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Identifying effective target-disease associations (TDAs) can alleviate the tremendous cost
incurred by clinical failures of drug development. Although many machine learning models
have been proposed to predict potential novel TDAs rapidly, their credibility is not guaran-
teed, thus requiring extensive experimental validation. In addition, it is generally challeng-
ing for current models to predict meaningful associations for entities with less information,
hence limiting the application potential of these models in guiding future research. Based on
recent advances in utilizing graph neural networks to extract features from heterogeneous
biological data, we develop CreaTDA, an end-to-end deep learning-based framework that
effectively learns latent feature representations of targets and diseases to facilitate TDA
prediction. We also propose a novel way of encoding credibility information obtained from
literature to enhance the performance of TDA prediction and predict more novel TDAs
with real evidence support from previous studies. Compared with state-of-the-art baseline
methods, CreaTDA achieves substantially better prediction performance on the whole TDA
network and its sparse sub-networks containing the proteins associated with few known dis-
eases. Our results demonstrate that CreaTDA can provide a powerful and helpful tool for
identifying novel target-disease associations, thereby facilitating drug discovery.

Keywords: target-disease association, graph neural network, credibility information, drug
discovery.

1. Introduction

The development of a drug generally takes more than five years and costs more than $4.5

billion,27 with most of the resources sunk into clinical failures that happen at later stages
of drug development.11 To alleviate the massive cost of drug development, it is crucial to
determine credible (i.e., to identify plausible drug targets for a specific disease) at the beginning
of the drug development process.

Based on the latent feature representations and similarities between targets and diseases
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learned from sufficient data, machine learning (ML) models can “predict” potential target-
disease associations (TDAs) useful for future studies. For example, a range of ML classifiers
trained based on TDA data from the Open Targets platform have been used to predict novel
TDAs.12 A tensor factorization method has also been proposed to reconstruct a drug-target-
disease network by integrating drug-drug, target-target, and disease-disease similarity matrices
as multi-view auxiliary networks.4 However, the underlying Tucker tensor model generally
suffers from linearity and data sparsity,5 thus undermining its prediction capacity.

Graph neural networks (GNNs) are nonlinear ML models that generalize convolutional
neural networks (CNNs) to graph/network data,10 combined with information passing and
aggregation techniques.13 Moreover, recent advances in generalizing GNNs to heterogeneous
network (HN) data have brought considerable performance improvement.15,28,32 Since the re-
lation prediction tasks such as target-disease association (TDA) prediction can be viewed as
link prediction on networks of biological data, GNNs can theoretically be utilized as high-
capacity models for these tasks. Indeed, NeoDTI, a GNN that predicts DTIs from an HN,
outperformed state-of-the-art DTI prediction models under several challenging and realistic
scenarios.30

Nevertheless, these machine learning methods still have the following two shortcomings:
First, human labor is generally needed to verify the prediction results by searching for

supporting evidence from literature or conducting wet-lab experiments. Without a gauge of
the credibility of these predictions, the amount of human effort needed in these analyses would
be daunting, undermining the level of autonomy of the prediction pipeline and thus failing to
address the lengthiness and costliness problem of drug development.

Second, exposure bias may heavily influence model performance. Exposure bias is a phe-
nomenon in recommendation systems where users are only exposed to a part of specific items
so that the unobserved interactions do not always represent the negative preferences.6 In such
a scenario, models are inclined to predict more relations between entities with more avail-
able information. However, the failure to produce meaningful predictions for entities with less
information restricts the application potential of the models in guiding future research. More-
over, it is generally more difficult for the models to learn the latent feature representations of
entities with less information, hence undermining their overall prediction performance.

