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Consumer-grade heart rate (HR) sensors including chest straps, wrist-worn watches and
rings have become very popular in recent years for tracking individual physiological state,
training for sports and even measuring stress levels and emotional changes. While the ma-
jority of these consumer sensors are not medical devices, they can still offer insights for
consumers and researchers if used correctly taking into account their limitations. Multi-
ple previous studies have been done using a large variety of consumer sensors including
Polar® devices, Apple® watches, and Fitbit® wrist bands. The vast majority of prior
studies have been done in laboratory settings where collecting data is relatively straight-
forward. However, using consumer sensors in naturalistic settings that present significant
challenges, including noise artefacts and missing data, has not been as extensively investi-
gated. Additionally, the majority of prior studies focused on wrist-worn optical HR sensors.
Arm-worn sensors have not been extensively investigated either. In the present study, we
validate HR measurements obtained with an arm-worn optical sensor (Polar OH1) against
those obtained with a chest-strap electrical sensor (Polar H10) from 16 participants over
a 2-week study period in naturalistic settings. We also investigated the impact of physical
activity measured with 3-D accelerometers embedded in the H10 chest strap and OH1 arm-
band sensors on the agreement between the two sensors. Overall, we find that the arm-worn
optical Polar OH1 sensor provides a good estimate of HR (Pearson r = 0.90, p <0.01).
Filtering the signal that corresponds to physical activity further improves the HR estimates
but only slightly (Pearson r = 0.91, p <0.01). Based on these preliminary findings, we con-
clude that the arm-worn Polar OH1 sensor provides usable HR measurements in daily living
conditions, with some caveats discussed in the paper.

Keywords: Heart Rate, Photoplethysmography, Electrocardiography, Wearable Sensors

1. Introduction

Consumer wearable sensors can help people monitor their overall health and provide valuable
information for prevention of severe diseases and injuries.1–3 Cardiovascular parameters such as
heart rate (HR) and heart rate variability (HRV) are among the most common physiological
measures that people track with their wearable sensors. The HR and HRV measurements
captured by the sensors not only provide information about physical health, they can also
help track mental stress which has secondary deleterious effects on health, including mental
health.4–7 The most commonly used sensors for cardiovascular measurements are wrist-worn
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smart watches; however, chest strap sensors are also widely used, especially in the context
of sports. More recently, a class of devices that are designed to be worn on the upper arm
or the forearm have become commercially available. The wrist-worn and arm-worn sensors
rely on photoplethysmography (PPG: optical sensing) and chest strap sensors rely on electro-
cardiography (ECG). The latter tend to be more accurate than the former.3,4,8–11 While there
has been extensive prior work validating wrist-worn heart rate sensors, most of this work has
been done in laboratory conditions.1,4,12 Less work has been done to examine the validity of
optical HR sensors in completely unconstrained and uncontrolled naturalistic settings. For
example, a recent meta-review of 44 studies that reported on validity of wrist-worn optical
sensors found only 7 studies that included daily living activities outside of a lab setting.13

Furthermore, the results of this work have been mixed with respect to the ability of optical
sensors to accurately measure heart rate in these unconstrained conditions.2,14–17 Even fewer
studies have examined arm-worn devices as an alternative to wrist-worn sensors.18–21 These
studies focused mainly on the use of these devices in the context of sports activities and
demonstrated that armband devices are robust to even very strenuous physical activity. For
this reason, we selected the Polar OH1 armband as an alternative to wrist-worn devices. Our
current study aims to add to this prior literature a preliminary investigation of an armband
optical heart activity sensor worn for an extended period of time in everyday life settings.
We use the Polar OH1 armband sensor together with the Polar H10 chest strap sensor as
a reference device to collect PPG, ECG and accelerometer data and explore the feasibility
and accuracy of using Polar OH1 armband’s PPG measurements obtained in the naturalistic
environment with Polar H10 chest strap’s ECG measurements as the reference standard.
Additionally, we aimed to examine the impact of motion on the accuracy of HR estimates.

2. Study Design

This preliminary study is part of a larger study of cigarette smokers. The larger study is
ongoing and is aimed at predicting smoking events in order to develop or use therapeutic
interventions (e.g., nicotine lozenge) that can be administered just-in-time. In this study,
participants are asked to wear several sensors including the Polar H10 and OH1 for approxi-
mately 14 consecutive days (2 weeks). During both weeks, the participants are asked to use a
smartphone app specifically designed for this study (PhysiAware®) that uses Bluetooth Low
Energy (BLE) interface to connect to the study devices, collect the real-time measurements
and transmit them to a study server several times a day. The participants are also asked to use
the app to indicate when they smoke each cigarette and the reasons for smoking the cigarette.
The current analysis includes only Polar H10 and OH1 heart activity trace and accelerometer
data from the first 16 participants from the larger study.

