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Although protein sequence data is growing at an ever-increasing rate, the protein uni-
verse is still sparsely annotated with functional and structural annotations. Computational
approaches have become efficient solutions to infer annotations for unlabeled proteins by
transferring knowledge from proteins with experimental annotations. Despite the increas-
ing availability of protein structure data and the high coverage of high-quality predicted
structures, e.g., by AlphaFold, many existing computational tools still only rely on sequence
data to predict structural or functional annotations, including alignment algorithms such
as BLAST and several sequence-based deep learning models. Here, we develop PenLight,
a general deep learning framework for protein structural and functional annotations. Pen-
Light uses a graph neural network (GNN) to integrate 3D protein structure data and protein
language model representations. In addition, PenLight applies a contrastive learning strat-
egy to train the GNN for learning protein representations that reflect similarities beyond
sequence identity, such as semantic similarities in the function or structure space. We bench-
marked PenLight on a structural classification task and a functional annotation task, where
PenLight achieved higher prediction accuracy and coverage than state-of-the-art methods.
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1. Introduction

With the decrease in the cost of sequencing technology, protein sequence data have been
accumulated to an ever-increasing amount. How to characterize those amino acid sequences
with structural and functional annotations is a long-standing and challenging problem in
bioinformatics. The community has long been interested in developing computational tools
to infer protein functions from their sequences, ranging from BLAST,1 profile hidden Markov
models (pHMM),2 and several other popular methods.3–6 Despite the success of these tools in
inferring protein functional annotations, such as the Gene Ontology (GO) terms and Enzyme
Commission (EC) numbers, the whole protein universe is still sparsely annotated. For example,
in Pfam, a popular protein family database, it was reported that one-third of bacterial proteins
cannot be annotated by alignment approaches.7

Recently, deep learning (DL) has emerged as a promising approach to complement tradi-
tional tools to expand protein annotations and has gained impressive success. For instance,
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Bileschi et al. develop a deep neural network to predict protein functional labels, which was
adopted by the Pfam database to expand its coverage by > 9.5%.8 Other successful applica-
tions of DL in protein annotation include structure fold recognition,9 GO term prediction10

and EC number predictions.11 Another notable trend along this line is protein language mod-
els (PLMs), which learn rich representations that encode intrinsic biophysical, evolutionary,
and structural properties of proteins from large-scale unlabeled protein sequence data. PLMs
have been found to substantially improve prediction accuracy for many protein structure and
function prediction problems.12

It is believed that protein sequence determines protein structure, which dictates function.
Knowing the three-dimensional (3D) information of protein structures can be useful for protein
function prediction because structures are more conserved than sequences and more directly
related to functions such as protein binding. However, due to the limited availability of solved
protein structure data, most existing methods for functional annotations are trying to directly
predict functions from sequences, assuming that proteins sharing high sequence similarity will
have the same set of functions. This assumption may not always hold, as it has been found
that proteins with similar structures can have seemly random sequence similarity. Fortunately,
with advances in biotechnology such as cryo-EM,13 the number of solved protein structures is
constantly increasing.14 The structure coverage is further improved by the high-quality struc-
tures predicted by DL models such as AlphaFold.15 Remarkably, in August 2022, DeepMind
released 200M AlphaFold’s predicted structures, covering nearly every known protein on the
planet. In parallel, the machine learning community has made great advancements in develop-
ing graph neural networks (GNNs) for modeling graph data, which have resulted in successful
applications such as AlphaFold.15 Despite the new opportunity offered by the largely available
solved and predicted structures and the advancements in GNNs, integrating structure data
and graph DL has not been widely exploited for protein functional and structural annotations.

The supervised learning paradigm has been a popular choice in previous deep learning
methods for predicting protein functions, in which the protein sequence is directly mapped
to the class output. This paradigm faces the challenge of class imbalance. For example, many
Pfam families contain relatively few sequences, which makes it difficult for supervised models
to predict because the training objective is dominated by the major Pfam classes. Another
paradigm called contrastive learning has recently gained interest in the machine learning com-
munity.16 Instead of directly mapping sequences to functions, contrastive learning optimizes a
latent embedding space where sequences with similar functions are pulled together, while se-
quences of different functions are pushed away. The ProtTucker model developed by Heinzinger
et al.17 was among the first attempts of using contrastive learning for protein annotation, but
the model only predicts protein structural annotations from protein sequence information.
Extending contrastive learning to integrate structure data has not been explored for protein
structural and functional annotations.

