
Biomedical data are distributed in different locations in the form of various sources. Distributed data
can be divided into horizontally or vertically partitioned data based on their distributed form. When
the sites (e.g., government agencies, business establishments, or hospitals) have the same variables
but different data subjects, the distributed data across the sites are known as horizontally partitioned
data. On the other hand, when the sites hold disjoint sets of features for the same data subjects, the
distributed data are known as vertically partitioned data. Utilizing the distributed data can increase
the generalizability of research, provide insights that can prevent disease, and deliver highly
customizable care to patients by considering more information about the patient. However, the
confidential nature and privacy issues of patient data limit the sharing of distributed data. The data
protection law in the USA, HIPAA, restricts the sharing of important data. In the European Union,
the General Data Protection Regulation established a well-formulated guideline for securing the
confidentiality and privacy of citizens.1 Additionally, Canada's PIPEDA, the UK's Data Protection
Act (PDA), and Russia's federal law on personal data reflect the growing global awareness of the
importance of data privacy and confidentiality.2-4 Patients are increasingly aware of the use of
personal data and they are reluctant to share their data. Furthermore, owners of distributed data
sources may not want to share data with other agencies, according to their institutional policies.

VdistCox: Vertically distributed Cox proportional hazards model
with hyperparameter optimization

Ji Ae Park1 and Yu Rang Park1

1Department of Biomedical Systems Informatics, Yonsei University College of Medicine,
50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea

Email: jiaepark1717@yonsei.ac.kr; yurangpark@yuhs.ac

Vertically partitioned data is distributed data in which information about a patient is distributed
across multiple sites. In this study, we propose a novel algorithm (referred to as VdistCox) for the
Cox proportional hazards model (Cox model), which is a widely-used survival model, in a vertically
distributed setting without data sharing. VdistCox with a single hidden layer feedforward neural
network through extreme learning machine can build an efficient vertically distributed Cox model.
VdistCox can tune hyperparameters, including the number of hidden nodes, activation function, and
regularization parameter, with one communication between the master site, which is the site set to
act as the server in this study, and other sites. In addition, we explored the randomness of hidden
layer input weights and biases by generating multiple random weights and biases. The experimental
results indicate that VdistCox is an efficient distributed Cox model that reflects the characteristics of
true centralized vertically partitioned data in the model and enables hyperparameter tuning without
sharing information about a patient and additional communication between sites.

Keywords: Cox proportional hazards model; vertically partitioned data; privacy protection;
hyperparameter tuning; extreme learning machine.

1. Introduction

1.1. Characteristics of biomedical data

Pacific Symposium on Biocomputing 2023

507

© 2022 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.

Geokkhim
Line

1.2. Vertically distributed survival model

Survival analysis for a time-to-event outcome (i.e., the length of time from the starting point to an
event of interest, such as mortality or disease) is widely used in biomedical research. The most
common model in survival analysis is the Cox proportional hazards model (Cox model). To utilize
the distributed data without data sharing for privacy preservation, many studies have developed
horizontally5-9 or vertically10,11 partitioned data-based distributed algorithms for deep learning or
statistical models. The various features required for predicting a patient’s prognosis do not exist in
a single institution. The features have mutually exclusive characteristics in the form of vertically
partitioned data. A patient's prognosis can be predicted more precisely by using information about
the same patient from different institutions such as hospitals, insurance companies, and government
agencies. VERTICOX11 is the only distributed Cox model based on vertically partitioned data.
VERTICOX using alternating direction method of multipliers (ADMM) has an advantage of
obtaining almost the same estimated parameter as the global model. However, the algorithm deals
with the standard Cox model with a linearity assumption, which limits its application in many real-
world data. Because the vertically partitioned data can easily become high-dimensional data and it
is difficult to confirm the interaction relationship between features distributed across sites, assuming
only a simple linear relationship can be a limitation. Furthermore, ADMM requires many iterations
(i.e., 2,000 and 1,500 for real data with 20 and 10 features) to obtain stable model parameters.

1.3. Objective

To overcome the limitation of the linearity assumption, nonparametric approaches such as neural
networks can be useful alternatives. Faraggi and Simon (1995)12 proposed an approach for modeling
survival data with a simple feed-forward neural network as the basis for a nonlinear proportional
hazards model. We used the optimization technique of extreme learning machine (ELM)13 under the
framework of Faraggi and Simon for the nonlinear Cox model. ELM has single hidden layer
feedforward neural networks (SLFNs) that randomly choose the input weights and analytically
determine the output weights. In this study, we developed a vertically distributed Cox model
(referred as to VdistCox) while avoiding the transmission of patient features, which considers
various functional forms in the Cox model using ELM, including hyperparameter tuning in a one-
shot manner.