3. Data Collection and Processing

This study was approved by the University of Minnesota Institutional Review Board and is
currently ongoing.
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3.1. Data Collection

The data collected from the armband and chest strap sensors are temporarily stored by the
PhysiAware® app on the smartphone of each participant until the participants upload the
data to a University of Minnesota server. The PhysiAware® app was developed specifically for
this project as a native app on iOS and Android platforms. Figure 1 illustrates both versions
and shows the main screen that the participants would see after logging in with their study
credentials (a randomly generated study ID).

(a) (b)

Fig. 1: The iOS and Android versions of the PhysiAware app. a) iOS. b) Android.
∗ MM Ring is a ring sensor (MoodMetric® ) used in the study for monitoring electrodermal

activity - not relevant to the current analysis.

The iOS and Android apps implemented the standard Polar BLE application programming
interface for collecting raw data from the sensors. Both the H10 chest strap and the OH1
armband sensors are capable of storing limited data in their onboard memory; however, this
capability is not open to third-party developers when the OH1 armband sensor is operated
in the ”PPI” mode (i.e., the mode that calculates and reports inter-beat interval durations
needed for heart rate variability measurements). For our study, we wanted to leverage the
”PPI” mode specifically along with collecting raw blood volume pulse data. Thus, all sensor
data were streamed ”live” over the BLE interface rather than stored locally and transferred
in batches. The streaming data were aggregated on the smartphone and the participants were
prompted every 3-4 hours to upload their data to the study server. The motivation for not
doing automated uploads stems from the fact that some of the participants may have limited
or costly cellular data plans. Therefore, we designed the app to detect the presence of Wi-
Fi connectivity and alert the participants only when a Wi-Fi network (vs. a cellular data
network) was available to upload the data. We also wanted to provide the participants with
the ability to manually control the uploads as they take a significant amount of bandwidth
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and can be disruptive to the participant’s other activities on their smartphone. These design
considerations were adopted in order to make the app as accessible as possible to a broad
range of participants from a variety of socioeconomic backgrounds.

Due to the remote and naturalistic nature of the study, we encountered several other
challenging issues that affected data collection. For example, Polar OH1 arm sensor battery
life is approximately only 8 hours, which precludes continuous monitoring. To compensate
for this challenge, each participant was provided with two OH1 sensors that they could use
interchangeably while the other sensor was being charged. While all participants participated
in a remote training session via Zoom with the study coordinator on how to wear and use
the study devices, situations arose where participants unintentionally corrupted the data. This
included wearing the sensors incorrectly, or forgetting to wear them at all. These challenges are
inherent to remote naturalistic settings and result in lower volume of usable data than what
can be obtained in laboratory conditions or with extensive hands-on training. The collected
data still may present further challenges due to noise from the variability of the environments
and participants’ daily life activities.22

3.2. Data Processing

For the current study, we selected the signals available simultaneously from both the H10
chest strap and OH1 armband to time-align the two signals as illustrated in Figure 2. Some of
the more frequent noise artifacts included short gaps with missing samples. The majority of
these gaps were under 60 seconds in duration and were likely attributable to interruptions in
BLE connectivity between the smartphone and the sensors. The missing data corresponding
to these short gaps that are under 60 seconds comprises on average 0.52% of the total data
volume for ECG and 0.94% for PPG. Our current approach for dealing with these short gaps
is to back- and forward-fill them by taking half of the values needed to fill the gap from the
preceding signal, and the other half from the subsequent signal. This approach is motivated by
the thought that the HR signal does not typically change dramatically over a short period of
time; however, if such a change does occur during the 60 second gap (e.g. the participant begins
strenuous activity during the gap) by forward-filling the first half of the gap and back-filling
the second half we expect to represent the start time of the increase in HR more accurately.
Less frequent gaps longer than 60 seconds were left as missing data and excluded from analysis.

