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Protein subcellular localization is an important factor in normal cellular processes and dis-
ease. While many protein localization resources treat it as static, protein localization is
dynamic and heavily influenced by biological context. Biological pathways are graphs that
represent a specific biological context and can be inferred from large-scale data. We develop
graph algorithms to predict the localization of all interactions in a biological pathway as
an edge-labeling task. We compare a variety of models including graph neural networks,
probabilistic graphical models, and discriminative classifiers for predicting localization an-
notations from curated pathway databases. We also perform a case study where we con-
struct biological pathways and predict localizations of human fibroblasts undergoing viral
infection. Pathway localization prediction is a promising approach for integrating publicly
available localization data into the analysis of large-scale biological data.
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1. Introduction

Cellular state is dictated by a wide range of factors from chromatin accessibility to protein
abundance to the physical location of proteins within the cell. Cells are compartmentalized
into subcellular locations that provide the chemical environment around proteins. That local
environment informs proteins’ structure and available interaction partners. Protein localization
not only dictates protein interactions in normal biological processes,1 but also is an important
factor that can contribute to abnormal cellular behavior. Alzheimer’s disease, amyotrophic
lateral sclerosis, Wilson disease, and multiple cancers involve abnormal protein localizations.2

Although protein localization is dynamic and context-specific,3 many localization resources
present a fixed, static view. Localization databases such as MatrixDB,4 Organelle DB,5 Com-
partments,6 and ComPPI7 track primary experimental data, computational predictions, or
combinations of multiple information sources. Up to 50% of proteins localize to multiple cellu-
lar compartments.8,9 Databases typically provide multiple possible localizations per protein,
but that does not determine the conditions under which subsets of each protein’s localiziations
are relevant. Many tools can predict possible locations of a protein based on its sequence10–12

using machine learning methods such as logistic regression13 or deep neural networks.14 Some
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methods incorporate additional information, such as gene expression,15 Gene Ontology an-
notations,16 and network information.17–20 Methods using network information consider the
localizations of neighboring proteins in protein-protein interaction databases to aid in local-
ization prediction and do not attempt to represent any particular biological context. Some
predictive methods consider tissue context,21 but proteins vary in their subcellular localiza-
tion even between single cells of the same tissue type.1

We present graph algorithms for estimating context-specific protein localizations by model-
ing them in biological pathwaysa. Biological pathways, graphs of biological entities such as pro-
teins, can represent a particular biological process or context. Although traditionally thought
of in terms of curated pathway databases, pathway reconstruction graph algorithms22–24 can
generate custom pathway representations of a specific process given a background protein
interaction network and condition-specific data such as proteomic measurements as input.
However, there is no straightforward way to contextualize and apply available protein local-
ization data to this type of predicted biological pathway. In order to provide context-specific
localization information for a particular biological dataset, we develop graph algorithms for
the simultaneous prediction of a subcellular localization for all interactions in a reconstructed
biological pathway. Computationally, this can be seen as an edge labeling task on an existing
graph. This predictive step can be added to existing pathway reconstruction workflows. Es-
timating localization information at the pathway level enables examining where proteins or
other biological entities are when they perform a biological function. Pathway-specific localiza-
tion annotation can help interpret the predicted pathway and potentially provide additional
information to guide followup experiments.

Our strategy to understand context-specific protein localization through graph-based anno-
tations of reconstructed pathways offers advantages over alternative approaches. Some curated
pathway databases provide localization information at the interaction level and include infor-
mation about non-protein biological entities.25,26 However, many pathway databases contain
incomplete or no localization information. For instance, of the 8 pathway databases included
in Pathway Commons,27 2 are fully labeled with localization information, 5 are partially la-
beled with localization information, and 1 contains no programmatically available localization
information. Additionally, curated pathways often do not line up with experimental data28–31

and a curated pathway may not be available for a particular biological condition of interest.
While condition-specific localization information can be experimentally derived1 using mass
spectrometry or cellular imaging, these methods can be expensive, require experimental exper-
tise, and have incomplete coverage. Predicting localization based on pathways is less precise
than acquiring localization data experimentally, but the predictions provide an initial coarse
estimate of all proteins’ localizations without requiring new specialized data.