2. Materials and Methods

2.1. Cox model in non-partitioned data

In the Cox model,14 the hazard of individual 𝑖 with risk vector 𝒙𝒊 at time t can be rewritten as the
product of a baseline hazard ℎ଴(𝑡), and a positive function of the covariates as follows:

ℎ௜(𝑡) = ℎ଴(𝑡)exp (𝑓(𝒙𝒊)), (1)
where 𝑓(𝒙𝒊) can be any function of 𝒙𝒊, and for a standard Cox model, 𝑓(𝑥௜) = 𝑥௜𝛽. In Faraggi
and Simon,12 𝑓(𝑥௜) is replaced with the output of a neural network for a nonlinear proportional
hazards model rather than a linear functional form. We consider the output of the ELM as 𝑓(𝑥௜)
under the framework of Faraggi and Simmon. ELM is an efficient learning algorithm for SLFNs
that randomly chooses the input weights and analytically determines the output weights.13

Pacific Symposium on Biocomputing 2023

508

2.2. Vertically distributed Cox model

We considered the Cox model with neural networks by replacing 𝑓(𝑥௜) in Eq. (1) with the ELM
output. The proposed model (VdistCox) is communication efficient without iterative
communication between the server and sites owing to the characteristics of ELM optimization.

To implement VdistCox, we set one of the sites as the master site, which plays the role of a
server, to aggregate the intermediate results from the sites and derive the final model. Throughout
this study, the first site was the master site. The setting of the master site does not affect the model
results. VdistCox requires the following assumptions before implementation:

 There is a unique identifier for each patient (e.g., study ID) shared across institutions.
 It is not necessary to store event and time outcome information in every site. One of the

sites stored the outcome should be the master party.
To illustrate VdistCox, some notations are summarized in Table 1.

Table 1. Summary of notations for VdistCox
Notation Description
K Number of sites
N (= 𝑛 + n෤) Number of patients
X (𝑛 × 𝑀) Feature matrix for model training
𝑋෨ (n෤ × 𝑀) Feature matrix for model validation
M Number of features distributed across K sites
L Number of nodes
S Number of randomly generated input weight
𝑅(s) ((𝑀 + 1) × L) Random matrix of s-th input weight
𝛽(𝑠) Output weight of s-th random input weight. L- dimensional vector
𝑔(.) Activation function
𝑀௞ Number of features for the k-th party, k = 1, …, K
𝑅௞(s) (𝑀௞ × L) Random matrix of s-th input weight at k site, k = 2, …, K
𝑋௞ (𝑛 × 𝑀௞) Feature matrix of 𝑘 party for model training, k = 2, …, K
𝑋෨௞ (n෤ × 𝑀௞) Feature matrix of 𝑘 party for model validation, k = 2, …, K

At the master site, N patients are randomly divided into n patients for model training and n෤
patients for model validation, and the information is shared to the other sites. The feature matrices
of the training and validation sets are denoted by

𝑋𝒌 = ቎

𝑥
ଵ(ଵା∑ ெ೔

ೖషభ
౟సభ)

⋯ 𝑥
ଵ(ଵା∑ ெ೔

ೖ
౟సభ)

⋮ ⋱ ⋮
𝑥

୬(ଵା∑ ெ೔
ೖషభ
౟సభ)

⋯ 𝑥
୬(ଵା∑ ெ೔

ೖ
౟సభ)

቏

௡×ெೖ

, 𝑋෨௞ = ቎

𝑥෤
ଵ(ଵା∑ ெ೔

ೖషభ
౟సభ)

⋯ 𝑥෤
ଵ(ଵା∑ ெ೔

ೖ
౟సభ)

⋮ ⋱ ⋮
𝑥෤

୬෥(ଵା∑ ெ೔
ೖషభ
౟సభ)

⋯ 𝑥෤
୬෥(ଵା∑ ெ೔

ೖ
౟సభ)

቏

୬෥×ெೖ

. (2)

𝑋𝟏 and 𝑋෨ଵ of the master are (𝑛 × (1 + 𝑀ଵ)) matrices in which the first column of Eq. (2) is all 1.
Each site randomly generates a hidden layer input weight matrix corresponding to the 𝑀௞ features
under a non-overlapping seed number range between sites, and the master site generates an input
weight matrix including the hidden layer bias. The random matrix on the hidden layer input weights
and biases is generated S times at each site. The s-th random matrix is denoted as

𝑅ଵ(s) =

⎣
⎢
⎢
⎡

𝑏ଵ(𝑠) … 𝑏௅(𝑠)

𝑟ଵଵ(𝑠) ⋯ 𝑟ଵ௅(𝑠)
⋮ ⋱ ⋮

𝑟ெభଵ(𝑠) ⋯ 𝑟ெభ௅(𝑠)⎦
⎥
⎥
⎤

(ଵାெభ)×௅

, 𝑅௞(s) = ቎

𝑟
(ଵା∑ ெ೔

ೖషభ
౟సభ)ଵ

(𝑠) ⋯ 𝑟
(ଵା∑ ெ೔

ೖషభ
౟సభ)௅

(𝑠)

⋮ ⋱ ⋮
𝑟

(ଵା∑ ெ೔
ೖ
౟సభ)ଵ

(𝑠) ⋯ 𝑟
(ଵା∑ ெ೔

ೖ
౟సభ)௅

(𝑠)
቏

ெೖ×௅

. (3)

