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Federated learning is becoming increasingly more popular as the concern of privacy breaches
rises across disciplines including the biological and biomedical fields. The main idea is to
train models locally on each server using data that are only available to that server and
aggregate the model (not data) information at the global level. While federated learning
has made significant advancements for machine learning methods such as deep neural net-
works, to the best of our knowledge, its development in sparse Bayesian models is still
lacking. Sparse Bayesian models are highly interpretable with natural uncertain quantifi-
cation, a desirable property for many scientific problems. However, without a federated
learning algorithm, their applicability to sensitive biological/biomedical data from multiple
sources is limited. Therefore, to fill this gap in the literature, we propose a new Bayesian
federated learning framework that is capable of pooling information from different data
sources without breaching privacy. The proposed method is conceptually simple to un-
derstand and implement, accommodates sampling heterogeneity (i.e., non-iid observations)
across data sources, and allows for principled uncertainty quantification. We illustrate the
proposed framework with three concrete sparse Bayesian models, namely, sparse regression,
Markov random field, and directed graphical models. The application of these three models
is demonstrated through three real data examples including a multi-hospital COVID-19
study, breast cancer protein-protein interaction networks, and gene regulatory networks.

Keywords: Causal discovery; Distributed computation; Graphical models; Privacy; Sparse
regression.

1. Introduction
Sparse models such as sparse regression and graphical models have been extensively studied
and find numerous applications in biological and biomedical sciences such as biomarker iden-
tification for electronic health records data1 and reverse-engineering gene regulatory networks
for genomic data.2 Sparse Bayesian models not only provide point estimation but also natu-
rally quantify the estimation uncertainty, which facilitates interpretation especially for models
that have moderate to large numbers of parameters. Shrinkage and variable selection priors
have been developed for this purpose including the horseshoe prior,3 the Bayesian lasso,4 the
spike-and-slab prior,5 and the thresholding prior.6 In this article, we study the sparse Bayesian
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models under the federated learning setting where data are distributed across multiple local
sources (called local servers hereafter) and the goal is to perform global inference that pools
information from local servers without breaching the local data privacy. Typical application
includes privacy-preserved analyses of electronic health records data across multiple hospitals
or medical centers where data may be limited in size in each site (hence independent anal-
ysis in each site would lack statistical power) but cannot be shared across sites due to the
sensitivity of protected health information.

Federated learning is an emerging area and finds many applications especially in health.7–9

Essentially, the idea is to train models locally on each server using data that are only available
to that server and then send model information (instead of any private data) to a central server
for aggregation. The central server subsequently sends the aggregated model information back
to local servers. The exchange of information between the central and local servers can be an
iterative process depending on the communication cost and the design of the federated learning
algorithm.10 Another interesting line of federated learning research considers heterogeneous
scenarios where the data distributions may be different across local servers.11 In general,
methods developed for federated learning could be applied for distributing computational
tasks on massive data, but the opposite is not true as distributed computing does not generally
preserve privacy of the local data.

This article particularly focuses on Bayesian methods, which typically provide more natu-
ral uncertainty quantification than the frequentist counterpart. Bayesian inference, however,
often requires running a long Markov chain Monte Carlo (MCMC) algorithm to achieve prac-
tical convergence, which can be time-consuming. Therefore, Bayesian distributed computing
has been developed to improve the computational efficiency through parallelization. One such
line of research is so-called consensus Monte Carlo for which MCMC is run on each local server
without communication among the servers and the Monte Carlo samples are only aggregated
at the end.12–18 Intuitively, the idea is to divide the posterior into separate sub-posteriors
to be computed on each local server; then the research question becomes how to effectively
combine these local chains into a single posterior. However, in many situations (e.g. the local
data being heterogeneous or highly non-Gaussian), consensus Monte Carlo may not have good
empirical performance,19 but work is continuing to attempt to overcome these issues.20 There
are also methods that run multiple chains with somewhat frequent communication during
the course of MCMC.19,21,22 These methods are potentially useful for federated learning but
require carefully crafted MCMC methods to protect privacy. Another line of research involves
using a distributed version of stochastic gradients within Langevin Dynamics (i.e., Langevin
Monte Carlo),23 which subsamples each local dataset for gradient approximation. In fact, mul-
tiple methods have applied the distributed stochastic gradients idea to federated learning.24,25