We collected the high frequency time indexed ECG data and 3-D acceleration data from
Polar H10 chest strap sensor at a sampling rate of 130Hz and 200Hz, respectively. The time
indexed PPG and 3-D acceleration data from the Polar OH1 armband were sampled at 135Hz
and 50Hz, respectively. To detect peaks in the ECG and PPG signals and calculate instanta-
neous HR we used Kubios23 software package (version 3.5.0) which also performs additional
noise filtering and generates HR estimates in the output. Other computational approaches
were considered such as band pass filtering, detrending methods for removing noise, and man-
ually calculating HR with code. However, we opted to use the Kubios for preprocessing so that
our results are more easily reproducible and applicable to a wider research audience. Kubios
processes ECG and PPG data by using an automatic beat detection algorithm and HR cal-
culation from inter-beat intervals. Additionally, Kubios applied a detrending approach on the
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ECG and PPG data based on smoothness priors regularization. The detrending method re-
moves the slow non-stationary component of the signals.24 Peak detection and time-alignment
between PPG and ECG signals are shown in Figure 2. Less frequent gaps longer than 60s
were filled with zeros prior to Kubios processing to maintain the time-alignment between the
ECG and PPG data. Kubios generates ’NaN’ values for heart rate variability features for the
zero-filled sections resulting in excluding these sections from analysis.

After handling missing data as described above, we imported the data into Kubios to
generate HR estimates over 1-minute frames overlapping by 10 seconds. The resulting time
series were used to calculate the Pearson correlation coefficients between ECG and PPG HR
estimates. Due to the large size of the high frequency time series ECG and PPG data (e.g.,
up to 120 million rows for 11 days of ECG data per participant), we segmented the data into
smaller chunks ranging from a few hours to one day (24 hours) before importing into Kubios.

Fig. 2: Illustration of peak alignment between ECG (lower) and PPG (upper) signals.

3.3. Filtering

To investigate the impact of noise introduced by physical activity in daily life, we experimented
with several physical activity filters based on 3-D accelerometer data from accelerometers
embedded in the H10 chest-strap and OH1 armband devices. Since the H10 is attached to the
person’s torso and OH1 is attached to the upper forearm, we expect that these sensors will
capture different and potentially complementary types of activity. All physical activity filters
use the magnitude of acceleration along the x, y, z axes from a given 3-D accelerometer. The
calculation of the magnitude of overall acceleration is as follows:

G = sqrt(x2 + y2 + z2) (1)

where G represents the magnitude of acceleration and x, y, z represents acceleration along
each of the 3 axes. In the rest of the paper we refer to this overall magnitude of acceleration as
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Fig. 3: Bland-Altman Plot of the differences in PPG and ECG estimates of HR without any
filtering physical activity.

G-value. This measure is used to filter out the data that contain high levels of physical activity
defined as above the 75th percentile of all G-values for a given sensor. We then defined three
filters based on the G-values calculated from a) H10 chest strap, b) OH1 armband, and c) from
the union of both H10 and OH1 G-values (i.e., when either the chest-strap or the armband
device indicated excessive motion). Each of the three filters also removes samples that result
in HR greater than 200 beats per minute (based on maximum heart rate calculated as 211
- (0.64*age)25) or lower than the empirically determined 3rd percentile. Activity filters were
used in this study to assess if the correlation between the measures reported by the PPG and
ECG sensors are adversely impacted by including periods of physical activity so as to assess
the quality of the data collected by the arm-band sensor during times of physical activity.
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Table 1: Participant Characteristics

ID Age Sex Race Arm HR (OH1) HR (H10) G-val (OH1) G-val (H10)
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

1 <40 m non-white left 83.56 (10.0) 85.29 (11.0) 1007 (23) 973 (14)
2 <40 f white left 76.28 (9.0) 77.11 (9.0) 1021 (12) 1007 (17)
3 40-50 f white left 77.43 (6.0) 77.27 (6.0) 968 (137) 1015 (7)
4 <40 m non-white left 69.17 (8.0) 69.92 (9.0) 999 (15) 994 (11)
5 40-50 f white left 96.73 (7.0) 96.84 (7.0) 1002 (9) 988 (29)
6 >50 f white left 74.55 (7.0) 75.38 (7.0) 1001 (12) 995 (13)
7 <40 m white left 106.9 (8.0) 107.88 (8.0) 1023 (11) 999 (28)
8 <40 f white left 103.45 (5.0) 103.85 (5.0) 1012 (13) 993 (10)
9 <40 m white left 94.02 (10.0) 96.14 (10.0) 1002 (18) 1019 (11)
10 40-50 f white left 79.88 (9.0) 80.73 (9.0) 1017 (6) 979 (17)
11 <40 m white left 94.22 (14.0) 94.85 (14.0) 1024 (22) 1019 (11)
12 40-50 m white left 84.0 (8.0) 85.09 (8.0) 1008 (12) 1006 (12)
13 >50 m white right 86.65 (8.0) 88.02 (9.0) 1019 (66) 1009 (10)
14 <40 f white left 78.8 (9.0) 79.71 (9.0) 1024 (14) 976 (16)
15 <40 f white left 76.19 (9.0) 76.75 (9.0) 1017 (16) 997 (20)
16 40-50 f white left 96.56 (6.0) 97.02 (6.0) 1013 (8) 991 (10)

Mean 42 – – – 86.14 (8.3) 87.0 (8.5) 1009.8(25) 997.5 (15)

4. Results

The basic demographic and physiological characteristics of participants are presented in Table
1. The participant characteristics presented in Table 1 demonstrate the variability present in
HR measurements across study participants.