Pacific Symposium on Biocomputing 2023

509

R(s), which is a centralized random matrix, is not known in reality, but it can be considered as
𝑅(s)் = [𝑅ଵ(s)்| … | 𝑅௄(s)்]. Each k site (k = 2, …, K) calculates 𝑇௞(𝑠) = 𝑋𝒌 𝑅௞(s) and
𝑇෨௞(𝑠) = 𝑋෨𝒌 𝑅௞(s) , and sends {𝑇௞(s)}௦ୀଵ

ௌ and {𝑇෨௞(s)}௦ୀଵ
ௌ to the master site. The master site

calculates 𝑇(𝑠) = ∑ 𝑇௞(𝑠)௄
௞ୀଵ and 𝑇෨(𝑠) = ∑ 𝑇෨௞(𝑠)௄

௞ୀଵ . Subsequently, the master site takes any
activation function on 𝑇(𝑠) and 𝑇෨(𝑠), and hidden layer output matrices, 𝐻(𝑠) = 𝑔(𝑇(𝑠)) of size
(𝑛 × 𝐿) and 𝐻෩(𝑠) = 𝑔(𝑇෨(𝑠)) of size (𝑛෤ × 𝐿), are derived at master site. The master site estimates L output
weights, (𝛽(𝑠))୘ = (𝛽ଵ(𝑠), 𝛽ଶ(𝑠), … , 𝛽௅(𝑠))୘, which minimizes −𝐿𝐿(𝜷(𝒔)) of Eq. (4) using the
Newton–Raphson method.

−𝐿𝐿(𝜷(𝒔)) = ෍ 𝑑௧

்

௧ୀଵ

log ቌ ෍ exp ቌ෍ 𝛽௟(𝑠)

௅

௟ୀଵ

𝑔(𝑥௝, 𝑏௟(𝑠), 𝑟௟(𝑠))൱ቍ

௝∈ℛ೟

ቍ

− ∑ ∑ ቀ∑ 𝛽௟(𝑠)௅
௟ୀଵ 𝑔(𝑥௨, 𝑏௟(𝑠), 𝑟௟(𝑠))൯ቁ௨∈𝒟೟

்
௧ୀଵ + 𝜆‖𝜷(𝒔)‖ଶ

ଶ (4)

Here, T denotes the number of distinct event times. At time t, 𝒟௧ is the event set of all samples
whose event occurs at time t, 𝑑௧ is the number of events, and ℛ௧ is the risk set of all samples who
caused the event or censoring after t. The negative log-partial likelihood in Eq. (4) for the estimation
of the output weights includes a regularization term with tuning parameter 𝜆 . The master site
computes 𝑓መ(𝑥෤) = 𝐻෩ (s)𝛽መ(𝑠). Subsequently, the concordance index15 of R(s), 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)), is
calculated using 𝑓መ(𝑥෤) as a risk score. The master site selects R(𝑠∗) and 𝛽መ(𝑠∗) as the final hidden
layer input weights, biases, and output weights of VdistCox, corresponding to s with the largest
𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)), where 𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥௦𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)). VdistCox is exactly the same as its centralized
model because 𝑇(𝑠)=∑ 𝑇௞(𝑠)௄

௞ୀଵ and 𝑇෨(𝑠)=∑ 𝑇෨௞(𝑠)௄
௞ୀଵ are the same as 𝑋𝑅(s) and 𝑋෨𝑅(s). Fig. 1

shows the overall communication process and model structure of VdistCox.
There are three hyperparameters: 𝑔(.), 𝜆, and 𝐿, in VdistCox. The activation function and the

regularization parameter can be adjusted at the master site. The two hyperparameters can be
explored by setting various candidate values after obtaining 𝑇(𝑠) and 𝑇෨(𝑠) at the master site. The
number of hidden nodes affects the size of the random matrix R; moreover, an additional
communication between the master site and other sites is required to consider various L values. A
more efficient method is to generate {𝑅௞(s)}௦ୀଵ

ௌ of size (𝑀௞ × 𝐿௠௔௫) by setting the maximum
number of nodes, 𝐿௠௔௫. Subsequently, 𝑅௞(s) is divided into various sizes of (𝑀௞ × 𝐿ଵ), (𝑀௞ × 𝐿ଶ),
…, and (𝑀௞ × 𝐿௠௔௫) at the master site, where 𝐿ଵ< 𝐿ଶ< … < 𝐿௠௔௫. The number of nodes is adjusted
by generating 𝑅௞(s) of various sizes. Therefore, all three hyperparameters can be explored within
one communication between the master site and other sites.

2.3. Experimental Settings

Two simulations were performed to confirm the characteristics of VdistCox in a vertically
distributed setting, assuming two sites and four features. It was assumed that x1 and x2 are at site 1,
x3 and x4 are at site 2, and site 1 is the master site with outcomes.