In this paper, we propose CreaTDA (CRedibility-Encoding grAph neural network for TDA
prediction), an end-to-end deep learning-based framework, to perform TDA prediction. In
addition to exploiting the structured heterogeneous data in the form of biological networks,
CreaTDA fully takes advantage of unstructured data in the form of entity co-occurrence in the
literature, which encodes the credibility of the interactions/associations between entities. We
showed that CreaTDA (i) achieved superior performance over baseline models on the TDA
prediction task and (ii) generated novel predictions with higher credibility and more literature
support, and (iii) exhibited robustness to the effect of exposure bias. These results suggested
that CreaTDA can provide a helpful tool for drug target identification and benefit the whole
drug development process.
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Fig. 1. Overview of CreaTDA. CreaTDA uses a graph neural network to (a) obtain node em-
beddings from individual biological networks that encode the network topology. CreaTDA further
encodes credibility by (b) computing entity co-occurrence counts in the PubMed database and then
transforming these raw counts into co-occurrence-dependent (c) soft labels (Eq. 3) and (d) penalty
weights (Eq. 4). (e) CreaTDA reconstructs the credibility-encoding networks containing the soft
labels by minimizing a weighted square-error loss derived based on the penalty weights (Eq. 5).

node embedding function f0 : V → Rd maps each node to an initial node embedding, and an
edge embedding function m : E → R maps each edge e ∈ E to a corresponding value in the
network, which can be represented as an adjacency matrix. The information av of node v ∈ V
is then aggregated from its neighborhood as follows:

av =
∑

r∈R,u∈Nr(v)
e=(u,v,r)∈E

m(e)

Zv,r
(Wrf

0(u) + br), (1)

where Nr(v) = {u|u ∈ V, u 6= v, (u, v, r) ∈ E} denotes the nodes connected to v ∈ V via an edge
of type r ∈ R, which are also defined as the “r-neighbors of v.” Wr ∈ Rd×d, br ∈ Rd denote the
model parameters depending only on the edge type, and Zv,r =

∑
u∈Nr(v),e=(u,v,r)m(e) denotes

a normalization term. In CreaTDA, f0 is initialized as a truncated normal sampler with mean
0, standard deviation 0.1, minimum cutoff value −0.2, and maximum cutoff value 0.2.

In other words, for each edge-type r, the embeddings of the r−neighbors of v are passed
through a linear transformation and then weighed by the normalized edge weights m(e)

Zv,r
. After

that, the results over all edge types are summed.
Definition 3 (Node embedding updating) Using av obtained from Eq. 1, the initial embed-
dings f0(v) are updated as follows:

f1(v) = g(ReLU(W 1(f0(v)‖av) + b1)), (2)

where “‖” denotes the concatenation operation, ReLU(x) = max{0, x}, g(·) denotes the `2
normalization operation, and W 1 ∈ Rd×(2d) and b1 ∈ Rd denote global parameters shared by
all nodes.

For each node v, its neighborhood information and initial embedding both contribute to
its updated embedding, thus allowing the network topology information to be encoded.
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2.2.2. Reconstructing the credibility-encoding networks

We seek to improve the credibility of the predicted TDAs, i.e., the reproducibility of the results
indicating the TDAs, by encoding credibility information into the CreaTDA framework, such
that credibility can be learned as part of the latent feature representations of nodes. While
the credibility of an interaction/association is elusive to quantify, it can be reflected by the
abundance of literature documenting this interaction/association, which can be approximated
by the quantity of literature in which the two interacting/associated entities both appear.

We curated about three million papers in the PubMed database maintained by the
United States National Library of Medicine (NLM).23 The number of papers that a drug-
protein, protein-disease, or drug-disease pair co-occurs in was computed by sub-string
matching using the Trie hashing algorithm (see Supplementary Information for more de-
tails). These co-occurrence counts were then organized into co-occurrence matrices Cr, r ∈
Rc = {drug-protein, protein-disease, drug-disease}, where Cr[i, j] represents the number of co-
occurring papers for entities i and j associated with edge-type r. We assumed that Cr[i, j] is
positively correlated with the credibility of the interaction/association between entities i and
j. Hence, by incorporating Cr into CreaTDA, the notion of credibility can be introduced.