Here, we present PenLight (Protein contrastive learning with graph neural network for
annotation), a contrastive deep learning model for protein structural and functional annota-
tions. PenLight models protein 3D structure as a graph and uses a GNN to learn structure-
aware representations for the input protein. A major innovation of our work is using con-
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trastive learning for refining the learned protein representations so that the semantic simi-
larity of protein structures or functions can be reflected in the embedding space. We demon-
strate PenLight’s applicability using a structure classification task (fold classification) and a
functional annotation task (EC number prediction). On both tasks, PenLight outperformed
existing methods, including alignment algorithms such as BLAST and previous deep learning
approaches. We observed that PenLight was able to achieve high prediction accuracy as well
as high coverage. We expect PenLight to be used as a general deep learning framework for
protein annotations.

2. Materials and Methods

Fig. 1. Schematic illustration of PenLight.

Overview of PenLight. In this work, we develop PenLight, a graph neural network
trained with contrastive learning, for predicting protein structural and functional annotations.
As an overview (Fig. 1), PenLight receives the three-dimensional structure of a protein as
input and represents it as a graph, where the graph’s nodes are protein residues, and the
edges encode the spatial proximity of residues. Protein language model embeddings and a
set of geometric features (e.g., distance and orientation) derived from the input structure are
used to initialize the node and edge features. PenLight then employs a contrastive learning
scheme to learn a vector representation for each protein, such that the representations of
structurally/functional similar proteins are pulled together while dissimilar proteins are pushed
apart. PenLight then transfers the known annotations of a protein to an unlabeled protein if
their representation distance is below a threshold. The source code of PenLight is available at
https://github.com/luo-group/PenLight.

2.1. Tasks and Datasets

We showcase the applicability of PenLight using a structure classification task and a func-
tional annotation task. Specifically, we train separate PenLight models to predict the structure
classification code in the CATH database and the enzyme class (EC number) of a protein. Both
CATH codes and EC numbers are four-level classification systems that characterize different
levels of similarities of proteins, as described below.

Structure classification. We utilize the CATH dataset,18 an expert-curated database
that classifies 3D protein structures from the Protein Data Bank (PDB) database14 into a
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hierarchical classification system. We downloaded and processed the structures from CATH
following Heinzinger et al..17 Each protein structure is assigned with a label (CATH code)
at the Class (C), Architecture (A), Topology (T), and Homologous superfamily (H) levels,
respectively. Intuitively, higher levels (H>T>A>C) contain proteins that are more similar in
their 3D structure.

Functional annotation. We choose the Enzyme Commission number (EC number) pre-
diction as an example of functional annotation tasks. Similar to CATH, EC number is also a
four-level numerical classification scheme for enzymes, which assigns each enzyme with a label
based on the chemical reactions it catalyzes. We downloaded structures annotated with EC
numbers in the PDB database following a previous study.19 While there exist promiscuous
enzymes that are labeled with more than one EC number, most enzymes are labeled with
only a single EC number. Therefore, we only consider the top-1 predictions when evaluating
different prediction methods in this work.

2.2. Protein Structure Representations

The structure data of a protein contains the three-dimensional (3D) coordinates of atoms
of the protein structure. Here, we focus on the Cα atoms of the backbone and use them to
represent the residues of a protein. We denote the coordinates of those Cα atoms as C = {ci ∈
R3}Ni=1, where N is the number of residues. We represent the structure as a graph G = {V, E},
where the node set V contains the residues and the edger set E indicates the residue contacts,
which is defined by a distance cutoff of 8Å between pairwise Cα atoms.