For various simulated data generations, the function of Eq. (1) was considered as follows:
 𝑓௟ (Linear): 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ+𝛽ଷ𝑥ଷ+𝛽ସ𝑥ସ

 𝑓௤ (Quadratic + interaction): 𝛽ଵ𝑥ଵ
ଶ + 𝛽ଶ𝑥ଶ

ଶ+𝛽ଷ𝑥ଷ
ଶ+𝛽ସ𝑥ସ

ଶ + 𝛽ହ𝑥ଵ𝑥ଷ+𝛽଺𝑥ଶ𝑥ସ

 𝑓௚ (Gaussian + interaction):

Pacific Symposium on Biocomputing 2023

510

𝑙𝑜𝑔(5) 𝑒𝑥𝑝 ቆ−
𝑥ଵ

ଶ + 𝑥ଶ
ଶ

2(0.5)ଶ
ቇ + 𝑙𝑜𝑔(5) 𝑒𝑥𝑝 ቆ−

𝑥ଷ
ଶ + 𝑥ସ

ଶ

2(0.5)ଶ
ቇ + 𝛽ଵ𝑥ଵ𝑥ଶ + 𝛽ଶ𝑥ଷ𝑥ସ

We set [0.5, 1, 0.5, 1] as [𝛽ଵ, 𝛽ଶ, 𝛽ଷ, 𝛽ସ] of 𝑓௟ , [2, 1, 2, 1, 1, 1] as [𝛽ଵ, 𝛽ଶ, 𝛽ଷ, 𝛽ସ, 𝛽ହ, 𝛽଺] of 𝑓௤ , and
[1, 1] as [𝛽ଵ, 𝛽ଶ] of 𝑓௚. 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, and 𝑥ସ were randomly generated from a uniform distribution, U(-
1, 1). The baseline hazard was derived from a Weibull distribution with a scale of 20 and a shape of
5. Given 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝛽’s, and the baseline hazard, the event rate was set to 30%.

In the first simulation, we confirmed whether VdistCox can represent the true function by setting
𝑓௟ and 𝑓௤or whether the interaction relationship between the vertically partitioned features can be
elucidated. We manually selected the hyperparameter setting in this first simulation under several
settings without a criterion for the hyperparameter optimization as follows: 10, 30, 100, and 300 for
the hidden node, TanHRe, Sigmoid, ELU, Softplus, and LReLU16 for the activation function, and
0.1, 10, 100, and 300 for the regularization parameter. (Sigmoid, 30, and 300 in the setting of 𝑓௟)
and (Softplus, 30, and 0.1 in the setting of 𝑓୯) were selected as the activation functions L, and 𝜆,
respectively. The size of the simulated data was set to N = 2000, and the training and validation sets
were randomly divided in an 8:2 ratio. S was set to 100.

In the second simulation, the results of VdistCox based on various hyperparameter settings were
explored under the settings of 𝑓௟ and 𝑓௚ . As discussed in Section 2.2, to proceed with the
hyperparameter tuning without additional communication, 𝐿௠௔௫ was set to 300, and 10, 30, 100,
and 300 hidden nodes were considered. TanHRe, Sigmoid, ELU, Softplus, and LReLU16 were
considered as the activation functions, and the values of 0.1, 10, 100, and 300 were considered as
the regularization parameters. We explored the results of the hyperparameter settings for 4 hidden
nodes×5 activation functions×4 regularization parameters = 80. The size of the second simulated
data was set to N = 1500, out of which the external (N = 500) dataset was randomly extracted and
then randomly divided into training (N = 800) and validation (N = 200) from the remaining N =
1000. In each function setting, S was set to 100, and the distribution of the 100 performances in the
validation set under 80 hyperparameter settings was confirmed. We selected four hyperparameter
settings from each of 𝑓௟ and 𝑓௚ , based on the following criteria among the 80 hyperparameter
settings:
1. Activation function: By comparing the Cindex(R(s*)) values of five activation functions under

L = 10, two activation functions with the largest and smallest values were selected.
2. L and 𝜆: In the two selected activation functions, among the total L and 𝜆 combinations of 16,

two combinations with the largest or smallest values of Cindex(R(s*)) were selected.

Fig. 1 Illustration of the VdistCox. (A) Model structure. (B) Process of communication.

Pacific Symposium on Biocomputing 2023

511

 In addition, we compared the performance of the test set between the centralized standard Cox
model and the proposed model under the four hyperparameter settings selected for each function.
The results were confirmed according to s*, smin, and smed to examine the advantage of generating
the random input matrix S times, where 𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥௦𝐶𝑖𝑛𝑑𝑒𝑥 (𝑅(s)), 𝑠௠௜௡ =

𝑎𝑟𝑔𝑚𝑖𝑛௦𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)), and 𝑠௠௘ௗ is s when 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)) has a median value. The centralized
standard Cox model was performed with N = 1,000, combined with both training and validation sets.
For the second simulation, 100 different simulated data were generated. The four hyperparameter
settings based on the aforementioned two criteria were selected using the first simulated data among
100 simulated data. The 100 simulations were performed under the selected four hyperparameter
settings and the results thus obtained were compared with those of the standard Cox model.