We develop and compare three categories of methods for predicting localization for interac-
tions within the context of a biological pathway: graph neural networks, probabilistic graphical
models, and classifiers that do not use graph topology. First, we quantitatively evaluate these
strategies for pathway-based localization prediction by holding out annotated localizations

aSupplementary Information and code can be found at https://github.com/gitter-lab/

pathway-localization and archived at https://doi.org/10.5281/zenodo.7140733.
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from pathway databases. Then, we demonstrate how our approach can be used in practice with
a case study involving human cytomegalovirus (HCMV) infection over time.32 While there are
disparities between localization information in pathway databases and experimentally-derived
localization data, pathway-level localization prediction is a promising approach for combining
publicly available localization data with the analysis of large-scale biological data.

2. Methods

2.1. Pathway Localization Prediction Problem Definition

Protein Cytoplasm Extracelllular Plasma 
Membrane

Mitochondrion Nucleus Secretory-
Pathway

MFAP1 0.09 0.31 0.27 0.01 0.31 0.01

SF3A3 0.43 0.01 0.01 0.01 0.54 0.01

TEKT4 0.39 0.01 0.28 0.01 0.32 0.01

WNT3A 0.09 0.31 0.30 0.01 0.01 0.29

… … … … … … …

MFAP1

SF3A3

TEKT4

WNT3A

ACAT2

GCAT
NSDHL

GGPS1LIPA
Cytoplasm

Extracellular

Membrane

Mitochondrion

Nucleus

Secretory-PW

MFAP1

SF3A3

TEKT4

WNT3A

ACAT2

GCAT
NSDHL

GGPS1LIPA

Inputs:

Pathway Structure Protein localization database

Outputs:

Labeled pathway interactions

Fig. 1. Overview of the pathway localization prediction experimental workflow.

Given a biological pathway represented as a graph, the goal is to predict one subcellular lo-
calization for each edge. The pathway represents some cellular function and can be constructed
from large-scale biological datasets using pathway reconstruction.33 We predict a localization
for each edge in the pathway, which can be viewed as a class label assignment for each edge
in the graph. Protein-level localization information is used as input to the prediction task as
node features. Thus, the pathway-specific subcellular localization task can be defined as:

Input: (1) A context-specific pathway graph consisting of nodes and edges G = (N,E),
and (2) a distribution over possible localizations for each node in the graph. Output: A single
localization assignment for each interaction e ∈ E. See Figure 1.

We chose to assign localizations to edges as opposed to nodes and to assign each interaction
a single localization. Pathway databases such as Reactome25 and popular pathway file formats
such as BioPax34,35 only allow proteins to be in a single subcellular location, creating multiple
protein entries if they occur in multiple localizations and assigning them to interactions. While
many proteins have multiple localizations, among all Reactome and PathBank pathways less
than 5% of total interactions have multiple localizations within the same pathway.

2.2. Experimental Setup

2.2.1. Pathway Database Localization Prediction

We investigated how well protein localization databases can be used to predict context-specific
localizations in pathway databases, both to examine the feasibility of pathway-specific local-
ization prediction and to elucidate the relationship between node labels in protein localization
databases and edge labels in pathway databases. Pathways with interaction localization labels
from the Reactome25 and PathBank26 databases were each used as ground truth datasets.
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The original pathways in both Reactome and PathBank are represented as hypergraphs,
where reaction edges can contain more than two nodes. Pathway Commons converts these
hypergraphs to graphs using a set of rulesb. To represent a protein-complex that contains
n proteins, the hypergraph conversions create an edge between every possible pair of nodes,
resulting in n2 edges. For instance, the 4 hyperedges that make up the PathBank pathway
Protein Synthesis: Serine are converted to 3,318 edges, of which 3,315 are of type “in-complex-
with”. We collapsed protein complexes into single nodes where possible in all pathways. This
was done by removing any nodes if all of its edges were redundant with the protein-complex’s
edges, leaving a single node for each complex. Though this loses some node information, col-
lapsing protein complexes resulted in pathways that more more closely resembled the original
hypergraph in edge distribution, topology, and class balance.