To improve the expressiveness of the structure representation, we also associated features to
each node and edge in the graph G. We built a series of features that are invariant to rotations
and translations following a previous study.20 For the node feature vi of residue i, we used the
per-residue embeddings generated by ESM-1b12 or ProtT5,21 protein language models (PLM)
that are trained on millions of protein sequences using unsupervised representation learning. It
has been shown that PLM can boost the prediction accuracy for protein function and structure
predictions.12,22 We used ProtT5 embeddings for the structure classification task following
Heinzinger et al.17 and ESM-1b for the functional annotation task, as we found in nested
cross-validation that this resulted in a better performance. For the edge between residues i and
j, we concatenated multiple features eij = [(cj − ci)/∥cj − ci∥2;RBF(∥cj − ci∥2);Epos(cj − ci)],
where the first term is the unit direction vector, the second term is the pairwise distance lifted
into radial basis functions (RBFs), and the third term is the sinusoidal encoding of the relative
distance and direction between the two residues.

2.3. Graph Neural Network

Now we introduced the GNN architecture used in PenLight. We used a modified version
of graph attention network (GAT)23,24 as our backbone model. Given the structure graph
G = {V, E} of the input protein, GAT applies L layers of graph convolution operations that
transform G to an embedding z ∈ Rd. The ℓ-th layer transforms residue i’s embedding h

(ℓ)
i to

an updated embedding h
(ℓ+1)
i by aggregating the information from residue i and its neighbor

residues: h(ℓ+1)
i = αi,iW

(ℓ)h
(ℓ)
i +

∑
j∈N (i) αi,jW

(ℓ)h
(ℓ)
j , where N (i) is the set of neighbor nodes of
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node i, W are learnable weights of the GNN, and αij’s are attention weights used to adaptively
aggregate embeddings from node i’s neighbors. The embedding h

(ℓ)
i is initialized using the node

feature vi for ℓ = 0. The attention weights are computed as (the superscript of layer index ℓ

is omitted for simplicity):

αi,j =
exp

(
a⊤σ (Θ[hi ∥hj ∥ ei,j ])

)∑
k∈N (i)∪{i} exp (a

⊤σ (Θ[hi ∥hk ∥ ei,k]))
, (1)

where a and Θ are learnable weights, ∥ is vector concatenation, and σ(·) is the Leaky ReLU
activation function. PenLight used two stacked GAT layers with ReLU activation to transform
the initial node features into 512-dimensional vectors hL

i for each amino acid. A global mean
pooling layer was used after the GNN to aggregate the embeddings of all amino acids into
embeddings into a single embedding z ∈ R128, representing the input protein.

2.4. Contrastive Learning

We applied contrastive learning to optimize the GNN model in PenLight, which directly
optimizes an embedding space such that proteins with the same structural or functional cat-
egory are located together in the embedding space. The GNN model receives a triplet of
proteins (represented as graphs) as input each time, i.e., an anchor protein xa, a positive
protein xp that is structurally/functionally similar to xa, and a negative protein xn that is
structurally/functionally dissimilar to xa. The objective of contrastive learning is to learn an
embedding function (parameterized by the GNN) f : G 7→ Rd such that the distance between
the positive pair is smaller than that of the negative pair: d(f(xa), f(xp)) < d(f(xa), f(xn)),
where d(·, ·) is a distance function (e.g., Euclidean distance) defined on the embedding space.

Triplet sampling. How to sample the triplets is the key to learning a well-organized
embedding space. Since both CATH codes and EC numbers are organized in hierarchical tree
structures with four levels, and each label is represented as a four-digit number from coarse to
fine (e.g., EC: 3.2.1.2), we adopted a hierarchical sampling strategy17 to randomly sample the
triplets (xa, xp, xn) for both tasks. More specifically, during training, we sampled each protein
in the training set as the anchor protein xa. For each anchor protein we first randomly chose
a similarity level γ ∈ {1, 2, 3, 4}. Then a different protein with the same label up to the γ-th
digit was sampled as the positive protein xp, and another protein with a different digit at the
γ-th level but the same digit at the (γ−1)-th level was sampled as the negative protein xn. For
example, if we sampled an anchor protein with CATH label 2.20.25.20 and we randomly chose
the similarity level γ = 2 (the Architecture level), the positive protein should be randomly
sampled from proteins with CATH label of type 2.20.*.* (i.e., having the same first two digits)
and the negative should be randomly sampled from those with CATH label 2.a.*.* where a is
not 20 (share the same Class code but different Architecture code).