4.1. Agreement between PPG and ECG HR Estimates

We used the HR values generated by Kubios for both PPG and ECG signals and calculated
Pearson correlation of the two sets of HR values. The Pearson correlation measures the strength
of the linear relationship between two variables. As shown in Table 2, the HR calculated from
PPG data is positively correlated with the HR calculated from ECG data with correlation
coefficients higher than 0.80 except for one participant’s data likely due to excessive motion
or the chest strap not being tight enough. The results summarized in Table 2 show that the
majority of participants’ correlation coefficients increased only modestly after using physical
activity filters. All correlations in Table 2 are statistically significant (p-value <0.01).

The average HR correlation before any physical activity filtering is 0.90. Using either or
both the OH1 armband or H10 chest strap physical activity filter to remove data with high G-
values increases the average HR correlation to 0.91. Since different participants have different
numbers of samples, we also report correlations weighted by the number of samples resulting
in slightly lower estimates but still remaining above 0.80 (see Table 2).

Correlations between PPG and ECG heart rate estimates by age and sex of the partic-
ipants are illustrated in Figure 4 and suggest that these participant characteristics did not
substantially affect the results.
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Fig. 4: Differences in correlations between PPG and ECG HR by age & sex of the participants.

5. Discussion

The results of our preliminary study indicate that it is feasible to obtain HR estimates from
the Polar OH1 armband that are in agreement with reference ECG estimates. These findings
are encouraging for studies that involve observation of cardiac activity in naturalistic settings.

Several previous studies26–28 that examined the agreement between PPG and ECG signals
reported correlations between 0.91 and 0.98 which is comparable to the correlations we found
in the present study; however, some previous studies noted somewhat variable performance
of wrist-worn PPG sensors with some devices having correlation with ECG in the 0.83-0.84
range16 or even lower.17 Furthermore, while the ecological study by Nelson et al.26 demon-
strated overall low error rates for wrist-worn (Apple Watch 3 and Fitbit Charge 2) devices
under sleeping, sitting, walking, and running conditions over a 24 hour period, they also found
relatively high error rates during activities of daily living and as movement became more er-
ratic during various conditions. These decreases in accuracy are likely due to the fact that
wrist-worn devices by design tend to fit relatively loosely around the wrist. An overly tight
fit would make the device uncomfortable to wear for long periods of time. The Polar OH1
armband used in our study seeks to overcome this problem by placing the sensor higher up the
forearm which tends to experience lower amplitude motion than the wrist during activity and
allows for tighter fit with an elastic strap that also minimizes the amount of motion. Another
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key difference in our study is the length of the observation period. In our study, participants
wore the sensors as continuously as they were comfortable with over an approximately two-
week period. We are not aware of other studies in which participants wore a chest strap and an
armband for such an extended period of time. The extended nature of the observation period
enables us to examine the performance of the armband sensor in a greater variety of natural-
istic conditions and activities of daily living. The fact that we find the armband to provide
accuracy on par with other devices used in laboratory conditions is particularly encouraging
as they show that this type of PPG sensor can be comfortably worn over a long period of time
and provides reliable measurements.

Table 2: Correlation between ECG and PPG estimates of HR and number of samples remaining
after applying various physical activity filters based on accelerometers embedded in devices.

Physical Activity Filters
ID No filter OH1 armband H10 chest strap OH1+H10

Corr. N∗ Corr. N Corr. N Corr. N

1 0.82 4021 0.82 3146 0.85 3274 0.86 2600
2 0.95 2195 0.95 1950 0.94 1649 0.94 1466
3 0.97 124 0.97 101 0.98 92 0.98 79
4 0.95 280 0.94 216 0.98 245 0.98 198
5 0.96 326 0.96 291 0.96 275 0.96 252
6 0.83 2025 0.84 1762 0.85 1768 0.86 1544
7 0.95 64 0.96 60 0.77 44 0.76 42
8 0.93 177 0.93 148 0.92 139 0.92 120
9 0.53 2312 0.55 2026 0.58 1506 0.58 1298
10 0.98 26 0.98 25 0.97 25 0.98 24
11 0.96 114 0.99 80 0.99 76 0.99 63
12 0.93 3219 0.93 2395 0.92 2813 0.92 2102
13 0.92 569 0.94 536 0.95 292 0.95 269
14 0.96 613 0.97 514 0.96 559 0.97 479
15 0.93 677 0.93 615 0.95 530 0.95 489
16 0.90 1455 0.93 1264 0.90 1378 0.94 1196