However, gradient does not exist for discrete parameters such as variable selection indicators
in sparse models, which is the main focus of this article. Lastly, Bayesian neural networks have
seen recent advancements in the federated learning setting where the aggregation is achieved
through fitting parametric or nonparametric models to local network parameters.26,27 While
useful for neural networks, it is not straightforward to extend their methods to other models
including sparse models such as sparse regression and graphical models.
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Our paper demonstrates how basic MCMC algorithms can be used within the federated
learning setting by reformulating the model and adding an explicit layer for pooling the local
models. As the order of MCMC updating steps can be interchanged, the communication
between local servers and the global server can be reduced by running multiple local steps
per global aggregation. Through multiple sparse models and real data examples, we show the
simplicity and broad applicability of the proposed method.

2. Method
2.1. Overall Framework
We first introduce the proposed federated learning framework for Bayesian models. Later, we
will provide several concrete examples illustrating the application of the proposed framework
to three specific sparse Bayesian models – sparse regression, Markov random field, and directed
graphical models.

Let D1,D2, . . . ,DM denote M datasets and let D = {D1, . . . ,DM} be the collection of all
datasets. If they are available on the same computing server (i.e., under the non-federated
learning setting) and if they are independent and identically distributed (iid), then a single
probability model can be used to model D, D ∼ P (D|θ) =

∏M
k=1 P (Dk|θ), which is schemat-

ically represented by a directed acyclic graph in Figure 1(a). However, this model has two
obvious downsides under the federated learning setting: (i) Dk is only available on the local
server k = 1, . . . ,M and cannot be shared with other servers due to privacy concerns, etc; and
(ii) D1, . . . ,DM may not be iid. A naive approach to address these two concerns is to consider
M independent probability models (Figure 1(b)), one for each local server, Dk ∼ P (Dk|θk).
This approach does not provide a joint inference across datasets, which can result in sta-
tistically inefficient inference and poor interpretation of model parameters. To provide joint
inference while preserving privacy, federated learning approaches have been developed. For
example, one may aggregate the estimates of θ1, . . . , θM using some deterministic function
θ = f(θ1, . . . , θM ) such as average for continuous parameters and majority vote for discrete
parameters. Such deterministic approach is often ad hoc (e.g., lack of finite-sample theoretical
justification) and generally does not propagate estimation uncertainty from local parameters
θ1, . . . , θM to the global parameter θ. In this article, we will instead consider a probabilis-
tic aggregation approach, which overcomes all the aforementioned limitations. The proposed
approach is conceptually simple and natural for Bayesian models. Consider the following hi-
erarchical model, for k = 1, . . . ,M ,

Dk ∼ P (Dk|θk), θk ∼ P (θk|θ), θ ∼ P (θ).

Given appropriate choices of P (θk|θ) and P (θ) (to be discussed later), this conceptually simple
hierarchical model provides a principled recipe to probabilistically aggregate local informa-
tion through the posterior distribution P (θ|θ1, . . . , θM ) ∝ P (θ)

∏M
k=1 P (θk|θ), which directly

provides point and interval estimation of θ through e.g., the posterior mean and the credible
interval. Algorithmically, by exploiting the conditional independence of θk and D−k given θ

(subscript “−k” means removing Dk from D), the computation is trivially parallelizable at the
local level and no data ever need to be passed to the global server, hence preserving privacy;
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see Figure 1(c). In Algorithm 1, we outline the federated learning MCMC pseudocode, which
highlights the local parallelizability and privacy protection (there is no data sharing, and the
shared parameters are not observation-level parameters).

The aggregation via the posterior distribution depends crucially on the choices of the prior
distribution of local parameters given the global parameter P (θk|θ) and the prior distribution
of the global parameter P (θ). Three properties are deemed desirable: (i) P (θk|θ) should en-
courage θk to tightly concentrate around θ so that θ can be interpreted as a global version of
local server-specific parameters θ1, . . . , θM , (ii) P (θk|θ) should also allow occasional deviation
of θk from θ if Dk strongly supports it, which accommodates non-iid scenarios, and (iii) P (θ)

should encourage sparsity in θ for better model interpretability. To make the discussion con-
crete, we now consider three specific sparse Bayesian models. For ease of exposition, we start
with a sparse regression model.