Hard negatives/positives mining. Previous studies25 have shown that another key
to successful contrastive learning is the balance between the triviality and the hardness of
the sampled triplets. Here, we further enhance the triplet samples by mining hard negatives
and positives to improve the performance of contrastive learning, as did in Heinzinger et
al..17 During training, we utilized the batch-hard25 technique inside each mini-batch. After
getting a mini-batch of hierarchical sampled triplets, we shuffled all the anchor, positive and
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negative proteins in the mini-batch and applied hierarchical sampling in these proteins but
with one more criterion that the positive had the maximum Euclidean embedding distance
with the anchor among all the positive candidates selected under hierarchical sampling while
the negative had the minimum distance with the anchor.

Training. During the model training, PenLight receives the sampled triplet as input and
uses the GAT model to transform them into d-dimensional embeddings (the three GATs
for anchor, positive and negative shared the same set of parameters). Based on inner-loop
cross-validation results, the embedding size was set to 128 in the CATH classification task
and 256 in the EC number prediction task. We used the soft margin loss as the objective
to train PenLight: L(x(i)a , x

(i)
p , x

(i)
n ) = 1

m

∑m
i=1 log

(
1 + exp(d(x

(i)
a , x

(i)
p )− d(x

(i)
a , x

(i)
n ))

)
, where m is

the dimension of the output embeddings, d(·, ·) is the Euclidean distance between embeddings.
Adam with an initial learning rate 1e-4 and a weight decay of 1e-4 was used as the optimizer.
Early stopping was also applied to avoid overfitting. We set the batch size to 256.

2.5. Inference and Evaluation

Since contrastive learning yielded a vector embedding instead of a direct label for each
input protein, the final inference would be performed in a query-lookup manner. Given a
lookup set O, which contains proteins with known (structural or functional) labels, and a query
(unlabeled) protein q that we would like to infer labels for, PenLight projects all proteins in
O and q into the same embedding space. We call a protein t ∈ O a “hit” for the query
protein q if their Euclidean embedding distance is below some threshold δ. We can then
infer the annotations for the query q by transferring the annotations of all hit proteins, i.e.,
{t ∈ O : d(f(t), f(q)) < δ}, to the query q. The inference for individual query protein is very
efficient since it only requires a single forward pass of the graph neural network and a distance
comparison, both of which are matrix or vector operations that can be accelerated on GPUs.
In practice, we found that the average inference time per protein was 0.68 seconds for CATH
classification and 0.04 seconds for EC number prediction. We also observed that the prediction
accuracy can be improved by an ensemble approach, i.e., two replicas of PenLight were trained
on the same data, and the average distance given by them was used to find the hit proteins.

To evaluate the performance of PenLight and other baseline methods, we computed the
accuracy, precision, recall, and F1 scores for each class (CATH code and EC number) and then
average the metrics over all classes (i.e., macro-averaged metrics). Some baseline methods use
a confidence threshold to decide whether to predict the annotations for a query protein (e.g,
the E-value in BLAST). For those methods, we count it as a wrong prediction if the model
does not predict any annotation for a query protein, unless otherwise specified.

3. Results

3.1. Performance on Structure Classification

We downloaded the CATH-S100 dataset (123k proteins, clustered based on identity 100%)
from the CATH database (v4.3),18 including both the structure data and their CATH code
labels. We followed the study by Heinzinger et al.17 to split the dataset into four splits, namely,

Pacific Symposium on Biocomputing 2023

114



the training set (∼71k proteins), validation set (196 proteins), lookup set (∼74k proteins), and
test set (208 proteins). The median number of samples per CATH class is 2. The splits were
created using the clusters generated by MMseqs26 such that any sequence in the training set
does not share > 20% sequence identity to any protein in the validation or test set. To directly
test PenLight’s ability to transfer structural annotations from labeled proteins to unlabeled
proteins, an independent lookup set that contains ∼74k proteins was also created. Redundant
sequences shared by the test set and lookup set were also removed. We compared PenLight with
different types of baseline methods for structure classification, including sequence alignment
algorithm (BLASTp1), unsupervised PLMs (ESM-1b12 and ProtT521), and the state-of-the-
art contrastive learning method for structural annotation (ProtTucker17). For PLM baselines,
we predicted the annotations for test proteins by applying an unsupervised k-nearest neighbor
classifier with k = 1 or a supervised multi-class classifier (ProtT5-sup) on PLM representations.