Three different node feature sets were used: the ComPPI database,7 the Compartments
database,6 and UniProt keyword36 features. ComPPI and Compartments contain localization
scores for each protein, which are used directly as input features. We created a dimensionality
reduction-based vectorization of UniProt keyword assignments for all proteins (Section S1.3.3).
All 8 predictive models (Section 2.3) were tested on all feature sets with the exception of
the NaivePGM model, which could not use the UniProt keyword features as it interprets
input features directly as conditional probabilities. All pathways in the 2 pathway databases
Reactome and PathBank, which contain interaction-level localization labels, were tested on
resulting in a total of 46 runs. Models were trained using 5-fold cross validation, and model
selection and hyperparameter selection were performed on a tuning set of the 53 Reactome
pathways categorized as developmental and a randomly chosen 10% of all PathBank pathways.
Tuning pathways were excluded from cross validation.

2.2.2. Human Cytomegalovirus Case Study

To examine how predicting context-specific localization at the pathway level could be used
in a realistic setting, we performed a case study with bulk spatial mass spectrometry (MS)
data from multi-organelle profiling on primary fibroblasts during HCMV infection.32 In multi-
organelle profiling, gradient centrifugation is used on a bulk sample to partially separate
organelles. Protein levels in each subcellular fraction are then measured using tandem mass
tags MS, and localization labels are determined by clustering proteins with similar fraction
profiles. We investigated whether a predictive model can infer localizations in the context of
viral infection, potentially bypassing the need to collect spatial proteomic data.

We performed pathway reconstruction33 by combining a background protein-protein inter-
action network28,37,38 with label-free MS data, which measured protein abundance across the
entire fibroblast at 120 hours post infection (hpi) without regards to localization. Measured
protein levels were used to create biological networks representing the cell state following in-
fection. The combined top pathways chosen (Section S1.1) contained a total of 386 edges with
localization information at 120hpi.

We then trained one of the best performing models from the pathway database prediction

bhttp://www.pathwaycommons.org/pc2/formats
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task, the graph attention network, in three different scenarios. First, we trained a model using
data from the PathBank database as described in Section 2.1. Second, we trained a model using
a separate dataset that measured protein localization using a similar method on a different
cell type and under a different biological condition, HeLa cells undergoing EGF stimulation.39

Third, we trained a model on the same HCMV experiment at the 24hpi timepoint. This third
scenario is unlikely to occur, as it would require a dataset to already exist for an identical cell
type and condition, but gives a useful benchmark for best case predictive performance.

2.3. Pathway Localization Prediction Models

We evaluated three general categories of models (Section S1.2): general classifiers,40 proba-
bilistic graphical models, and graph neural networks (Figure 2). The fully-connected neural
network (FullyConnectedNN), random forest (RF), and logisitic regression (Logit) served as
baseline classifiers because they use no topological information from the pathway graph (Fig-
ure S1). These models instead concatenate the node features of each interaction’s endpoints as
their input. All other models use topological information from the pathway graph to encourage
interactions near each other to have similar localizations.

Graph convolutional network (GCN): Graph convolutional networks41 incorporate a
series of message-passing convolutional layers before the final fully connected layers. The con-
volutional layers allow for information to be shared across the topology of the input network,
providing a first-order approximation of spectral graph convolutions.42 All neural network
models were implemented using PyTorch Geometric.43

Graph attention network (GAT): Graph attention networks extend graph convolu-
tional networks by allowing each node to choose which neighbors to pay attention to. As
opposed to taking the average of its neighbors, each node computes a weighted average of its
neighbors in graph convolutional layers.44,45 The GAT is multi-headed, where multiple atten-
tion weights are computed in parallel for each node. The number of heads is a hyperparameter.

Graph isomorphism network (GIN): Graph isomorphism networks46 take advantage
of the similarity between neighbor aggregation in graph neural networks and the Weisfeiler-
Lehman (WL) graph isomorphism test.47 The WL graph isomorphism test is a heuristic algo-
rithm for determining graph isomorphisms. The neighbor aggregation in each graph layer of a
graph isomorphism network is formulated to be at least as powerful as the WL isomorphism
test; the lth layer is guaranteed to generate different embeddings of two graphs if those graphs
would be found to be non-isomorphic via the WL isomorphism test in l iterations.