Fig. 1: Illustration of (a) a single model, (b) independent models, and (c) a federated model. The
arrows represent the direct dependencies among the variables. The federated model has three levels:
global, intermediate, and local. The parameters at the intermediate level are passed from local servers
to the global server whereas the data never leave the local servers.

2.2. Example 1: Federated Sparse Regression
2.2.1. Sparse Regression
Let Dk = (Xki, Yki)

nk

i=1 for k = 1, . . . ,M denote the local server-specific dataset with nk obser-
vations where Xki = (Xki1, . . . , Xkip)

T is p-dimensional covariate vector and Yki is the response
variable for i = 1, . . . , nk. Consider the following server-specific regression model,

Yki = XT
kiθk + ϵki, (1)

for k = 1, . . . ,M and i = 1 . . . , nk, where θk = (θk1, . . . , θkp)
T is the regression coefficient vector

and ϵki ∼ N(0, σ2
k) is a normal error term. For simplicity, we do not make joint inference on σ2

k

as the parameter of interest of a regression model is typically the regression coefficient θk; but



Algorithm 1 General Algorithm
Input: Dk and hyperparameters
Output: Monte Carlo samples of θ1, . . . , θM and θ

Initialize θ(0) on the global server
for t in 1, . . . , T do ▷ MCMC iterator

parfor k in 1 . . . ,M do ▷ Parallel for-loop
Send the global parameter θ(t−1) to local server k

Sample θ
(t)
k |Dk,θ

(t−1) ∼ P (θk|Dk,θ
(t−1)) on local server k ▷ Local Update

Send θ
(t)
k to the global server

end parfor
Sample θ(t) ∼ P (θ|θ(t)

1 , . . . , θ
(t)
M ) on the global server ▷ Global Aggregation

end for

if desired, our method can be easily extended for joint inference of σ2
k. In many applications,

not all covariates are predictive of the response variable and, correspondingly, θk is assumed
to be sparse, i.e., most of the entries θk are zero or very close to zero.

2.2.2. Prior
We now specify the prior distributions P (θk|θ), P (θ), and P (σ2

k). To achieve the fist two
desired properties outlined at the end of Section 2.1, we impose an element-wise mean-shifted
horseshoe prior for θk, which is centered around the global parameter θ,

θkj |θj ∼ N(θj , λ
2
kjτ

2
j ),

λkj , τj ∼ C+(0, 1),

where C+(0, 1) is the standard half-Cauchy distribution. The mean-zero horseshoe prior28,29

has been extensively studied in the sparse regression model, which is capable of shrinking
small coefficients aggressively towards zero while leaving large coefficients untouched. Our use
of mean-shifted horseshoe prior aggressively shrinks local parameter θkj towards the global
parameter θj but still allows substantial deviation if data dictates so.

To encourage sparsity, we assume a spike-and-slab prior5 on the global parameter with a
beta-Bernoulli hyperprior,

θj |γj ∼ γjN(0, ηj) + (1− γj)N(0, c0ηj),

γj ∼ Bernoulli(ρ), ρ ∼ beta(aρ, bρ),

where c0 is fixed small constant (e.g., 0.01) and γj is a binary indicator variable, which equals
1 if θj is significantly away from 0 and equals 0 if θj is so small that it can be safely treated
as zero without affecting the model fit. The prior specification is completed with conjugate
inverse-gamma priors for variance parameters σ2

k ∼ IG(aσ, bσ) and ηj ∼ IG(aη, bη).
In summary, the local horseshoe prior shrinks local parameters towards the global param-

eter (i.e., the aggregation) and the global spike-and-slab prior induces sparsity.
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2.2.3. MCMC
We expand the “Local Update” and the “Global Aggregation” steps of Algorithm 1 for sparse
regression model in Algorithms 2 and 3, respectively. Note that for the sampling of horseshoe-
related parameters, we utilize the parameter expansion technique.30 Also note that one can
opt to run multiple local update steps per each global aggregation due to the standard Markov
chain theory; see the for-loop in Algorithm 2.