Here, we formally describe a method of integrating Cr into the CreaTDA framework. We
first give mathematical definitions of the key terms used:
Definition 4 (Co-occurrence-dependent soft label) For an edge e = (i, j, r) of edge-type r ∈ Rc

between entities i and j, its soft label is defined as:

l(e) = σ(Cr[i, j] + α) ·m(e) (3)

where α stands for a hyperparameter, σ(x) = 1
1+e−x , and m(e) represents the edge embedding

function defined in Eq. 1.
Definition 5 (Co-occurrence-dependent penalty weight) For an edge e = (i, j, r) of edge-type
r ∈ Rc between entities i and j, the penalty weight of the reconstruction loss of e is defined as:

w(e) = σ(Cr[i, j] + β) ·m(e) + (1−m(e)) (4)

where β stands for a hyperparameter and m(e), σ(x) are the same as defined in Eq. 3.
In the implementation of CreaTDA, α and β are set to ln 3 and 0, respectively, as they

yielded the best performance according to the cross-validation results (Section 3.1).
The information in Cr is then incorporated in the network reconstruction step to encode

the credibility information of TDAs:
Definition 6 (Credibility-encoding network reconstruction) For the parameter set Θ =

{f0,Wr, br, Gr, Hr,W
1, b1}, the optimization objective of CreaTDA is:

min
Θ

∑
r∈R\Rc

∑
u,v∈V

e=(u,v,r)∈E

(m(e)− f1(u)TGrH
T
r f

1(v))2 (5)

+
∑
r∈Rc

∑
u,v∈V

e=(u,v,r)∈E

w(e)(l(e)− f1(u)TGrH
T
r f

1(v))2,

where m(e) denotes the edge embedding function (Eq. 1), w(e) denotes the co-occurrence-
dependent penalty weight (Eq. 4), l(e) denotes the co-occurrence-dependent soft label (Eq.
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3), and Gr, Hr ∈ Rd×k denote the edge-type specific projection matrices. In the implemen-
tation of CreaTDA, the `2-regularization terms on f0,Wr, Gr, Hr, and W 1 are also summed.
In addition, if r ∈ {drug-drug-structure-similarity, protein-protein-sequence-similarity, drug-
drug-interaction, protein-protein-interaction}, where the corresponding adjacency matrix is
symmetric, the constraint Gr = Hr is imposed to enforce such a symmetry.

The network reconstruction step projects the node embeddings f1(·) onto the edge-type-
specific vector spaces such that the matrix products of the projected vectors best match the
corresponding individual networks. Notably, the credibility information is not introduced for
the negative interactions/associations in the HN, that is, when m(e) = 0, l(e) and w(e) are set
to 0 and 1 (Eqs. 3 and 4), respectively, thus preventing the potential data leakage problem
during the cross-validation process.

2.3. Ablation studies

To show that the integration of Cr into the CreaTDA framework is necessary for achieving
better performance, we developed four models as the control in our ablation studies to nullify
the credibility information encoded in the labels and/or weights: CreaTDA og (no credibility
encoded), CreaTDA rl (random soft labels), CreaTDA rw (random penalty weights), and
CreaTDA rlrw (both random soft labels and random penalty weights). More details about
the mathematical definitions of these control models can be found in the Supplementary
Information.

3. Results
3.1. CreaTDA yields superior performance in predicting target-disease

associations

While the objective of CreaTDA is to reconstruct the HN, TDA prediction can be considered
a binary classification task (i.e., whether an association exists or not). Though we used the
modified labels for the optimization objective (Eq. 5), we still measured the prediction per-
formance in terms of the area under the precision-recall curve (AUPR) and the area under
the receiver operating characteristic curve (AUROC), using the original binary TDA labels
as ground truth. We observed that the ratio between the numbers of “1”- and “0”-entries in
the network is 0.232, suggesting data imbalance. As stated in previous works, AUPR gener-
ally presents a more informative metric than AUROC on the performance of models on those
imbalanced datasets.9,26

Table 1. Cross-validation results, measured in terms of AUROC and AUPR, 
in the form of “mean ± standard deviation” over ten rounds of entry-wise 
cross-validation and cluster-wise cross-validation (Section 3.1), respectively. 
The results where CreaTDA outperformed all baseline methods are presented 
in boldface.

