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Groups of distantly related individuals who share a short segment of their genome identical-
by-descent (IBD) can provide insights about rare traits and diseases in massive biobanks
using IBD mapping. Clustering algorithms play an important role in finding these groups
accurately and at scale. We set out to analyze the fitness of commonly used, fast and scalable
clustering algorithms for IBD mapping applications. We designed a realistic benchmark for
local IBD graphs and utilized it to compare the statistical power of clustering algorithms
via simulating 2.3 million clusters across 850 experiments. We found Infomap and Markov
Clustering (MCL) community detection methods to have high statistical power in most
of the scenarios. They yield a 30% increase in power compared to the current state-of-
art approach, with a 3 orders of magnitude lower runtime. We also found that standard
clustering metrics, such as modularity, cannot predict statistical power of algorithms in IBD
mapping applications. We extend our findings to real datasets by analyzing the Population
Architecture using Genomics and Epidemiology (PAGE) Study dataset with 51,000 samples
and 2 million shared segments on Chromosome 1, resulting in the extraction of 39 million
local IBD clusters. We demonstrate the power of our approach by recovering signals of
rare genetic variation in the Whole-Exome Sequence data of 200,000 individuals in the
UK Biobank. We provide an efficient implementation to enable clustering at scale for IBD
mapping for various populations and scenarios.
Supplementary Information: The code, along with supplementary methods and figures
are available at https://github.com/roohy/localIBDClustering

Keywords: Clustering; Community Detection; Identity-By-Descent; Comparative Analysis;
Genome-wide Association Studies; Benchmark; Clustering Metrics.

1. Background

Finding structure in networks, known as community detection, or clustering, has a wide range
of biomedical applications.1–3 Recently, clustering algorithms have been applied in the context
of Identity-By-Descent (IBD) mapping4,5 as an alternative approach for rare variant associ-
ation testing that leverages genotype data in the absence of directly observed variation for
genomic discovery. This method relies on shared haplotypes along the genome co-inherited
identically from a recent common ancestor and utilizes them as the basis for association test-
ing, under the assumption that the haplotypes may co-harbour recently arisen rare variation
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not directly captured on genotyping arrays. In this process, as illustrated in Figure 1, the chro-
mosome is first divided into consecutive windows. For each window, a graph of IBD sharing is
generated, which we refer to as a local IBD graph. In these graphs, samples are represented as
nodes and IBD sharing is represented by edges connecting the respective nodes carrying the
shared haplotype. False-positive and false-negative edges, artifacts of errors in genotyping,
phasing, and IBD estimation, add noise to these graphs. Clustering algorithm are used to
refine them and consecutively the IBD information they represent. IBD sharing groups can
then be tested for phenotype enrichment. In a study of individuals from the United Kingdom,
Gusev et al.4 found that, empirically, IBD mapping can yield up to forty times more statis-
tical power than standard genome-wide association analyses (GWAS) in tagging rare genetic
variation through recovering known and novel associations with binary phenotypes, especially
in founder populations. Browning et al.6 also replicated the results of a GWAS study via IBD
mapping. Kenny et al.7 used IBD mapping to fine-map known associations with plasma plant
sterol levels in an isolated founder island population in Kosrae. Finally, Belbin et al.8 identified
the source of a common collagen disease in the Puerto Rican population of BioMe biobank.

Fig. 1. A general schema of the IBD mapping process that can help identify shared haplotypes
carrying rare causal variants. Haplotypes of the same color are inherited from the same ancestor.