Algorithm 2 Local Update for Sparse Regression
for ℓ in 1, . . . , L do

Sample νkj ∼ IG(1, 1 + λ−2
kj ) ▷ Parameter Expansion30

Sample λ2
kj ∼ IG

[
1, ν−1

kj + (θkj − θj)
2/(2τ2j )

]
Sample θk ∼ f(θk) ∝

∏nk

i=1N(Yki|XT
kiθk, σ

2
k)

∏p
j=1N(θkj |θj , λ2

kjτ
2
j )

Sample σ2
k ∼ IG(aσ + nk/2, bσ +

∑nk

i=1(Yki −XT
kiθk)

2/2)

end for

Algorithm 3 Global Aggregation for Sparse Regression
Sample ξj ∼ IG(1, 1 + τ−2

j ) ▷ Parameter Expansion30

Sample τ2j ∼ IG
[
(M + 1)/2, ξ−1

j +
∑M

k=1(θkj − θj)
2/λ2

kj

]
Sample θ ∼ f(θ) ∝

∏p
j=1

[
N(θj |0, c1−γj

0 η)
∏M

k=1N(θkj |θj , λ2
kjτ

2
j )
]

Sample η ∼ IG
[
aη + p/2, bη +

∑p
j=1 θ

2
j/c

1−γj

0

]
Sample γj ∼ Bernoulli(qj) with qj =

ρN(θj |0,η)
ρN(θj |0,η)+(1−ρ)N(θj |0,c0η)

Sample ρ ∼ beta(aρ +
∑p

j=1 γj , bρ + p−
∑p

j=1 γj)

2.3. Example 2: Federated Markov Random Field
The sparse regression model in Section 2.2 can be extended to the sparse Gaussian Markov ran-
dom field model (also known as the Gaussian graphical model), which can also be worked out
in a federated learning setting. Let Dk = (Y ki)

nk

i=1 for k = 1, . . . ,M where Y ki = (Yki1, . . . , Ykip)
T

is a random vector whose conditional independence relationships are of interest. We assume
a centered multivariate Gaussian distribution,

Y ki ∼ N(0,Ω−1
k ), (2)

with precision (inverse covariance) matrix Ωk = [ωkjh]
p,p
j=1,h=1. If ωkjh = 0, then Ykj and Ykh

are conditionally independent given all the other variables. Often, such conditional indepen-
dence relationships are represented by an undirected graph/network where nodes represent
the random variables and two nodes are connected j − h by an undirected edge if and only if
ωkjh ̸= 0. Interestingly, Gaussian Markov random field is closely related to sparse regression,
which leads to the so-called neighborhood selection method.31 Note that the joint distribution
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(2) implies the conditional distribution of Ykij given all the other variables,

Ykij = Y T
ki,−jθkj + ϵkij , (3)

with θkj = −Ωk,−j,j/ωkjj and ϵkij ∼ N(0, ω−1
kjj), which is exactly a regression model with re-

sponse Ykij and covariates Y ki,−j. Therefore, ωkjh = 0 if and only if θkjh = 0. Consequently,
estimating a sparse precision matrix Ωk reduces to estimating the set of sparse regression
coefficient for p independent regressions. Hence, the proposed federated learning algorithm
for sparse regression can be applied in parallel to (3) for j = 1, . . . , p. One caveat is that the
neighborhood selection method has no guarantee of the symmetry of Ωk but simple post-
processing procedures based on union or intersection can be used to obtain a consensus undi-
rected graph.31

2.4. Example 3: Federated Directed Graphical Models
Markov random field is useful for investigating symmetric association but cannot be used to
identify causal relationships, which are asymmetric (cause and effect are not exchangeable).
Directed graphical models32,33 are popular tools for discovering causality (i.e., generating plau-
sible causal hypotheses in an exploratory fashion). Consider the following structural equation
model,34,35