Probabilistic graphical models: Given the nature of the label propagation inherent in
the pathway level localization prediction task, and that many localization databases provide
scores or even probabilities, probabilistic graphical models are a natural choice. However,
these models only provide predictions on the nodes of the graph, while we are interested in
localization labels on the edges. To convert the input pathway into an appropriate graphical
model, each pathway is converted into a bipartite graph, where an additional node is added
to that graph for each edge (Figure S2).

Probabilistic graphical models represent a set of N random variables y as nodes and de-
pendencies between them as a set of edges E. We created two pairwise undirected probabilistic
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Fig. 2. Overview of neural network architecture for graph neural networks. The number of graph
layers (convolutional depth) and number of fully connected layers (linear depth) are hyperparameters.
|N | is the number of nodes in the input pathway. |F | is the number of input features for each node.

graphical models,48 which we call NaivePGM and TrainedPGM. In these probabilistic graphi-
cal models the random variables obey a local Markov property, such that each random variable
is conditionally independent of all others given its neighbors in the graph.

The NaivePGM is a Markov random field, where protein localization database data is used
to create conditional probability tables. In the TrainedPGM, input features are treated as
observations of additional variables to train potential functions on each node. These potential
functions are represented by discriminative classifiers,49 here random forests. This type of
model is referred to as a discriminative random field.50 This was chosen over a more traditional
log linear parameterization due to better performance on the tuning data.

We performed 30 iterations of hyperparameter selection via Bayesian optimization51 using
Ax for neural network models and Scikit-optimize for classifier modelsc (Tables S1 and S2).

3. Results

3.1. Comparing Pathway and Localization Databases

To better understand the feasibility of predicting interaction localizations from protein-level
localization data, we compared the edge localizations present in biological pathway databases
to node localizations in protein localization databases. The Reactome and PathBank pathway
databases significantly disagree with both protein localization databases. For instance, among
all proteins with an edge localized to the membrane in Reactome, ComPPI scores more as
being in the cytosol than in the membrane. In all cases there is a wide distribution when
stratifying the ComPPI node scores used as features by the Reactome or PathBank edge
localizations used as labels (Figures S3 and S4). Therefore, for any individual protein and
interaction there is a significant chance that protein’s most likely localization according to
ComPPI or Compartments is not the localization Reactome or PathBank assigned it to.

Directly using data from protein localization databases is not sufficient to accurately pre-

chttps://ax.dev/ and https://scikit-optimize.github.io/stable/
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dict pathway level localization. Many interactions have at least one contradictory interaction
with an identical featurization but a different localization label, over 40% when using ComPPI
and over 20% when using Compartments. In addition, many interaction localizations would
be considered impossible when using a protein localization database alone. Almost 14% of
interactions in Reactome are between proteins that have no protein localizations in common
in ComPPI. Even without featurization, for 9.5% and 11.5% of total interactions in Reactome
and PathBank, respectively, there exists another interaction between the same unique proteins
in another pathway that has a different localization. This indicates that pathway topology or
some other form of additional information beyond that of individual proteins is needed to
correctly predict localization in context.

3.2. Pathway Database Localization Prediction

We used cross-validation to train our models on protein information and some labeled database
pathways and evaluate their edge localization predictions for other database pathways given
only protein information and graph structure as input. Overall, models were able to achieve
better interaction localization prediction performance on PathBank pathways (Figure 3) than
Reactome pathways (Figure 4). Generally, models’ performance in predicting PathBank in-
teraction localizations was more consistent across pathways. However, on both datasets all
models’ performance had high variance across pathways. Except for logistic regression, all
models got at least some pathways completely correct and some pathways completely wrong
across all databases and feature sets. The graph neural network models, GCN, GAT, and GIN,
generally outperformed other models in all conditions. However, in Reactome no model was
able to achieve a median multiclass F1 score (hereafter called ‘F1 score’) of over 0.5

Fig. 3. Multiclass F1 score of predictive performance on PathBank localizations across all 427
considered PathBank pathways. Scores are calculated per pathway; the distribution of scores is
shown for each model.