There has been a plethora of innovations in clustering techniques, due to their increased
importance.9–13 New clustering methods have been proposed to address the size of social net-
works and internet hosts, which have grown to many millions of nodes in the past decade;14–16

or to find new community structures that reflect the underlying data more accurately.17,18 The
emergence of large biobanks necessitates the employment of such new clustering techniques
in the context of IBD-mapping. Yet, it remains unclear how advancements in community
detection methods translate to this process, where the unique structural properties of local
IBD graphs does not resemble that of common graphs analyzed in other fields of study. In
this manuscript, we address this problem in three main aspects. First, we conduct a thorough
analysis of the characteristics of local IBD graphs, and design a novel benchmark that realis-
tically represents them. Second, we conduct a translational study of clustering metrics to IBD
mapping related metrics to investigate their efficacy. Third, and most importantly, we evaluate
both the power and scalability of common clustering algorithms in large datasets using both
our benchmark and real data. By combining these aspects, we propose a methodical approach
to find the most powerful algorithm for any datasets.
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2. Methods

2.1. Characterization of the Local IBD Graphs

Common benchmark graphs such as those introduced by Lancichinetti et al.,19 and Girvan
and Newman,18 are used to evaluate clustering methods in a variety of fields.20 However,
they should not be used to simulate local IBD graphs, mainly due to the properties of the
local IBD relationships that generates these graphs. The topology of a graph that represents
a relation between entities of a set is dictated by the properties of the relation. Local IBD
relation is transitive. Thus, under ideal conditions, the local IBD relation can be represented
as disjointed sets or cliques. In practice, false-positive and false-negative edges obfuscate these
cliques, necessitating a graph representation. The goal in the clustering of local IBD graphs
is to recover these well-defined cliques.

Noisy transitivity of local IBD relations results in uncommon graph properties. We look
at the “small-world” property as an example.21,22 This property cannot be calculated for
local IBD graphs since, even before clustering, they are highly disconnected. For example,
the local IBD graphs of chromosome 1 in the ”Population Architecture using Genomics and
Epidemiology” (PAGE) dataset23 each have 13,961 connected components on average across
7952 local IBD graphs tested on chromosome 1, with an average of 3.74 nodes per connected
component. In contrast, common benchmarking algorithms often generate a single connected
component.19

Cluster size distribution is another area of difference between local IBD graphs and others.
The LFR benchmark19 only supports cluster size distributions that follow the power law.
Estimating the local IBD cluster sizes using power law results in unrealistically low numbers
of small clusters. A fitted power law distribution24 underestimated the number of cluster
sizes for clusters with less than thirteen members in PAGE dataset by a factor of ten (χ2

p-value = 3 × 10−14). Cluster size distribution affects the statistical power of Louvain and
Leiden clustering algorithms.25 Thus, using power law distributions (as is common in graph
benchmarking19) for our simulations would result in an erroneous evaluation of the fitness of
clustering algorithms to recover local IBD communities.In the supplementary methods section
2.1, we describe our clique-centric benchmark that takes the specific properties of local IBD
clusters into account and simulates phenotype for power analysis.

2.2. Metrics

Clustering metrics help analyze various properties of the recovered clusters that are either
related to the inherent features of the clusters, such as the density of connections in the
clusters, or their concordance with the true structure of the graph, such as the number of
nodes that are in the same clusters as they are in the ground truth. We call the first group
feature-based metrics in this manuscript to distinguish them from metrics that are based on
ground truth. For local IBD clustering, it is important to calculate how much the results
reflect the true structure of the cliques underneath the noise and errors. We studied 4 metrics
based on ground truth, along with 6 feature-based metrics, since ground truth is often not
available for real datasets. A full list and description of metrics is available in supplementary
methods section 2.2.
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2.3. Clustering Methods

We analyze five algorithms in three categories based on their methodology: Highly Connected
Subgraphs(HCS)–the clustering algorithm used by DASH,4 Louvain,26 Leiden,27 Infomap,28

and Markov Clustering Algorithm (MCL).29 Detailed description of these algorithms is avail-
able in supplementary method section 2.3. Every tested algorithm, except for HCS, is scalable
to large datasets,30 and can analyze our largest simulated dataset with 11,000 clusters in less
than 5 minutes on average on our workstation running CentOS Linux release 7.4.1708 with
128 GB of memory and Intel® Xeon® Processors E5-2695 v2 (2.4 GHz) on a single thread.