Y ki = Y kiθk +Eki, (4)

where θk = [θkjh]
p,p
j=1,h=1 is the causal effect matrix and Eki = (ϵki1, . . . , ϵkip)

T ∼ N(0,Σki) is
the normally-distributed error vector with diagonal covariance Σki. Under the causal Markov
assumption,32,33 we say Ykh is a direct cause of Ykj if θkjh ̸= 0, which can be represented by
an arrow j ← h in a directed graph/network. The error distribution induce a distribution for
Y ki,

Y ki ∼ N(0, (I − θk)
−1Σki(I − θk)

−T ),

where I is a p × p identity matrix. Note that for observational data, the causal relationships
may not be identifiable due to Markov equivalence. To ensure identifiability, various methods
have been developed. As an example, we take advantage of the non-Gaussianity for causal
identifiability.36 Specifically, we assume each diagonal entry of Σki to be exponentially dis-
tributed, which induces a marginal Laplace distribution for ϵkij for j = 1, . . . , p. We remark
that the popular causal discovery method, Bayesian network, is a special case of the directed
graphical model considered here by restricting the graph to be acyclic. Because biological sys-
tems tend to have feedback loops, we do not make such restriction. The price to pay is that we
lose conjugacy but the proposed federated learning framework is still applicable with a minor
tweak: replace the Gibbs sampling of θk in Algorithm 2 by a Metropolis step. Specifically, we
propose a new value θ⋆

k from some proposal density q(·) such as normal, which could depend
on the value of θk from the last iteration. Then we accept θ⋆

k with probability min(1, a) with

a =
q(θk)N(0, (I − θ⋆

k)
−1Σki(I − θ⋆

k)
−T )

∏
j ̸=hN(θ⋆kjh|θjh, λ2

kjhτ
2
jh)

q(θ⋆
k)N(0, (I − θk)−1Σki(I − θk)−T )

∏
j ̸=hN(θkjh|θjh, λ2

kjhτ
2
jh)

.
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3. Numerical Studies
We demonstrate the proposed methods with three real data examples. Simulation results are
provided in the Supplementary Materials https://www.dropbox.com/s/5cl1ag92otaos54/
kidd_supp.pdf?dl=0.

3.1. Johns Hopkins COVID-19 Data - Federated Sparse Regression
COVID-19 (a coronavirus) has been a recent pandemic receiving a great amount of atten-
tion worldwide. We analyze the COVID-19 clinical data electronically recorded in four Johns
Hopkins’ hospitals (i.e., M = 4). Each hospital provides 100-150 patients, leading to a total
sample size of 552. Due to the sensitive protected health information, data cannot be easily
shared across hospitals for the purpose of statistical analyses but local computation within
each hospital is feasible. Therefore, this data provide an excellent opportunity to illustrate
the practical utility of the proposed federated learning method.

An important marker for COVID-19 is the arterial oxygen saturation (SaO2, our response
variable), which, unfortunately, is difficult to measure. Instead, because of its non-invasiveness,
the peripheral oxygen saturation (SpO2, our main covariate) is often used as a proxy measure-
ment for SaO2. We will apply the federated sparse regression model to the Johns Hopkins data
to examine the association between SpO2 and SaO2 in COVID-19 patients while adjusting for
eight variables commonly collected at doctors visits: temperature in Celsius (Temp_C), mean
arterial pressure (MAP), gender, age, and race, hemoglobin count (HGB), bilirubin levels, and
creatinine levels. Dummy variable coding is used for gender (Male) and race (Race_b (Black),
Race_h (Hispanic), Race_a (Asian)).

We run the federated learning algorithm with T = 1000 global aggregation and L = 100

local updates per each global aggregation. We report the posterior mean of θ and posterior
inclusion probability (PIP) in Table 1. PIP is defined as the posterior mean of γj and a large
value indicates high significance of Xj. As expected, SpO2 is the most significant predictor of
SaO2 with PIP=0.777, which demonstrates that the proposed federated sparse regression has
the potential to identify important variable by pooling information from multiple local servers
without breaching privacy.