Table 1. Performance on CATH structure classification.

Method Supervised? Type Input Accuracy Precision Recall F1
BLASTp unsupervised Aln seq 0.236 0.148 0.152 0.149
ESM-1b unsupervised PLM seq 0.389 0.247 0.253 0.249
ProtT5 unsupervised PLM seq 0.442 0.288 0.304 0.293

ProtTucker supervised CL seq 0.514 0.354 0.365 0.358
ProtT5-sup supervised no CL seq 0.486 0.326 0.351 0.333
PenLight supervised CL struct+seq 0.524 0.363 0.377 0.367

Performance shown for the finest level (superfamily) of CATH classification. The high-
est value of each metric was shown in bold. For supervised methods, the mean met-
ric score of three independent runs was reported; standard deviations were < 0.01
but not listed in the table due to limited space. CL: contrastive learning; no CL: di-
rect predict labels using a multi-class output layer, instead of using CL; PLM: pro-
tein language model; Aln: alignment; Struct: structure; Seq: sequence; sup: supervised.

We observed that PenLight consistently outperformed other methods when evaluated using
several metrics (Table 1). First, we noticed that the information-rich features used in PenLight
are extremely useful for predicting the CATH code. For example, PenLight achieved substan-
tial improvements (+120% in accuracy and +146% in F1) compared to BLASTp, which only
uses the raw amino acid sequences to perform sequence comparison. Second, our results also
suggested the benefits of contrastive learning (CL) in PenLight. The PLM embeddings, used
as the initial features in PenLight, were trained purely on sequence data and may not explic-
itly capture structure properties. However, the contrastive learning used in PenLight is able to
refine the PLM embeddings to be discriminative and structure-aware by utilizing the CATH
hierarchy. This is demonstrated in the clear distribution separation of structurally similar and
dissimilar proteins in the embedding space (Fig. 2a). The well organized embedding space
also translated into performance improvement, where PenLight boosted PLM’s F1 score from
0.25+ (for ESM1-1b and ProtT5) to 0.37 (Table 1). These improvements suggested that con-
trastive learning is effective in learning representations that reflect the semantic similarities in
the label space (e.g., the CATH classification here). Finally, we observed that PenLight also
outperformed the state-of-the-art method ProtTucker that only considered sequence data as
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input, suggesting that incorporating the 3D structure information as input is useful for pre-
dicting the CATH classification of proteins. Overall, these results demonstrated PenLight’s
improved prediction performance in predicting the structural annotations of proteins.

Fig. 2. PenLight separated structural or functional similar proteins from dissimilar ones
in the embedding space. We consider two proteins are structurally similar if they are assigned with
the same third-level but different fourth-level CATH codes, and two proteins are functionally similar
if they are assigned with the same second-level but different fourth-level EC numbers. Euclidean
embedding distances learned by PenLight and two PLMs were visualized for similar and dissimilar
proteins in the training sequences of (a) the CATH dataset and (b) the EC number dataset.

3.2. Performance on Functional Annotations

After benchmarking PenLight on structure classification, we proceeded to evaluate Pen-
Light’s ability to predict functional annotations. We used the structure dataset collected in
Gligorijevic et al.,19 which contains 10,245 chains from the PDB database that have EC num-
ber annotations. The most specific (4th) level of EC numbers was used as the functional
annotations to train and evaluate the models. The median number of samples per EC number
is 12. The dataset was split into train, validation, and test sets with an approximate ratio 8:1:1,
and the test set has no sequence sharing > 40% sequence identity to the training sequences.