3. Results

3.1. Performance on Simulated Data

Using our benchmark algorithm, we generated 750 graphs with a range of cluster counts,
false-positive, false-negative rates, and phenotype prevalences, described in Supplementary
Methods section 2.1.1, that added up to a total of 2,274,500 clusters with more than 6 million
nodes across all simulated experiments. Our results show that this benchmark simulates the
disjointedness of local IBD graphs, unlike the LFR algorithm (Supplementary Figure 2).

3.1.1. Clustering Metrics

We ran the clustering algorithms on the simulated datasets. We then calculated the scores
achieved by every method for each metric. We calculated the Pearson correlation coefficients
and R2 scores31 between metrics to see whether, and to what degree, each clustering metric
is associated with statistical power. The results are displayed in Figure 2 and Supplementary
Figure 1.

Fig. 2. R2 scores among clustering metrics across all simulations.

Among all metrics, AMI has the highest concordance with statistical power, explaining 79%
of the variation of the power score. Among the feature-based metrics, missing intra-cluster edge
rate has the highest R2 score of 29% with statistical power, while highly connected rate had the
lowest score. While generating denser subgraphs with less missing edges is important to gain
power, focusing solely on the density and ignoring coverage will counter those effects, resulting
in lower power. Modularity showed a weak association with statistical power (R2 = 0.14)
compared to missing intra-cluster edge rate. This suggest that partitioning a graph into highly
modular subgraphs (through optimizing modularity) does not necessarily result in clusters
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that represent the true IBD communities in the underlying population. While optimizing
modularity is advantageous in finding large non-clique-like communities,32 local IBD graphs
are both clique-like and often smaller in scale. This high percentage of small cliques results
in a discordance between modularity and power scores. If instead of a realistic cluster size
distribution, we use a uniform distribution (resulting in a higher number of large clusters),
the R2 score for modularity and statistical power rises to 0.34 (from 0.15) and the gap between
modularity/power and AMI/power R2 scores decreases from 0.63 with realistic distribution,
to 0.49 with the uniform distribution. At the same time AMI/power R2 score increases only
slightly to 0.83, compared to the 100% increase in modularity/power R2 score.

The observed discordance between modularity and power in our experiments can also be
explained through the concept of ”resolution-limit” in modularity optimization, i.e., the in-
ability of modularity optimizing methods in detecting fine-grained clusters. Fortunato and
Barthelemy found that the modularity score for a clustering is not only dependant on the
structure of the graph, but also on the expected maximum possible modularity of any random
graph with the same number of edges, as modularity optimization fails to capture clusters that
have an order of magnitude fewer edges compared to the total number of edges in the graph.25

This results in smaller clusters getting collapsed into other clusters via the optimization pro-
cess. Small, clique-like structure of local IBD graphs intensifies the effects of this phenomenon
on the performance of modularity metrics and methods optimizing it.

Fig. 3. The effects of number of simulated clusters, false-positives, and false-negatives edges on the
performance of algorithms in terms of (A) power, (B) AMI, and (C) modularity.

Our results show that purity is unfit for our IBD clustering purposes. Regardless of the true
underlying structure, a more granular clustering always yields a higher purity score. MCL5,
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a clustering approach that has the fifth best performance in statistical power (Figure 3A)
repeatedly gains the highest purity score, due to over-clustering, suggesting that purity score
in the absence of others can be misleading and uninformative.

While AMI score is the best indicator of statistical power among the metrics we tested,
due to the effects of smaller clusters (with less than 10 nodes), its concordance with statistical
power is imperfect. As further demonstrated by the performances of MCL2 and MCL3 in Fig-
ure 3, compared to statistical power (Figure 3A), the gap between MCL3 and top performing
methods is less pronounced for the AMI scores (Figure 3B). Moreover, MCL2 performance
increases and surpasses the performance of Infomap and MCL1.5 in terms of AMI score com-
pared to the statistical power. The same issue, together with a high baseline, severely affects
the performance of NMI as well. Compared to AMI scores, the gap in the NMI scores of MCL
algorithms and Infomap is even less pronounced (Supplementary Figure 6).