Furthermore, we confirmed the validity of VdistCox with real-data using electronic Intensive
Care Unit (eICU) Collaborative Research Database.17 We considered 27 factors included in Acute
Physiology, Age, and Chronic Health Evaluation (APACHE) scores as features and the length of
stay from the date of ICU admission to the date of mortality during the ICU stay as the outcome of
the Cox model. We extracted 2,486 stays with all 27 features and outcomes, hospitals corresponding
to the number of beds ≥500, and Caucasians; 19 hospitals were included in 2,486 stays. We
randomly selected 486 stays as the test set, and divided 2,000 stays 8:2 into the training and
validation sets. The comparative analysis with the standard Cox model was also performed using
the eICU data, and the same 2,000 stays were used for both VdistCox and the standard Cox model.
After setting the centralized eICU data with 2,000 stays and 27 features, two vertical sites were
assumed. Site 1 was a master site with 14 features and outcomes, where site 2 was a site with only
13 features. For hyperparameter setting, 𝐿௠௔௫ was set to 500, and 10, 30, 100, 300, and 500 hidden
nodes were considered. As the activation functions, the five functions were used in the same manner
as the simulation, and six regularization parameters of 0.1, 10, 100, 300, 500, and 1,000 were
considered. Hyperparameter settings of 5 hidden nodes × 5 activation functions × 6 regularization
parameters = 150 were explored.

VdistCox was implemented with R software and the source code is available from the authors
upon request.

3. Results

3.1. Simulations

Fig. 2 shows the results of the first simulation. The contour plot shows the relationship between 𝑥ଵ
and 𝑥ଷ when 𝑥ଶ and 𝑥ସ are zero and the relationship between 𝑥ଶ and 𝑥ସ when 𝑥ଵ and 𝑥ଷ are zero. In
addition, graphs (a) to (h) confirm that the proposed model adequately describes the interaction
relationship between variables under 𝑅(𝑠∗) and 𝛽መ(𝑠∗). The graphs in (a) and (b) represent the results
of 𝑓መ௟ , which is the output of VdistCox, according to xଵ when xଷ is -1 and xଷ is 1, where 𝑓௟ =

0.5𝑥ଵ+0.5𝑥ଷ. Because xଵ and xଷ have no interaction, the slopes of the graphs of (a) and (b) should
not change regardless of whether x3 is -1 or 1, and the results reflect this fact efficiently. In addition,
(c) and (d) show the result of 𝑓መ௟ according to xଶ when xସ is -1 and xସ is 1, where 𝑓௟ = 𝑥ଶ+𝑥ସ, and
they have a parallel shape with no change in the slope. The true slopes of (a) and (b) are smaller
than those of (c) and (d), which is also reflected in the results. In the setting of 𝑓௤= 2xଵ

ଶ + 2xଷ
ଶ +

Pacific Symposium on Biocomputing 2023

512

xଵxଷ, the results of VdistCox represent the true functions of x1 and 𝑓௤ when x3 is -1 and x3 is 1 (see
the results of graphs (e) and (f)). Further, because the interaction of x1 and x3 exists, the vertices of
(e) and (f) are different under the same quadratic function. In 𝑓௤= xଶ

ଶ + xସ
ଶ + xଶxସ, when x4 is -1

and x4 is 1, (g) and (h) on the graph of 𝑓መ௤ according to x2 have different vertices under the same
quadratic function form owing to the interaction of x2 and x4. The true coefficient of quadratic terms
(e) and (f) is larger than that of (h) and (g), and the result of VdistCox efficiently reflects the true
relationship, as (e) and (f) are more concave than (h) and (g).

Fig. 2. Simulation results under (A) 𝑓௟ and (B) 𝑓௤. Site 1 stores 𝑥ଵ and 𝑥ଶ and Site 2 stores 𝑥ଷ and
𝑥ସ. 𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥௦𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)), 𝑠௠௜௡ = 𝑎𝑟𝑔𝑚𝑖𝑛௦𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(s)), The true functions of a (black solid), b (black
dashed), c (grey solid), d (grey dashed), e (black solid), f (black dashed), g (grey solid), and h (grey dashed) are

𝑓(𝑥) = 0.5𝑥ଵ − 0.5, 𝑓(𝑥) = 0.5𝑥ଵ + 0.5, 𝑓(𝑥) = 𝑥ଶ − 1, 𝑓(𝑥) = 𝑥ଶ + 1, 𝑓(𝑥) = 2𝑥ଵ
ଶ − 𝑥ଵ + 2, 𝑓(𝑥) = 2𝑥ଵ

ଶ +
𝑥ଵ + 2, 𝑓(𝑥) = 𝑥ଶ

ଶ − 𝑥ଶ + 1, and 𝑓(𝑥) = 𝑥ଶ
ଶ + 𝑥ଶ + 1, respectively.