Similar to the results of CATH classification, we also found that PenLight has learned
embeddings that are discriminative between EC numbers (Fig. 2b). We compared PenLight
with four state-of-the-art deep learning methods and found that PenLight achieved substan-
tially higher performance (Table 2). PenLight first outperformed ProteInfer,26 DeepEC,11 and
ProtTucker, three models that only take the amino acid sequence as input. PenLight also
outperformed DeepFRI19 by a large margin, which is a GNN model that considers both the
sequence and structure of the input protein but was trained using a supervised multi-class
scheme. An ablation evaluation of PenLight showed that contrastive learning has led to better
performance than the multi-class classification paradigm (PenLight(-) in Table 2).

Notably, ProteInfer, DeepEC, and DeepFRI all have a coverage (defined as the fraction
of test proteins for which the method made predictions) lower than PenLight because they
only predict EC numbers for a query protein when the predicted score passes a predefined
confidence threshold (we say it is a “called protein” hereafter). In contrast, PenLight always
predicts for the query protein by transferring the known EC numbers from the top-1 closet
lookup protein, thus having a prediction coverage of 1.0. To make a fair comparison, we also
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Table 2. Performance on EC number prediction.

Method Type Input Cov Accuracy Precision Recall F1 F1@Called
DeepEC CNN seq 0.34 0.287 0.466 0.326 0.361 0.737
DeepFRI GNN str+seq 0.60 0.442 0.451 0.353 0.380 0.432
ProteInfer CNN seq 0.42 0.367 0.538 0.414 0.448 0.758
ProtTucker CL seq 1.00 0.768 0.709 0.719 0.695 0.695
PenLight(-) no CL str+seq 1.00 0.676 0.604 0.609 0.585 0.585
PenLight CL str+seq 1.00 0.777 0.720 0.736 0.711 0.711

Performance shown for level 4 (most specific level) of EC number. The highest value of each
metric was shown in bold. Coverage (Cov) is the fraction of test proteins for which a method
makes a prediction. Proteins for which a method did not make a prediction (not called) will
be counted as an incorrect prediction for metrics accuracy, precision, recall, and F1, but not
for the F1@Called metric, which was calculated on called proteins of a method. The mean
metric score of three independent runs was reported. Standard deviations were < 0.01 but
not listed in the table due to limited space. CL: contrastive learning; Str: structure; Seq:
sequence. no CL: direct predict labels using a multi-class output layer, instead of using CL.

restricted the evaluation on called proteins for those baselines, i.e., not counting non-called
proteins as wrong predictions. We found that in this case PenLight still had a higher F1 score
than DeepFRI (‘F1@Called’ column in Table 2). DeepEC and ProteInfer achieved a slightly
higher F1 than PenLight but at an expense of much lower (< 0.5) coverage. Despite PenLight
always predicting for every protein by transferring from the top-1 closest lookup protein, it is
also possible to introduce a confidence threshold for PenLight, similar to those in our baseline
methods, which will be demonstrated in the next section. Overall, the performance improve-
ments achieved by PenLight in this task again demonstrated the advantages of integrating
structure data and contrastive learning for protein function prediction.

3.3. Analyses of PenLight’s high coverage and high accurate predictions

Here, we further dissect the relationship between PenLight’s prediction accuracy and cov-
erage. We first performed a detailed stratified comparison of prediction accuracy on the EC
number prediction task. Specifically, we plotted the proportion of correct, incorrect and not
called predictions of PenLight, ProteInfer, and DeepFRI at each EC number level (Figures 3a-
c). ProteInfer had quite stable prediction accuracies (∼0.4) across the four levels but failed to
predict the EC numbers for approximately 57% of proteins. For DeepFRI, as the EC number
levels become more specific (from level 1 to 4), both its prediction accuracy and coverage
dropped, likely due to proteins being more similar in sequence at higher EC number levels,
and it is more challenging to distinguish their differences in function. In contrast, PenLight
had an accuracy > 0.75 for all four levels while maintaining a 100% coverage. The major reason
for the high accuracy and high coverage of PenLight is the contrastive learning and the lookup
strategy for making predictions. Methods like ProteInfer formulated the CATH code or EC
number classification as a supervised multi-class classification problem and predict the class
probabilities for thousands of classes using the single final layer in the neural network. This
strategy inevitably suffers from the class size imbalance in the training data, and the ambi-
guity in the output layer is easily scaled up with the number of classes (e.g., thousands of EC
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Fig. 3. PenLight achieved prediction coverage and accuracy. (a-c) Stacked bar plots of
DeepFRI, ProteInfer and PenLight that visualized the fractions of correct, incorrect, and not called
predictions at the four levels of EC numbers. (d-e) PenLight’s prediction coverage and precision as
a function of the embedding distance threshold. Here PenLight predicts the CATH code (d) or EC
number (e) for a protein if its closest embedding distance to the lookup set protein is below a given
threshold (called a hit). Coverage is defined as the fraction of hit in all test proteins, and precision
is defined as the fraction of correct predictions for the hit proteins.