Another disadvantage of the AMI metric is its reliance on the existence of ground truth
data. However, in the absence of the true clustering information, our experiments show that
none of feature-based metrics can be used to accurately predict statistical power. We look at
missing intra-cluster edge rate as an example due to its higher R2 score. Methods that yield
the highest and lowest score in this metric (Leiden and MCL5) both perform poorly in terms
of statistical power, suggesting a lack of rank preservation in these metrics.

3.1.2. Clustering Algorithms

Table 1 shows the average score of clustering algorithms for every metric across all of the
simulated datasets. Infomap received the highest average statistical power score, followed
closely by MCL, while Louvain and Leiden got the lowest score (See Supplementary Figures
3,4, and 5).

As expected, Louvain and Leiden algorithms yield the most modular clustering results; fol-
lowed by Infomap. In terms of conforming to the ground truth (purity, power, and AMI/NMI
scores), however, Louvain and Leiden achieve a much lower score than MCL and Infomap;
further corroborating our analysis of resolution limit in the previous section. As a result of res-
olution limit, Louvain and Leiden were unable to find smaller communities in our simulations.
Greedy modularity optimization tends to merge lightly connected subgraphs into clusters.
Although clusters of any size can be affected, those with fewer internal edges than

√
2E, with

E as the total number of edges in the graph get merged frequently.25 For example, the average
number of edges for a graph with 2,000 clusters in our experiments is 62,007, which means
any pairs of clusters that have a combined edge count smaller than

√
2× 62, 007 = 352 have a

high chance of being merged by Louvain and Leiden if they are connected by a single edge,
as it increases the modularity score. The vast majority of IBD clusters have less than 352
individuals.

This threshold for resolution limit grows at a faster rate compared to the number of large
clusters (Supplementary Figure 9A). In other words, the average number of subgraphs that are
larger than this threshold decreases as the total number of clusters increases. The approximate
threshold for resolution limit grew from 227 to 744 as cluster count was increased from 1,000
to 10,000 clusters. At the same time, the percentage of clusters larger than the resolution limit
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threshold decreased from 23.4% to 0.8%. This effect also causes the modularity optimizing
algorithms to have an improved modularity score as the number of clusters grows while their
statistical power decreases.

We further analyze the distribution of connectivity scores achieved by the algorithms across
all of our simulations in Supplementary Figure 7. The average percentage of nodes that were
connected to at least half of the other members of their cluster, extracted by Louvain and
Leiden, was 13% and 12%, respectively. The same average for MCL2 was 78%, indicating that
Louvain and Leiden merge more cliques together compared to other methods.

Resolution limit has another disadvantage; the dependence of accuracy on the overall edge
count and not on the individual clusters25 causes implications for local IBD clustering; where
a variety of cluster size distributions exist for the same total edge count. For example, in
the PAGE study dataset, the average number of edges per cluster for local IBD graphs that
only include samples from Puerto Rican and African American populations is 96.8±12.7 and
1.6±0.1 respectively. Thus, the statistical power of Louvain and Leiden is subject to change
between the two populations, even in the same dataset. The average number of nodes per
cluster in the ground truth was 3.6 (std=0.2), the average number of nodes per clusters
found by Louvain and MCL5 were 197.7 (std=212.5) and 3.0 (std=1.7), respectively (See
Supplementart Figure 10).

The Effects Of False-Positive Edges

Our experiments show that the supremacy of the Infomap, MCL1.5, and MCL2 performances
over other methods is stable for false-positive rates ranging from 5% to 50% of the total num-

Table 1. Average scores (with standard error) of clustering algo-
rithms across our experiments. Overall, MCL2, Infomap, and MCL1.5

yielded the best performances. Modularity optimizing methods had a
much lower power.