Probabilistic graphical models and models that used no pathway topology had generally
comparable performance. The FullyConnectedNN model was able to outperform other models
when predicting PathBank localizations using Compartments or UniProt keyword features.
It should be noted, however, that when calculating performance by pathway as done in this
setting, the size of each pathway is not taken into account. This means that edges in very
small pathways can have an outsized effect on total performance.
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Fig. 4. Multiclass F1 score of predictive performance on Reactome localizations across all 918
considered Reactome pathways. Scores are calculated per pathway; the distribution of scores is
shown for each model.

Alternatively, Figures S5 and S6 show F1 scores for each model aggregated from all path-
ways, where all edges are used for a single performance calculation. When aggregated in this
way, all non-neural network models perform comparably. The probabilistic graphical models,
and the TrainedPGM model in particular, struggled with small pathways.

The number of real and predicted unique localizations in each pathway also had a large
effect on model performance. This can be thought of as the smoothness of the real or predicted
localizations in a pathway, or how strong the tendency is for edges nearby in a pathway to have
the same localization. Ideally, a model would be able to detect that a pathway exists entirely
in a single localization and aggressively smooth its localization predictions over the pathway.
Pathways with a single localization had the widest range of performance within each model.
More extreme performances, at or nearly at 1.0 or 0.0 for these pathways, indicate that the
model correctly predicted that the pathway had only a single localization. Figure S7 shows
the distributions of the number of predicted unique localizations by the different models.

3.3. HCMV Infection Spatial Proteomics Case Study

We considered three scenarios for evaluating localization prediction in an experimental set-
ting. Here, we examine if localizations can be inferred in the context of a HCMV infection
(Section S1.1). We simulate an exploratory workflow by first constructing HCMV infection-
specific biological pathways using pathway reconstruction23 (example pathway topologies can
be viewed in Figures S8 and S9). We then use the context provided by these pathways’ topolo-
gies to predict interaction localizations with the best performing model from pathway database
prediction, GAT, using node features from the Compartments database.

In all scenarios, we predict localizations for each interaction of pathways created from
protein abundance measurements at 120hpi. Localization data from spatial MS taken at the
same timepoint was used as ground truth. Each scenario differs in the labeled training data
used: pathways from a pathway database, a different experiment using a different context and
cell type, or data from the same experiment at a different timepoint. In all scenarios, all data
from the 120hpi timepoint was held out until the final evaluation. We also consider a baseline
model that always predicts the most frequent localization among all training set interactions.

While in all scenarios the model substantially outperformed the baseline, there was a large
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gap in performance between the model trained using pathway databases versus those trained
on a different experiment (Figure 5). Both scenarios using experimental data achieved an F1
score of over 0.8. Although the GAT model predictions do not perfectly recapitulate the spatial
proteomics localizations, it is encouraging that the GAT model trained in a plausible setting
with data from an unrelated biological context is almost as accurate as the unrealistic, best
case GAT model trained on another timepoint from the same HCMV infection experiment.

Fig. 5. Multiclass F1 score of the GAT model on spatial MS data of viral infection at 120hpi.
Performance is shown in each scenario for the 50 top pathways created from a parameter sweep. The
baseline model always predicts the most common localization in the training dataset.

4. Conclusions and Future Work

Although there is some correspondence between protein localization databases and localization
data in pathway databases, these two types of localization data generally disagree. Graph
neural network models were required to achieve high predictive performance on PathBank
localizations, and all models performed poorly in predicting Reactome localizations.

There are a number of possible reasons for this misalignment between localization infor-
mation in pathway databases and protein localization databases. While the best-performing
models include topological information, implying that topology is needed to bring context to
protein localization, it is possible that other types of data are needed. Protein features derived
from UniProt keywords only slightly improved performance, and tissue- or cell-specific local-
ization may be necessary to fully realize context-specific localization. That type of information
may not be available for pathway databases, which are often provided independent of tissue
type, but could be for reconstructed pathways. The protein localization databases may also
be too noisy and general for context-specific localization prediction. While some signal does
exist, the wide range of distributions for ComPPI and Compartments scores across different
pathway localizations highlights the imprecise nature of the prediction problem.

While graph neural networks outperformed other methods in predicting pathway localiza-
tions, it is unclear how large a role pathway topology played in these methods’ performance.
It is possible that increased performance over other models comes solely from how graph con-
volutions share information between nodes, as opposed to the biological information inherent
in each pathway’s topology aiding localization prediction.

