work applying PRS across ancestry groups, the EUR-derived PRSBMI 

(PRSEUR) from PRSice and PRS-CSx both perform best in the EUR ancestry subset of our data 

and have significant performance decreases in other ancestry groups. Before covariate 

adjustment, PRSEUR from PRSice performs better at predicting baseline BMI in EUR than the 

PRSEUR from PRS-CSx, with an R2 of  0.080 versus 0.070. However, the PRSice PRSEUR 

performs very poorly in AFR compared to the PRS-CSx PRSEUR, with R2 in AFR of 0.0032 

and 0.055 respectively. Scatterplots of the PRS vs BMI show that the discrepancy in 

performance is accompanied by a systematic overestimation of AFR BMI in the PRSice 

PRSEUR (Supplementary Figure 1). This trend is also present in the PRS-CSx results (Figure 

1A). Full PRS performance results are provided in Supplementary Table 1. Interestingly, the 

performance of the PRSice PRSEUR in AMR was high, with an R2 of 0.110.  

3.1.2 PRS generated from African summary statistics produces a bimodal distribution 

Similar to the trend in PRSEUR, the AFR-derived BMI PRS (PRSAFR) performs better in the AFR 

ancestry subset of our data, with R2 in AFR of 0.052 and 0.062 for PRSice and PRS-CSx 
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respectively. However, the PRSAFR from PRSice performs much worse in EUR than the PRS-CSx 

one does, with R2 of  0.0063 and 0.034 respectively. In both the PRSice and PRS-CSx results, the 

distribution of PRS varies by ancestry, but the difference is particularly pronounced between AFR 

and EUR, where scores in the AFR population and EUR population from both PRSice and PRS-

CSx are entirely disjoint, with the highest AFR score being lower than the lowest EUR score 

(Figure 1B, Supplementary Figure 1).  

3.1.2.  Linear combination of the European and African PRSBMI improves performance in both 

European and African ancestry populations 

Given that PRSEUR overestimates BMI in AFR compared to EUR and that PRSAFR underestimates 

BMI in EUR compared to AFR, we combined the two PRS additively, tuning a mixing parameter 

such that we minimized the difference in mean combined PRS (PRSCOMB) between the AFR and 

EUR test sets (Table 1). Beyond outperforming both PRSAFR and PRSEUR in AFR test set, the 

PRSCOMB also improves performance in the EUR set. The PRSCOMB also improves performance for 

admixed individuals (AMR) over the PRS-CSx PRSEUR which achieved an R2 0.056. For 

comparison purposes, we explored a similar linear combination of the PRSice scores, but to avoid 

further reducing the sample size, we opted to optimize the combination in the entire test set by also 

minimizing the difference in mean PRS. Despite the possibility of overfitting to the test data, we 

found that this approach resulted in drastically diminished performance in the AFR test set, with 

an R2 of 0.0016. This seems to indicate that linear combination of PRSBMI from pruning and 

thresholding is not as effective for creating an unbiased multi-ancestry PRSBMI. Full PRSBMI 

performance results for predicting BMI in each ancestry group are provided in Supplementary 

Table 1. Additionally, when we adjust our PRSBMI for the first 10 principal components, age, sex, 

and height, the incremental performance of PRS-CSx PRSCOMB on the entire population is greater 

than the incremental performance of the PRSice PRSCOMB with R2 increases of 0.053 and 0.038 

respectively over the covariates alone. Furthermore, we see that the incremental performance of 

the PRS-CSx PRSCOMB is greater than the incremental performance of the single-ancestry PRS-

CSx PRSs (Supplementary Table 2).  

Table 1. Multi-ancestry PRS-CSx PRSCOMB performance for BMI prediction in 

each ancestry group 

Target Ancestry R2 p-value

EUR (n=206) 0.0725 9.1e-5 

AFR (n=128) 0.0795 1.3e-3 

AMR (n=43) 0.0674 0.060 

Multi-ancestry (n=422) 0.0663 8.1e-8 
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3.2.  PRSBMI is not correlated with weight change on antiretroviral therapy 

With our high-performing multi-ancestry PRSBMI from PRS-CSx, we then measured its 

performance in predicting BMI change from baseline to week 48 following initiation of ART. 

Across all ancestry groups, the PRSBMI was not a significant predictor of weight change and had 

small R2 values in all analyses (Table 2). The performance of the other PRSs for BMI change 

prediction can be found in Supplementary Table 3 with concurrent results. When we subsequently 

adjust for the first 10 principal components, age, sex, and baseline BMI, we see negligible change 

in prediction performance or statistical significance (Supplementary Table 4). This evidence 

further supports the conclusion that weight gain following ART shares little to no underlying 

genetic predisposition with baseline BMI.  