Fig. 3 and 4 show the results of the second simulation. Fig. 3 shows the distribution of 100
Cindex (R(s))s at 80 hyperparameter settings. In the linear function setting, the performance
distribution tended to increase as 𝜆 increased from 0.1 to 300. Additionally, as the number of nodes
increased, the distribution of the performance did not significantly increase. Moreover, the value of
Cindex(R(s*)) was overall large in the Sigmoid among the five activation functions. However, in
the nonlinear setting, as λ was small and the number of nodes increased, the performance generally
increased. The LReLU had a high overall performance distribution compared to the other activation
functions. The change in performance according to hyperparameter selection is larger in the
nonlinear function than in the linear function. According to the two criteria of hyperparameter
selection described in Section 2.3, in the linear function, Sigmoid was selected as the activation
function with max(Cindex(R(s*))), and TanHRe was selected as the activation function with
min(Cindex(R(s*)). The four settings of Sigmoid/L = 30/𝜆 = 300, Sigmoid/L = 300/𝜆 = 0.1,
TanHRe/L = 10/𝜆 = 300, and TanHRe/L = 300//𝜆 = 0.1 were selected as the hyperparameter settings
with 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠∗)) values of 0.8610, 0.8287, 0.8510, and 0.8143, respectively. In the nonlinear
function, LReLU was selected as the activation function with max(𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠∗)), and TanHRe
was selected as the activation function with min(𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠∗)). The four settings of LReLU/L =
30/𝜆 = 0.1, LReLU/L = 30/𝜆 = 300, TanHRe/L = 30/𝜆 = 0.1, and TanHRe/L = 100/𝜆 = 300 were

Pacific Symposium on Biocomputing 2023

513

selected as the hyperparameter settings with 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠∗)) values of 0.7405, 0.5381, 0.7033, and
0.4711.

Fig. 4 shows the distribution of 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠∗)), 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠௠௘ௗ)), and 𝐶𝑖𝑛𝑑𝑒𝑥(𝑅൫𝑠௠௜௡൯) in
the validation and test sets of 100 simulations performed under four settings selected from linear
and nonlinear, respectively. In a linear setting, the standard Cox model, which can be viewed as a
true model, showed a higher performance distribution than VdistCox, and the performance results
of 𝑠∗ and 𝑠௠௘ௗ were similar. The two hyperparameter settings of Sigmoid/L = 30/𝜆 = 300 and
TanHRe/L = 10/𝜆 = 300, which showed similar performance in the validation set, showed similar
performance in the test set, and the performance distributions 𝑠∗ and 𝑠௠௘ௗ in the two settings were
similar to that of the standard Cox model. The 𝑠∗ of Sigmoid/L = 30/𝜆 = 300 showed the highest
performance, with an average performance of 0.7821. The average performance of the standard Cox
model is 0.7860. In all settings of nonlinear function of Fig.4, 𝑠∗, 𝑠௠௘ௗ, and 𝑠௠௜௡ showed a higher
distribution of performance for the test set than the standard Cox model. The two hyperparameter
settings of LReLU/L = 30/𝜆 = 0.1 and TanHRe/L = 30/𝜆 = 0.1, which showed similar performance
in the validation set, showed similar performance in the test set, and the 𝑠∗ of LReLU/L = 30/𝜆 =
0.1 showed the highest performance with an average performance of 0.6677. In both the linear and
nonlinear functions, 𝑠∗ under the hyperparameter setting, which had the highest performance in the
validation set, showed the highest performance in the test set on average.

3.2. Real data

Additionally, we explored 150 hyperparameter settings to confirm validity in real data, and four
settings of ELU/L = 300/λ = 1000, ELU/L = 500/λ = 0.1, Sigmoid/L = 500/λ = 10, and Sigmoid/L
= 500/λ = 0.1 were selected. As summarized in Table 2, the differences in performance in the
validation and test sets between the four settings was quite large. Similar to the simulation results,
the performance in the test set was also the highest at ELU/L = 300/λ = 1000, which had the highest
performance in the validation set; smed and s* in this setting showed higher performance than the
standard Cox model.

Fig. 3. Simulation results on distribution of {𝐶𝑖𝑛𝑑𝑒𝑥(𝑅(𝑠))}௦ୀଵ
ଵ଴଴ at each hyperparameter setting under (A) 𝑓௟ and (B)

𝑓௚ settings. Dashed boxes represent selected four hyperparameter settings based on the two criteria described in
section 2.3.

Pacific Symposium on Biocomputing 2023

514

Fig. 4. Results on performances distribution in validation and test sets based on 100 simulations
under the four hyperparameter settings of (A) 𝑓௟ and (B) 𝑓௚. Dashed boxes represent the best results of performance

among four hyperparameter settings.

Table 2. Results of performance as measured by the C-index in validation and test sets under vertical two sites setting
based on eICU dataset.

VdistCox

ELU Sigmoid

300/1000 (L/𝜆) 500/0.1 (L/𝜆) 500/10 (L/𝜆) 500/0.1 (L/𝜆)
validation test validation test validation test validation test

smin 0.8170 0.7149 0.4216 0.4458 0.7938 0.7162 0.2563 0.4253
smed 0.8296 0.7204 0.5419 0.5086 0.8144 0.7154 0.3686 0.4686
s* 0.8466 0.7294 0.7440 0.6017 0.8422 0.7159 0.7539 0.6502

Standard Cox model test: 0.7160

Bold represents the best results in the validation and the test sets in VdistCox.

4. Discussion

VdistCox shares only the value obtained by multiplying the feature value by the random value
independently generated at each site in a privacy-preserving manner, and it has an efficient process
that requires only one communication between the master site and other sites. Because VdistCox
derives the exact same model as its centralized model without data sharing, it can provide a stable
distributed model if the centralized ELM-based Cox model is valid. We confirmed the validity and
characteristics of the proposed model through experiments using simulated and real data.