Unweighted Mean 0.90 1137.3 0.91 945.5 0.90 916.6 0.91 763.8
Weighted Mean 0.85 1137.3 0.85 945.5 0.87 916.6 0.87 763.8

∗ number of samples (HR estimates) used to calculate the correlations. Each sample corresponds to
HR calculated over a 1-minute frame and, thus, N also approximates the number of minutes of data
included in the correlation analysis, not counting the overlaps between frames.

We also find some individual variation across participants as illustrated by the correla-
tions reported in Table 2. Additionally, the Bland-Altman plots in Figure 3 show there’s also
some variability in the distribution of the differences between ECG and PPG HR estimates
across the participants. However, the mean differences of all participants are close to zero and
majority of the data is within the 95% confidence intervals of limits of agreement. The distri-
bution of the points outside of the 95% confidence intervals does not suggest a clear pattern
of association between the differences and the magnitude of the heart rate measurements.
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Visual examination of the differences between groups by age and sex, shown in Figure 4,
suggests no substantial differences between these groups. Due to the small number of partici-
pants, we did not perform a formal statistical subgroup analysis. The data shown in Figure 4
suggests that the male subgroup contains a possible outlier (participant 9 in Table 2).

Several prior studies examined the impact of skin tone on optical green wavelength heart
rate sensor accuracy and found that these sensors were reasonably accurate across various skin
tones but slightly less accurate for darker skin tones varying by devices and conditions.13,29,30

While our study so far included only 2 participants with non-white skin tone, our results are
consistent with this prior work in that we found that the optical OH1 armband was only
slightly less in agreement with the ECG estimates of heart rate than the group average for
one of the two non-white participants (r = 0.82 vs r = 0.90 - see Table 2, participant 1 in ”No
filter” column) and slightly higher than the group average for the other non-white participant
(r = 0.95 vs r = 0.90 - see Table 2, participant 4 in ”No filter” column). Clearly, we cannot
draw any definitive conclusions from these results due to the small number of participants
overall and non-white participants in particular.

Another important finding is that removing heart data that corresponds to physical activity
based on the accelerometer values did not have a major impact on the agreement between
ECG and PPG estimates of heart rate. This is an encouraging finding because it indicates that
the armband sensor provides robust heart rate estimates in the presence of physical activity.

6. Limitations and Challenges

The results should be interpreted in light of several limitations. First, our sample size is small
as this is a preliminary pilot study. Second, we use only the standard accelerometer-based
filtering techniques. More advanced filtering techniques exist that may be able to further
reduce noise, potentially increasing the correlation. Finally, the participants included in this
study are smokers, whose physiological characteristics may differ from the general population.

In addition to the limitations listed above, we also want to highlight several valuable lessons
that we learned in the process of doing this study that can be applied in our future work or
by others who intend to perform similar studies. On the technical side, we found that some
of the participants had some trouble with maintaining the connectivity between the wearable
sensors and the smartphone. The Bluetooth devices used in this study have a relatively short
range (10-30 meters); therefore, the ”live” streaming mode for data transfer is vulnerable to
the participants walking away from their smartphones beyond the Bluetooth range. Clearly,
this results in undesirable data loss which may be prevented by recording data locally on the
sensor devices in addition to streaming.

We also found significant differences in terms of the technical challenges in app development
for the two platforms: iOS and Android. While developing for the Android platform was
logistically easier than for iOS mostly due to complicated security controls on iOS apps, it
was also much more challenging to use Android apps in the study due to large variability
in how various Android smartphone manufacturers handle battery management. In order to
maintain the streaming of data from devices to the smartphones, the battery management
mode had to be manually turned off by the participants and was achieved with variable
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success depending on which smartphone the participant owned. This issue is more difficult to
resolve without resorting to recruiting only participants who own Apple smartphones, which
would make recruitment more difficult and may introduce unintended selection bias into the
study. In the current study, we addressed this issue by monitoring incoming data on a regular
basis for signs of significant data loss and had the study coordinator follow up with those
participants that were identified this way.
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