numbers or CATH codes). On the contrary, PenLight first applied contrastive learning to learn
discriminative embeddings with respect to the functional or structural annotations, reducing
the ambiguity between positive and negative data points (Fig. 2). PenLight then enumerated
all proteins in the lookup set and identified the protein with the closest distance to the query
protein. This similarity search process treats the distance to every lookup protein equally,
without down-weighting any under-represented classes. Therefore, PenLight was able to accu-
rately predict the labels even for under-represented EC numbers, where supervised-learning
approaches often have large uncertainties. In our tests, we observed that when predicting for
EC numbers that have only < 10 proteins in the training set, PenLight achieved an accuracy
of 0.8 while ProteInfer, DeepEC, and DeepFRI only had an accuracy of ∼ 0.6.

We next explore the possibility of introducing a confidence threshold into PenLight, similar
to the E-value cutoff used in BLAST. A natural choice is to impose a cutoff on the Euclidean
embedding distance, i.e., making predictions only when the query protein’s closest distance to
lookup proteins is below the cutoff. We thus varied the distance cutoff and evaluated how the
prediction precision and coverage would change as the cutoff was changing. As expected, we
observed that PenLight had a high prediction precision for the CATH task when the cutoff
was very stringent (smaller values) since the model was confident in this regime of cutoff
values (Fig. 3d). On the other hand, when the cutoff became more tolerant (larger values),
the precision started to drop but the prediction coverage gradually increase. Similar trends
were observed for EC task as well (Fig. 3e). Overall, this analysis validated that PenLight’s
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embedding distance was correlated with prediction accuracy, and a cutoff can be used to
tradeoff the prediction precision and coverage, depending on the practical use case (e.g.,
accurate annotations or data explorations).

Finally, we performed a t-SNE visualization to see whether PenLight has learned mean-
ingful representations in terms of structural and functional similarity. We observed that, on
the CATH task, the embedding space learned by PenLight was a more consistent with the
CATH hierarchy, where the ProtT5’s embeddings did not capture the structural similarities of
CATH classes (Figs. 4a) while PenLight’s embeddings showed separated grouping structures
consistent with the first level of CATH classification (Fig. 4b). Similarly, on the EC number
task, we found that PenLight’s embedding space showed clustering patterns more consistent
with six major enzyme groups than the ESM-1b model (Figs. 4c-d).

Fig. 4. t-SNE visualizations. Embedding space learned by PLMs and PenLight on (a) the CATH
dataset and (b) the EC number dataset. Two PLMs (ProtT5 for CATH and ESM-1b for EC) were
shown for comparison. One point represents a protein. Points were colored according to their assigned
label at the first level of CATH class or EC number.

4. Conclusions

We described PenLight, a general deep learning framework that predicts protein structural
and functional annotations. PenLight integrates 3D protein structures and protein language
model embeddings with a structure-aware graph neural network (GNN). To learn protein
representations that capture meaningful structural or functional similarities, PenLight used a
contrastive learning strategy to train the GNN. We showcase PenLight’s applicability using
both structural and functional annotation tasks, and the experiment results suggested that
PenLight outperformed several state-of-the-art methods in predicting the CATH structure
hierarchy and enzyme class of proteins. As a general framework, PenLight can be extended to
other protein annotation tasks as well, such as gene ontology classification. Recent progress
in the graph deep learning community, including equivariant graph neural network,27 can also
be integrated with PenLight to enable better structure-based protein annotation.
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4. J. Söding, Protein homology detection by hmm–hmm comparison, Bioinformatics 21, 951 (2005).
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