According to the results of the first simulation (Fig.2), VdistCox showed the real functional form
between the variables, and it also reflected the interaction relationship between the vertically
partitioned features.

To overcome the instability caused by the randomness, of the input weights and hidden biases,
we generated the matrix of random input weights and hidden biases S times and selected the best
random matrix among them. In the results of the performance of the test and validation sets of the
second simulation (Fig.4), the performance of s*and smed was similar in the linear function setting,
however it was different in the nonlinear function setting. This indicates that it is efficient to generate
the R matrix multiple times in the nonlinear function setting. However, even in the nonlinear
function, there was no difference in the performances of s*and smed depending on the hyperparameter
selection (in the case of LReLU/L = 30/λ = 0.1). This means that hyperparameter selection could be

Pacific Symposium on Biocomputing 2023

515

a more important factor than the randomness of R. However, exploring multiple R can prevent
choosing the worst random weights. The results for the performance of smin were worse compared
to those of s*and smed in all cases. However, in the results on real data (Fig.4), the performance on
the test set of smin was slightly better than that of s*and smed in Sigmoid/L = 500/λ = 10. This indicates
that the selection of a random value with good performance in the validation dataset may be a
selection with low generalizability in external validation. However, considering the overall results,
the best performance on the test dataset was s*.

Hyperparameter tuning can be crucial for obtaining a good trade-off between accuracy and
convergence in models with neural networks; it could affect the quality of the learned model.18 To
train a distributed model under different hyperparameter settings, many computing resources are
required, and the evaluation of hyperparameters is extremely expensive for a large-scale distributed
dataset.19 In the framework of VdistCox, the three hyperparameters can be explored without
additional communication between the master and other sites after obtaining the T and 𝑇෨ matrices
at the master site. The importance of hyperparameter selection was confirmed through experiments.
The results of the second simulation showed a large difference in performance according to the 80
hyperparameter settings, and the importance of the hyperparameter was greater in the nonlinear
function than in the linear function settings (Fig. 3). Further, we confirmed that the setting with good
performance in the validation set also showed good performance in the test set (Fig.4 and Table 1).
Assuming a distributed model with iterative communication, if we want to explore 80
hyperparameter settings, the distributed model will have to be run 80 times, which consumes a
significant amount of computing resources. In VdistCox, a wide range of hyperparameter choices
can be implemented in a one-shot manner.

Comparing the results of VdistCox and the centralized standard Cox model, in the linear function
setting of the second simulation, VdistCox (Sigmoid/L = 30/𝜆 = 300) showed a similar performance
to the standard Cox model, which is a true model. In addition, in real data where the true function
is unknown, the performance of VdistCox (ELU/ L = 300/ 𝜆 =1000) was higher than that of the
standard Cox model, which may indicate that the true relationship between the 27 features is not
linear. Vertically partitioned data combines features of various characteristics for the same patient
from different sites. Therefore, compared to the data from a single site, the number of features in
vertically partitioned data is more likely to become high dimensional, and the 𝑓(𝑥௜) of Eq. (1)
cannot be determined in advance because we cannot distinguish which interaction exists between
the numerous distributed variables. Compared to the standard Cox model based VERTICOX, the
VdistCox may flexibly reflect 𝑓(𝑥௜) based on the real data characteristics in the distributed data that
is difficult to share between the sites. Additionally, there is a possibility that the number of features
exceeds the number of patients in vertically partitioned data in which only the number of features
increases in a certain patient group (N<<M). In these data characteristics, the parameter estimation
in the standard Cox model may become unstable and the accuracy of prediction may decrease.
Therefore, compared to VERTICOX, which aims to accurately estimate the parameter of the
standard Cox model, the VdistCox can provide a stable predictive model in high-dimensional
vertically partitioned data of N<<M. Moreover, VERTICOX requires several iterations to obtain
stable parameter estimates (i.e., 2,000 and 1,500 for real data with 20 and 10 features). By contrast,
VdistCox requires only one communication including hyperparameter optimization.

Pacific Symposium on Biocomputing 2023

516

In this study, we confirmed the characteristics and validity of our novel model, VdistCox.
However, because it was performed using restricted simulated and real data, it is possible that the
validity of VdistCox has not been sufficiently proven in this paper. Additionally, we have not
proposed an index that can interpret the influence of features such as the hazard ratio provided by
the VERTICOX. However, in the results of the first simulation, the relative influence between
features from VdistCox were identified. For example, in the setting of 𝑓௟, true 𝛽ଵ and 𝛽ଶ were set to
0.5 and 1, respectively, and the slope of 𝑥ଶ was greater than that of 𝑥ଵ in (a) to (d) of Fig. 2.
Furthermore, in the setting of 𝑓௤, true 𝛽ଵ and 𝛽ଶ were set to 2 and 1, respectively, and the concave
degree of 𝑥ଵ was greater than that of 𝑥ଶ in (e) to (h) of Fig. 2. Explaining the influence of each
feature in terms of interpretation of the model is important and further discussion in VdistCox on
the interpretation is required.