Methods
Metrics Infomap Louvain Leiden MCL1.5 MCL2 MCL3 MCL5

Connectivity
Mean 41.52% 13.03% 12.28% 49.34% 78.78% 90.58% 94.03%
Error 14.20 8.79 9.07 15.63 13.31 8.31 5.32

AMI
Mean 61.77% 24.81% 25.18% 63.05% 75.60% 61.36% 37.26%
Error 8.62 12.04 11.65 9.51 12.69 22.12 26.02

Purity
Mean 63.24% 23.58% 23.03% 67.58% 86.85% 92.57% 94.41%
Error 7.62 11.84 12.12 8.77 6.76 6.51 6.01

Modularity
Mean 75.52% 78.64% 78.48% 75.02% 71.76% 57.98% 29.07%
Error 13.52 11.99 12.17 13.19 14.32 21.14 24.39

Power
Mean 95.49% 21.54% 17.98% 95.47% 92.61% 62.85% 29.05%
Error 5.84 10.36 10.98 3.69 12.19 31.64 30.97

ICE∗ Mean 14.26% 8.70% 9.10% 14.64% 17.91% 32.66% 66.35%
Error 10.61 6.77 7.45 9.80 11.66 21.84 27.19

HCR∗∗ Mean 27.40% 19.53% 15.95% 33.80% 82.50% 95.15% 91.67%
Error 12.27 19.35 16.42 17.11 19.47 9.56 23.31

MICER∗∗∗ Mean 37.92% 94.33% 94.09% 36.44% 25.51% 22.17% 14.65%
Error 13.93 6.24 6.12 14.64 16.20 13.84 8.04

Coverage
Mean 85.74% 91.30% 90.90% 85.36% 82.09% 67.34% 33.65%
Error 10.61 6.77 7.45 9.80 11.66 21.84 27.19

NMI
Mean 91.72% 58.89% 59.65% 92.02% 95.26% 94.10% 91.70%
Error 3.58 19.47 19.19 2.90 2.89 3.36 3.58

*: Inter-Cluster Edges **:Highly Connected Rate ***: Missing Intra-
Cluster Edges Rate
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ber of edges. Figure 3 illustrates the effects of false-positives on the performance of algorithms
in three metrics. High rates of false-positive edges were simulated to simplify detection and
comparison of performance patterns. They do not happen in our real data experiments regu-
larly since iLASH, our IBD estimation algorithm, has a low false-positive rate.33 The statistical
power of Infomap and MCL1.5 stays stable as the number of false-positives grows (Figure 3
D). The power of MCL2 slightly decreases as the rate of false-positives is increased above 30%.
However, it stays above 0.9. This suggests that these methods do not: (1) break the clusters
into smaller ones, and (2) mix them together as a results of their false-positive connections to
each other. This is not true for other clustering methods as their power seemingly converges to
a minimum value that is determined by the large clusters that are less structurally affected by
the higher rates of false-positive edges. In case of modularity optimizing methods, the lower
bound is also affected by the resolution limit. Increasing the number of edges in the graph (by
adding false-positive edges), thus has a twofold effect on Louvain and Leiden merging pairs of
loosely connected clusters.

AMI score trends slightly differ from power, primarily due to a more pronounced effect of
smaller clusters. MCL1.5 and Infomap yield less stable results. While MCL3 and MCL5 have
a similar performance to the top performing methods with a false-positive rate of 5%, their
performance declines with higher intensity, resulting in the same pattern as their power score.