3.2. Breast Cancer Protein-Protein Interaction Networks - Federated Markov Random
Field

Breast cancer is one of the most prevalent types of cancer, affecting over 5% of women in the
United States throughout their lives. Since cancer is a genetic disease, modern treatment of
breast cancer relies heavily on the fundamental understanding of genetic architecture of breast
cancer tissues. Therefore, it is crucial to understand genetic networks at different levels such
as gene and protein levels. In this section, to demonstrate federated Markov random field, we
consider a Reverse Phase Protein Array data from the The Cancer Proteome Atlas.37 Protein
expression data are extracted from 7 sites with over 50 observations (the biggest site has 149
observations). We focus our analysis on p = 11 breast cancer-related proteins.38 We reported
PIP of all pairs of proteins in Figure 2(a) with darker color corresponding to higher PIP. The
most significant interaction, STK11 and CDKN1B, is biologically plausible as STK11 is known
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Table 1: COVID-19 data

Covariate θ PIP
SpO2 0.673 0.777
Age -0.002 0.032

MAP 0.006 0.048
Temp_C 0.152 0.306

HGB 0.029 0.123
Bilirubin -0.013 0.157

Creatinine -0.017 0.090
Male 0.013 0.142

Race_b -0.003 0.216
Race_h -0.007 0.178
Race_a -0.037 0.217

CASP8

CDKN1B1

CDKN1B2

CDKN1B3

CCND1

CCNB1

CCNE1

ARAF1

ARAF2

RAF14

STK11

CA
SP
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1B
2
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1
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1

AR
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1
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AF

2

RA
F1
4

ST
K1

1

(a) Protein-protein interaction network (b) Gene regulatory network

Fig. 2: Breast cancer genetic networks.

to phosphorylate CDKN1A39 and CDKN1A and CDKN1B belong to the same family of CDK
inhibitor. The next most significant association is between CDKN1B1 and CDKN1B2, which
is also not surprising given they are the variants of the same protein CDKN1B. As we noted
before, Figure 2(a) is not symmetric due to the artifact of neighborhood selection.31 It can be
symmetrized if desired by taking the maximum or minimum of PIP for each pair of pairs.
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3.3. Breast Cancer Gene Regulatory Networks - Federated Directed Graphical Models
To demonstrate federated directed graphical models, we consider the breast cancer gene ex-
pression data obtained from the Genomic Data Commons project of the National Cancer
Institute.40 The consortium hosts data generated from over 45 different sites. We restrict our
analysis to the 10 sites with over 50 observations, leading to total sample size 901 with the
largest site having 227 observations and two others having over 100 observations each.

We focus our analysis on the WNT/β-catenin signaling pathway known to be critical
for breast cancer development.41 Particularly, p = 16 genes emphasized in the recent review
paper41 are considered. We present the estimated gene regulatory network in Figure 2(b)
where Bayesian false discovery rate control42 is used to threshold the PIP to obtain the sparse
network.

Some feedback loops are interesting. For example, DVL1 is known to inactivate AXIN1,
but our analysis also shows a direct feedback from AXIN1 to DVL1, which requires further
experimental validation. In addition, the regulatory relationship from CTNNB1 to MMP7 also
matches the existing biological knowledge that MMP7 is a downstream effect of CTNNB1.43

4. Discussion
We have brought sparse Bayesian models into the realm of federated learning. The proposed
method is conceptually simple and allows for data heterogeneity (i.e., non-iid observations) and
proper uncertainty quantification. By switching the MCMC order and updating local models
multiple times between global server updates, we manage to the limit the communication cost
while maintaining theoretical convergence (as MCMC eventually converges regardless of the
update order). Through real data examples, we show the applicability of the proposed method
for sparse regression, Markov random field, directed graphical models.

There are several future directions. First, we have only considered linear models for both
regression and graphical models. Nonlinearity can be incorporated by spline basis expansion.44

Second, some variables may not be measured in certain sites. By pooling the covariance
information together through federated learning, one can impute these missing variables under
the missing at random assumption. Preliminary simulations (not shown) support this idea.
Third, we have focused on the federated learning setting where there is a central server. It
would be interesting to extend our current approach to the scenarios where there is no central
server and only pairwise direct communication among local serves is possible.
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