5. Conclusion

The model proposed in this study, VdistCox, is communication-efficient vertically distributed Cox
model by sharing once the intermediate results that are obtained by multiplying the features of each
site to the input weight randomly generated at each site, while avoiding data sharing. In VdistCox
using ELM, we proposed generating random input weights multiple times and a hyperparameter
tuning process. In our experiments, the importance of randomness on input weights and
hyperparameter selection depended on the data type (e.g., linear or nonlinear relationship between
features). However, because confirming the true relationship between features in a real vertically
distributed environment is difficult, considering multiple random input weights and hyperparameter
tuning can be an effective means for a stable vertically distributed Cox model.

6. Acknowledgments

This work was supported by the Bio-Industrial Technology Development Program (20014841) and
funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea). This research was
supported by a grant of the Korea Health Technology R&D Project through the Korea Health
Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of
Korea (grant number : HI19C1330).

References

1. Oya Beyan, Ananya Choudhury, Johan van Soest, Oliver Kohlbacher, Lukas Zimmermann,
Holger Stenzhorn, Md. Rezaul Karim, Michel Dumontier, Stefan Decker, Luiz Olavo Bonino da
Silva Santos, Andre Dekker; Distributed Analytics on Sensitive Medical Data: The Personal Health
Train. Data Intelligence 2020; 2 (1-2): 96–107. doi:
2. Office of the Privacy Commissioner of Canada. The Personal Information Protection and
Electronic Documents Act (PIPEDA). Available at: https://www.priv.gc.ca/en/privacy-
topics/privacy-laws-in canada/the-personal-information-protection-and-electronic-documents-act-
pipeda/.
3. The Data Protection Act. Available at: https://www.gov.uk/data-protection.

Pacific Symposium on Biocomputing 2023

517

4. Federal Law of 27 July 2006 N 152-FZ on Personal Data. Available
at: https://pd.rkn.gov.ru/authority/p146/p164/.
5. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication efficient
learning of deep networks from decentralized data. In A. Singh and X. J. Zhu, editors, Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-
22 April 2017, Fort Lauderdale, FL, USA, volume 54 of Proceedings of Machine Learning Research,
pages 1273–1282. PMLR, 2017. URL http://proceedings. mlr.press/v54/mcmahan17a.html.
6. K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J.
Konecný, S. Mazzocchi, H. B. McMahan, T. V. Overveldt, D. Petrou, D. Ramage, and J. Roselander.
Towards federated learning at scale: System design. CoRR, abs/1902.01046, 2019. URL
http://arxiv.org/abs/1902.01046
7. Lu C, Wang S, Ji Z, Wu Yuan, Xiong Li, Jiang Xiaoqian, Ohno-Machado Lucila. WebDISCO: a
web service for distributed cox model learning without patient-level data sharing. J Am Med Inform
Assoc. 2015 Nov;22(6):1212–9. doi: 10.1093/jamia/ocv083.
8. Duan R. Learning from local to global-an efficient distributed algorithm for modeling time-to-
event data. bioRxiv. 2021 doi: 10.1101/2020.03.04.977298.
9. PARK, Ji Ae, et al. Weight-Based Framework for Predictive Modeling of Multiple Databases
With Noniterative Communication Without Data Sharing: Privacy-Protecting Analytic Method for
Multi-Institutional Studies. JMIR medical informatics, 2021, 9.4: e21043.
10. S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, and B. Thorne. Private
federated learning on vertically partitioned data via entity resolution and additively homomorphic
encryption. CoRR, abs/1711.10677, 2017. URL http://arxiv.org/abs/1711.10677.
11. DAI, Wenrui, et al. VERTICOX: Vertically Distributed Cox Proportional Hazards Model Using
the Alternating Direction Method of Multipliers. IEEE Transactions on Knowledge and Data
Engineering, 2020.
12. Faraggi, D. and Simon, R. (1995). A neural network model for survival data. Statistics in
medicine, 14(1):73–82.
13. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004, July). Extreme learning machine: a new learning
scheme of feedforward neural networks. In 2004 IEEE international joint conference on neural
networks (IEEE Cat. No. 04CH37541) (Vol. 2, pp. 985-990). Ieee.
14. K. Dietz et al., Stat. Biol. Health Logistic Regression SelfLearn. Text., vol. 2, pp. 102–124, 2002.
15. UNO, Hajime, et al. On the C‐statistics for evaluating overall adequacy of risk prediction
procedures with censored survival data. Statistics in medicine, 2011, 30.10: 1105-1117.
16. RATNAWATI, Dian Eka, et al. Comparison of activation function on extreme learning machine
(ELM) performance for classifying the active compound. In: AIP Conference Proceedings. AIP
Publishing LLC, 2020. p. 140001.
17. Le Gall J. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North
American Multicenter Study. JAMA 1993 Dec 22;270(24):2957.
18. CHARLES, Zachary; KONEČNÝ, Jakub. On the outsized importance of learning rates in local
update methods. arXiv preprint arXiv:2007.00878, 2020.
19. KAIROUZ, Peter, et al. Advances and open problems in federated learning. Foundations and

Trends® in Machine Learning, 2021, 14.1–2: 1-210.

Pacific Symposium on Biocomputing 2023

518