False-Negatives Edges

As shown in Figure 3G, the effects of false-negative edges on the power of the algorithms
is less pronounced than that of the false-positives edges. While false-negative edges have an
adverse effect on the power of MCL and Infomap, they do not affect the power of Louvain
and Leiden significantly. Resolution limit works slightly in favor of Louvain and Leiden here.
Still, even the lowest power scores of MCL1.5, MCL2, and Infomap, at a false-negative rate
of 50%, is 70% higher than the scores of Louvain and Leiden. The effects of false-negative
edges on modularity of the graph are also eviden in the modularity score. While their power
score decreased, the top performing algorithms gained higher modularity scores. This is the
opposite of what happened when the number of false-positives edges grew; causing modularity
to have a higher correlation with power and AMI.

Runtimes

Supplementary Figure 11 displays the average amount of time (in seconds) each method took
in our experiments to analyze a dataset as the number of clusters in the dataset grew. The
runtime for all methods seem to grow quadratically with respect to the number of simulated
clusters. Louvain and Leiden were the fastest methods, analyzing datasets with 5,000 clusters
in 0.9 and 0.6 of a second, respectively. Infomap, took 191 seconds on average for the same
number of clusters, while MCL1.5 and MCL2, took 30 and 15 seconds on average, respectively.

Highly Connected Subgraphs

The DASH algorithm has been a standard tool for IBD mapping in recent years.4 DASH
requires the fine-tunning of two parameters based on the IBD inference performance. This
raises a challenge as we do not always have such information a priori. Moreover, as the oldest
clustering method that we analyzed, it does not scale to the size of our experiments. We ran
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HCS, and the other four algorithms, on a set of 750 small graphs, with cluster counts ranging
from 100 to 500. While other algorithms took less than half a second on average to analyze
graphs with 100 clusters, HCS took 81.6. This number grew quadratically to 5595 seconds to
analyze graphs with 500 clusters (Supplementary Figure 11). For the same number of clusters,
MCL2 analysis took only 1 second on average. Our simulations of smaller datasets showed
that HCS has a lower statistical power compared to that of Infomap and MCL. The average
statistical power of HCS algorithm in these experiments was 0.23 while the top performing
algorithm, Infomap had an average score of 0.92.

Performance on Real Data

We next used the PAGE study dataset to compare the algorithms wth real data. First, we
ran iLASH over the chromosome 1 genotype data to estimate IBD and generated local IBD
graphs using the output. Out of the resulting 8,447 local IBD graphs, we randomly chose 800
(∼ 10%) to cluster using every algorithm. We then calculated the feature-based metric scores
of the results. The real dataset results further demonstrate the effects of the resolution limit on
Louvain and Leiden. In every population, the two algorithms returned the lowest percentages
of node connectivity and highly-connected subgraphs, not able to detect false-positive edges.
An inflated percentage of missing intra-cluster edges further proves this. Their total clustering
of the PAGE data on chromosome 1 requires 43% additional edges in order to turn all the
clusters to cliques, compared to MCL1.5 (top performing method in the simulations) which
requires 10% less edges. MCL5 requires only 19.7% additional edges to achieve the same task,
24% less than Louvain and Leiden.

The score gap between Infomap, MCL1.5, and MCL2 on feature-based clustering metrics
decreases in the real datasets compared to the simulated ones. This can be partly explained
by a lower false-positive rate demonstrated in the high coverage scores achieved by all the
methods. To verify this, we trained a linear regressor based on the feature-based metric scores
in our simulations to predict false-positive and false-negative rates of the graphs. The linear
regressor could predict false-positive and false-negative rates in our simulated graphs with an
average error of 2% (std=1%) and 1%(std=2%), respectively. We employed cross validation
leaving 20% of the data for testing each round. Using the linear regression model, we estimated
that, in our PAGE dataset, the false-positive rate is 2% (std< 1%), and the false-negative rate
is 24% (std=3%). Focusing exclusively on the simulated graphs with false-positive and false-
negative rates close to the ones estimated for the PAGE study dataset shows a clear superiority
for MCL2 in terms of statistical power. We simulated 100 graphs, each containing 11,000
clusters (the average number of clusters in a PAGE study dataset local IBD graph) and with
realistic false-positive/false-negative rates we estimated. In these simulations, MCL2 yielded
the highest average statistical power score of 98.8%, followed by MCL1.5 (98.6%), MCL3

(97.6%) and Infomap (95.5%). Louvain and Leiden had the lowest score at 35%, considerably
lower than the MCL methods (See Supplementary Figure 8).