The conversion of pathways from hypergraphs to graphs greatly impacted the class distri-
bution and topology of Reactome and PathBank pathways. Treatment of protein complexes
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can lead to orders of magnitude difference in the number of edges in the resultant pathways.
We created protein complex nodes to represent complexes, which removes node information
but better preserves the edge structure and balance in the pathway. An analysis task focused
specifically on nodes may want a conversion that better preserves node information at the pos-
sible cost of edge information. Important future work would be to consider these conversions
in a more systemic way and quantify the hypergraph properties they alter or keep invariant.

Pathway reconstruction has already proven to be a powerful strategy for interpreting
transcriptomic, proteomic, or other data in a network context, and the ability to coarsely
approximate interaction localizations could further increase its value. We observed the GAT
model may have sufficient accuracy to roughly estimate such pathway localizations as long as
it is trained on experimental data instead of pathway databases. Predictions using the model
trained on HeLa cells still had an error rate of approximately 17% but could plausibly be used
to obtain an estimate of context-specific localization predictions in the absence of other data.
Further testing is required to assess how similar the training conditions and assay types must
be to the test conditions and assays and what types of pathway reconstruction algorithms are
compatible with our GAT localization prediction model.

There are additional biological contexts where localization prediction could prove valuable.
Single-cell spatial proteomics experiments have previously found proteins to vary by as much
as 16% in either expression or spatial distribution between cells undergoing the same process in
the same tissues.8 Predicted protein localizations for individual cells could add an additional
layer of information in single-cell analyses. Additionally, targeted identification of abnormal
protein localizations could provide insight in diseases where protein localization is known to
play a role.52 The current predictive method could be expanded to attempt to quantify a
localization being unexpected given a constructed pathway representing some cellular state.
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28. A. S. Köksal et al. Synthesizing Signaling Pathways from Temporal Phosphoproteomic Data.
Cell Reports, 24(13):3607–3618, September 2018.

29. L. Cao et al. Quantitative Phosphoproteomics Reveals SLP-76 Dependent Regulation of PAG
and Src Family Kinases in T Cells. PLOS ONE, 7(10):e46725, October 2012.

30. S. J. Humphrey et al. High-throughput phosphoproteomics reveals in vivo insulin signaling dy-
namics. Nature Biotechnology, 33(9):990–995, September 2015.

31. R. C. J. D’Souza et al. Time-resolved dissection of early phosphoproteome and ensuing proteome
changes in response to TGF-beta. Science Signaling, 7(335):rs5, 2014.

32. P. M. Jean Beltran et al. A Portrait of the Human Organelle Proteome In Space and Time during

Pacific Symposium on Biocomputing 2023

155



Cytomegalovirus Infection. Cell Systems, 3(4):361–373.e6, October 2016.
33. C. S. Magnano and A. Gitter. Automating parameter selection to avoid implausible biological

pathway models. npj Systems Biology and Applications, 7(1):1–12, 2021.
34. E. Demir et al. The BioPAX community standard for pathway data sharing. Nature Biotechnol-

ogy, 28(9):935–942, September 2010.
35. B. M. Gyori and C. T. Hoyt. PyBioPAX: biological pathway exchange in Python. Journal of

Open Source Software, 7(71):4136, March 2022.
36. The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids

Research, 49(D1):D480–D489, 11 2020.
37. S. Razick et al. iRefIndex: A consolidated protein interaction database with provenance. BMC

Bioinformatics, 9(1):405, September 2008.
38. P. V. Hornbeck et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids

Research, 43(D1):D512–D520, December 2014.
39. D. N. Itzhak et al. Global, quantitative and dynamic mapping of protein subcellular localization.

eLife, 5:e16950, June 2016.
40. F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Re-

search, 12:2825–2830, 2011.
41. T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In

International Conference on Learning Representations (ICLR), 2017.
42. D. K. Hammond et al. Wavelets on graphs via spectral graph theory. Applied and Computational

Harmonic Analysis, 30(2):129–150, 2011.
43. M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR

Workshop on Representation Learning on Graphs and Manifolds, 2019.
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