GTN RGCN HGT DTINet CreaTDA
Entry-wise cross-validation

AUROC 0.953± 0.002 0.974± 0.001 0.950± 0.002 0.859± 2e-5 0.986± 2e-4
AUPR 0.822± 0.017 0.915± 0.004 0.846± 0.006 0.658± 1e-5 0.967± 5e-4

Cluster-wise cross-validation
AUROC 0.725± 0.003 0.738± 0.014 0.569± 0.012 0.815± 0.007 0.814± 0.007
AUPR 0.397± 0.004 0.332± 0.013 0.211± 0.006 0.503± 0.018 0.516± 0.016

We performed five-fold cross-validation, during which we conducted a random stratified
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splitting on the entries of the TDA matrix, which were divided into five folds, preserving the
global positive-to-negative ratio as much as possible in each fold. For each of the five iterations,
we sequentially chose one fold as test data and sampled 10% of the remaining four folds as
validation data for hyperparameter tuning (the remaining 90% formed the training set). We
refer to this cross-validation scheme as entry-wise cross-validation.

We computed the average AUROC and AUPR scores on the test sets of the five iterations
as the performance statistics for one round of cross-validation. To account for the randomness
effect, we performed ten rounds of five-fold cross-validation (with different random states) and
recorded the means and standard deviations of the performance statistics (Table 1).

We compared the performance of CreaTDA to those of several baseline methods that
have reached state-of-the-art performance on heterogeneous graph prediction tasks, including
GTN,32 RGCN,28 HGT,15 and DTINet20 (see Supplementary Information for more details). We
found that CreaTDA significantly outperformed all the baseline methods (Table 1), suggesting
that CreaTDA can better learn the latent feature representations of the underlying network
topology of the given HN.

However, with CreaTDA yielding near-perfect performance, the prediction task may be
trivial. Indeed, “similar” TDAs may appear in both training and test sets, thus constituting
“easy” predictions that inflated the performance of the models. To more accurately gauge
the performance and generalization capacity of the models, we conducted additional tests by
reducing the similarity between training and test data. Specifically, we first performed agglom-
erative clustering on the disease entities according to the Jaccard similarities between their
association profiles, i.e., the corresponding columns in the protein-disease-association adja-
cency matrix. We then developed a new cross-validation scheme by partitioning the resulting
clusters of columns into training, validation, and test sets. The ratios between the sizes of
the three datasets and the ratio between positive and negative samples in each dataset were
roughly the same as those in the previous entry-wise cross-validation procedure. We refer to
this new cross-validation scheme as cluster-wise cross-validation.

Table 1 shows that all models had a significant drop in performance when switching
from entry-wise to cluster-wise cross-validation. However, CreaTDA still took the lead in
performance (though DTINet yielded a comparable AUROC score with CreaTDA, the former
achieved a poorer AUPR score), further verifying the superior predictive power of CreaTDA.

We also found that all control models yielded performance inferior to CreaTDA on the
cluster-wise cross-validation (Supplementary Table 1), suggesting that the encoded credibility
information in both the designed labels and weights can effectively advance CreaTDA to
accurately capture the latent feature representations of the underlying network topology.

3.2. CreaTDA improves the credibility of TDA predictions

To evaluate the credibility of the novel predictions of CreaTDA, we investigated their corre-
sponding Cr values, which approximate the abundance of literature documenting the entailed
TDAs (Section 2.2.2). Here, the “novel” predictions were obtained through the following pro-
cess: (i) training CreaTDA on the whole HN using the hyperparameters that yielded the
best performance in the cluster-wise cross-validation scheme (Section 3.1); (ii) selecting those
“significant” predictions whose output values in the reconstructed TDA matrix were greater
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(a) (b) (c)

(d) (e)