4. Discussion

Our work carries interesting implications for the underlying biology of ART-associated weight 

gain and for the application of PRS derived from large population GWAS for predicting 

potentially related traits. First, we were able to successfully construct PRS for BMI (PRSBMI) 

using large, publicly-available GWAS summary statistics for BMI in different ancestry groups. 

We showed that while pruning and thresholding produced higher performance in EUR using the 

EUR summary statistics, PRS-CSx produced a better multi-ancestry PRS, with the exception of 

the AMR population subset, where pruning and thresholding-based combined PRS performed 

higher than any other ancestry or PRS. A larger validation set of AMR individuals will be needed 

to see whether this performance holds, but this could be a consequence of the use of a multi-

ancestry subset of the dataset to tune the p-value threshold. Notably, we also demonstrated that our 

PRSBMI derived from summary statistics from a population without HIV is highly predictive of 

BMI pre-treatment in individuals with HIV. Through the use of PRS-CSx, we were subsequently 

able to create a multi-ancestry PRSBMI that performed very well in both EUR and AFR 

populations. This followed from the peculiar observation that the PRSAFR from both PRSice and 

PRS-CSx showed a disjoint bimodal distribution where PRSAFR is drastically lower in the AFR 

subset of the population. Since PRSEUR tends to overestimate BMI in the AFR subset, the PRSAFR 

can be seen as a “correction factor” for the PRSEUR, increasing scores for EUR and decreasing 

scores for AFR to mitigate the bias. Despite this trend appearing from both PRSice and PRS-CSx, 

PRSice did not produce a very effective multi-ancestry PRS.  

Despite the strong correlation between our PRSBMI and baseline BMI, the PRSBMI was not well 

correlated with BMI change in response to ART, and we did not find statistically significant 

evidence that PRSBMI is associated with BMI change in response to efavirenz-based therapy, even 

when adjusting for covariates including baseline BMI. Our results provide compelling evidence 

Table 2. Multi-ancestry PRSBMI performance for weight change prediction in each 

target ancestry group 

Target Ancestry R2 p-value

EUR (n=206) 0.0085 0.186 

AFR (n=128) 8.97e-07 0.992 

AMR (n=43) 0.020 0.305 

Multi-ancestry (n=422) 0.0073 0.080 
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that an individual’s genetic predisposition based on a common variant PRS for higher BMI may 

not contribute to greater ART-associated weight gain. It is still possible that other genetic models 

and/or low frequency variants not captured by PRS may play a role in ART-associated weight 

gain. Future research on the causes of ART-associated weight gain should explore distinct 

mechanisms beyond our canonical understanding of the genetics of obesity and BMI.  

There are limitations to this work which may have influenced our results. First, our PRSBMI

testing sample size was limited to approximately 500 individuals, and when subdivided by 

ancestry the sample sizes become smaller, limiting our power to find associations between our 

PRS and target traits. As such, it remains a possibility that PRSBMI could be associated with ART-

associated weight gain, but at a smaller effect size than we could detect given our statistical power. 

Additionally, due to particularly small sample sizes of East Asian and South Asian individuals, we 

mostly focused on cross-ancestry performance in EUR, AFR, and AMR populations, as well as in 

the entire population. Finally, it is also worth noting that integrase inhibitor-associated weight gain 

is greater than efavirenz-associated weight gain and that integrase inhibitors are currently the 

preferred initial therapy for most people.  The ACTG cohorts included in this study did not receive 

INSTIs; thus the effect sizes may be larger if this investigation was repeated in a cohort of 

individuals who experienced weight gain after receiving INSTIs. 

Subsequent work in this area could investigate how other covariates may influence BMI 

change. In further exploration of the use of large sample-size GWAS to construct PRS for drug 

response traits, one could study other phenotypes, such as how GWAS for liver function tests 

(such as alanine transaminase (ALT) and aspartate transaminase (AST)) may be predictive of 

adverse liver events, or whether a PRS derived from GWAS for major depressive disorder is 

predictive of neurological effects of ART. These approaches have the potential to leverage large, 

publicly available datasets to generate new discoveries in smaller pharmacogenetic cohorts. As 

more associations or lack thereof are found, we continue to narrow down the likely biological 

causes of adverse drug reactions such as excessive weight gain, bringing us closer to the true 

etiology.  
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