We also calculated the ability of local IBD clusters in recovering rare variants in the Whole-
Exome Sequence data obtained from 200,000 participants of UK Biobank and compared it to
a set of randomly generated clusters of the same sizes. After extracting local IBD clusters in
UK Biobank using our approach, for every rare variant, we tried to find a cluster covering
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its region that includes the highest number of the carriers of that variant and looked at
the fractions of the number of carriers per allele counts. The results are shown in Figure 4.
Local IBD clusters outperformed the random clusters by fully recovering 35% of doubletons
and tripletons, while randomized clusters fully recovered only 0.01%. For variants with minor
allele frequencies between 10-20, real clusters had an average recovery rate of 42% against 7%
for the randomized clusters.

Fig. 4. The recovery rate of local IBD graphs when tagging rare genetic variants captured by whole-
exome sequencing data in the UK Biobank compared to a null model with randomized clusters.

Discussion

We proposed a realistic approach to simulate local IBD graphs that addresses distinctive
properties of such graphs. It provided us with a ground truth for analyzing a group of scalable
clustering algorithms and common clustering metrics for the purpose of local IBD clustering
for the first time. We demonstrated that available analyses on clustering algorithms and
clustering metrics do not apply to local IBD graphs, further stressing the importance of our
analysis. Common clustering metrics cannot be considered sufficient substitutes for power in
IBD mapping.

As suggested by Emmons et al,20 the definition and structure of communities under study
should derive the decision on what clustering methods to use. Our real dataset analysis shows
various populations may require specific clustering approaches. MCL2 generally performed
better than the other methods in our realistic experiments. However, various datasets and
IBD estimation algorithms necessitate dataset specific simulations in order to find the fittest
clustering algorithm. We found novel utility for feature-based clustering metrics by using them
to enable realistic dataset-specific simulations of local IBD graphs. The simulations determine
the fittest clustering algorithm in terms of statistical power.

We showed that both the cluster size distribution of IBD graphs, which is heavily skewed
towards smaller clusters, and the size of the dataset could lead some clustering algorithms
to aggregate groups of small clusters, specially methods that are based on greedy modularity
optimization. Moreover, we found further evidence that the performance of greedy modularity
optimizing methods is dependent on the size of the graph being analyzed, making them un-
predictable. While IBD mapping can help us understand the genetic origins of some traits, its
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potential is bound by the capabilities of its clustering approach. Even slight clustering errors
can negatively affect the accuracy due to the small size of the local IBD communities.

We plan to utilize our approach to conduct a large IBD mapping analysis in the UK
Biobank dataset. We believe distinctive properties of UK Biobank, such as its size, and health
record availability, together with power of IBD mapping will help us find novel genetic as-
sociations. We plan to add two functionalities to our benchmark algorithm. First, we aim
to design a realistic approach to simulate edges weights for the graphs that represent IBD
segments length, augmenting local IBD graphs with segment lengths as edge weights can help
clustering methods (that support weights) detect false-positives more accurately. The longer
the segment, the lower the probability of it being a false-positive edge. Second, we plan to
simulate overlapping local IBD graphs, where a group of IBD graphs are merged and pro-
cessed together to save computing resources. In order to reduce the number local IBD graphs
to process, we can aggregate them in groups via dividing the chromosome into windows of
static length (for example 0.5 cM). We aim to evaluate clustering algorithms’ power in detect-
ing overlapping communities in our benchmark. Simulating these two phenomena requires a
genetic coalescence simulation that was outside the scope of the current manuscript.
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