Fig. 2. Examining the credibility of model predictions. (a), (b), and (c) document the num-
bers of predictions among the top-200 novel predictions with Cr > 0, 5, 25, respectively.
(d) and (e) plot the Spearman correlations between the output values of the top-k (k =
200, 500, 1000, 1500, 2000, 2500, 3000) predictions and their corresponding Cr values, with (d) com-
paring CreaTDA with the baseline models and (e) comparing CreaTDA with the four control models
developed in our ablation study. The P-values of the correlations, calculated using the sklearn pack-
age,22 can be found in Supplementary Table 2.
than µ + 2σ, where µ and σ stand for the mean and the standard deviation of the predicted
values of elements in each row, respectively; and (iii) choosing the “novel” predictions, which
were assigned with the label “0” in the original TDA matrix (i.e., m(e) = 0), from the above
“significant” predictions. Since these novel predictions had edge weights equal to 0, their
corresponding Cr values were not encoded (Eqs. 3 and 4), hence precluding data leakage.

We first examined the Cr values of the novel predictions with the top-200 output values.
We found that compared with all baseline and control models, among their corresponding
top-200 novel predictions, CreaTDA predicted more novel TDAs with Cr values greater than
0, 5, and 25, respectively (Fig. 2a-2c). Such results showed that CreaTDA could produce
novel predictions with more evidence support from PubMed, even though their credibility
information was not encoded in CreaTDA during the prediction process.

We next examined the Spearman correlation between the output and the corresponding
Cr values of the top-k predictions. We found that CreaTDA yielded a stronger correlation
than all baseline (Fig. 2d) and control models (Fig. 2e). We also conducted a hypothesis test
(two-sided t-test), in which the null hypothesis meant that the output and Cr values were
uncorrelated. We found that CreaTDA yielded overall lower P-values than all baseline and
control models (Supplementary Table 2). Here, a stronger correlation (with a lower P-value)
indicated that the model predicted TDAs with higher credibility (i.e., larger Cr values). Such
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results illustrated that the novel TDAs predicted by CreaTDA were more likely to be valid.

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 3. Examining the robustness against the effect of exposure bias for different models. (a)-
(e) plot the row-wise maximum values over the 0-labeled entries of the reconstructed TDA matrix
(y-axis) against the row-wise sums of the original TDA matrix (x-axis) for the baseline models and
CreaTDA. The Spearman correlations between these two vectors and their P-values, calculated using
the sklearn package, are also reported. (f)-(h) present the AUPR scores on the sparse sub-networks
of the whole TDA network containing proteins associated with few known TDAs.

3.3. CreaTDA is robust to the effect of exposure bias
In this section, we showed that CreaTDA was robust to the effect of exposure bias, a common
phenomenon in recommendation systems where the unobserved interactions are often misrep-
resented as negative preferences.6 This phenomenon also arises in our TDA prediction task,
where those TDAs with 0-labels in the input data are not necessarily “negative” associations.
Due to exposure bias, the models generally produce fewer meaningful TDA predictions for
those proteins/diseases with few known TDAs and often have difficulty learning their latent
feature representations. To investigate the robustness of the models against the effect of ex-
posure bias, we computed the Spearman correlation between the row-wise maximum values
over the 0-labeled entries of the reconstructed TDA matrix and the row-wise sums of the
original TDA matrix (i.e., the number of diseases associated with the corresponding protein)
for the baseline models and CreaTDA. We found that CreaTDA yielded a significantly lower
correlation than GTN, RGCN, and HGT, only slightly exceeding the correlation yielded by
DTINet (Fig. 3a-3e). Here, a strong correlation indicates two possible drawbacks: (i) the pre-
dicted values of TDAs depend heavily on the amount of known information, i.e., the number
of diseases known to be associated with the involved protein; and (ii) the top predictions of
the model are likely to leave out biologically significant TDAs for those proteins with less
available information. Therefore, the above results indicated that with a significantly weaker
correlation, CreaTDA suffered less from these two drawbacks.

We then examined the prediction performance (AUPR scores) on the sparse sub-networks
of the original TDA network for different models trained on the whole HN. More specifically,
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we selected those rows of the original TDA matrix with a sum less than 100, 300, and 500,
respectively, to simulate three sparse sub-networks. We found that CreaTDA consistently
achieved higher AUPR scores than the baseline methods on these sparse sub-networks (Fig.
3f-3h). Here, a higher AUPR score indicated that for proteins with few known TDAs, CreaTDA
could generate more accurate predictions and better learn their latent feature representations.
These results suggested that CreaTDA is robust to the effect of exposure bias and thus can
provide a helpful tool to predict novel TDAs, especially for those proteins with less information.

3.4. CreaTDA is able to predict novel TDAs with literature support
To show that CreaTDA can help scientists find reliable TDAs, we validated the top-200 novel
predictions of CreaTDA by searching for literature support and presented several representa-
tive cases (see the complete list of the top-200 predictions in Supplementary Table 3).

3.4.1. CreaTDA reveals potential targets with literature support
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract illness in
children, including bronchiolitis. CreaTDA predicted an association between bronchiolitis and
the epidermal growth factor receptor (EGFR). Previous studies showed that EGFR interacts
with the RSV 2-20 F protein in a strain-specific manner and is thus a potential target for
RSV diseases,7 which exactly supported our prediction result. We also extended to a general
category of virus diseases as an example. CreaTDA predicted an association between virus
diseases and vascular endothelial growth factor-A (VEGF-A, also known as VEGF), a principal
pro-angiogenic factor. This association can also be supported by previous research,1 which
illustrated that viruses, e.g., the human papillomavirus19 and herpes simplex virus-131 exploit
cell signaling mechanisms to upregulate VEGF expression and thus benefit their pathogenesis.
In addition, recent research on COVID-19 has shown that anti-VEGF medication may be a
potential treatment for those critically ill patients.25 These validation results showed that
CreaTDA could successfully identify novel targets critically involved in specific diseases.

3.4.2. CreaTDA provides new perspectives for understanding diseases
CreaTDA predicted an association between the fragile X syndrome (FXS) and the glucocor-
ticoid receptor gene NR3C1. This prediction can be supported by previous research, which
showed that the G allele in the BclI polymorphism of NR3C1 has a protective effect among
female individuals against FXS and is associated with altered patterns of the anxiety/fear
network of the brain.2 Hence, our prediction about NR3C1 may help understand the diverse
clinical outcomes associated with FXS and thus inspire effective therapies for individuals with
specific polymorphisms.

3.4.3. CreaTDA discovers new biomarkers for disease studies
CreaTDA detected an association between sleep apnea syndromes and the intercellular adhe-
sion molecule 1 (ICAM-1). ICAM-1 has been known as a marker widely used in studies on
obstructive sleep apnea syndrome (OSAS) to investigate inflammation.3 In a previous study,
scientists found that OSAS patients displayed a significant decrease in ICAM-1 level after
nasal continuous positive airway pressure (nCPAP) therapy, suggesting that OSAS-induced
hypoxia activates ICAM-1.21 CreaTDA also predicted an association between retinopathy of
prematurity (ROP) and myeloperoxidase (MPO). This finding was consistent with a previous
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result that MPO is one of the nine proteins with the potential to increase the ROP risk.14

All these findings verified that CreaTDA could provide an effective tool to identify novel
biomarkers useful in clinical studies.

4. Conclusion
In this paper, we presented CreaTDA, an end-to-end deep learning-based framework to predict
novel TDAs. CreaTDA first learns the node embeddings that encode features of the network
topology and then reconstructs the modified biological networks with the encoded credibility
information of TDAs. We showed that compared with state-of-the-art baseline methods, Cre-
aTDA achieved superior performance on both the standard TDA prediction task and a more
challenging task with a low similarity between training and test data. Moreover, comprehen-
sive tests demonstrated that CreaTDA could predict novel TDAs with improved credibility
and more literature support. In addition, we discovered that CreaTDA was robust to the effect
of exposure bias and maintained decent performance for those entities with less information.
All these results suggest CreaTDA can provide a powerful and helpful tool to advance the
drug discovery process.
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