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The incompleteness of race and ethnicity information in real-world data (RWD) hampers its utility 
in promoting healthcare equity. This study introduces two methods—one heuristic and the other 
machine learning-based—to impute race and ethnicity from genetic ancestry using tumor profiling 
data. Analyzing de-identified data from over 100,000 cancer patients sequenced with the Tempus xT 
panel, we demonstrate that both methods outperform existing geolocation and surname-based 
methods, with the machine learning approach achieving high recall (range: 0.859-0.993) and 
precision (range: 0.932-0.981) across four mutually exclusive race and ethnicity categories. This 
work presents a novel pathway to enhance RWD utility in studying racial disparities in healthcare. 
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1.  Introduction 

Real-world data (RWD) offers insights into disease etiology, therapy outcomes, and racial 
disparities in healthcare.1,2 However, its utility in improving healthcare equity is limited by the 
significant sparsity of race and ethnicity data. This gap, attributable to factors such as lack of capture, 
data loss during transfer and de-identification,3,4 and shortcomings in electronic health record 
integrations,5 leads to reliance on limited, potentially biased datasets that may result in poorly 
generalizable results and biased disease outcome predictors.4  

Several remediation strategies have been proposed, including improving data collection, 
conducting complete case analysis, modeling missingness in analyses, supplementing with 
additional data, and employing imputation methodologies.5 Existing imputation methods, many of 
which leverage census data based on geolocation and correlations between people's surnames and 
their self-reported race and ethnicity,6,7 achieve moderate accuracy and require access to protected 
health information (PHI), limiting their applicability.8,9 

Molecular tumor profiling, an assay used in support of therapy decisions in cancer patients, is 
often accompanied by a wealth of multimodal RWD that, once de-identified, can be harnessed for 
research.10 This can include clinical metadata, imaging, and molecular data, such as DNA variants 
on a set of cancer related genes and transcript sequences from different patient tissues.11 

Inferring genetic ancestry, or more accurately, genetic similarity to reference populations,12 from 
molecular testing sequencing data, offers a potential solution to the challenge of missingness in race 
and ethnicity data. The granularity of such inferences is contingent on the availability of allele 
frequency data across samples from reference populations, with the most common level of genetic 
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ancestry inference being at super-population level categories, as described by the 1000 Genomes 
Project.13 Although genetic ancestry is not equivalent to race or ethnicity, a strong correlation 
between these two concepts has been observed among US populations.14,15 We propose to leverage 
this correlation and the genetic information available in molecular testing RWD using two methods 
— one heuristic and the other based on machine learning — to impute mutually exclusive race and 
ethnicity categories from genetic ancestry. Here, we benchmark these methods and find they 
outperform previously reported race and ethnicity imputation methods, with a machine learning-
based method providing the most accurate imputation. 

2.  Methods 

The categorizations of race and ethnicity in this study adhere to the standards developed by the US 
Office of Management and Budget,16 which are also used in the US census. These standards are 
based on two self-reported questions: a) Race (American Indian or Alaska Native, Asian, Black or 
African American, Native Hawaiian or Other Pacific Islander, and White); and b) Ethnicity 
(Hispanic or Latino and Not Hispanic or Latino). However, these categories present analytical 
challenges due to the orthogonal race and ethnicity questions, and it is often more practical to 
consolidate answers to these two questions into non-overlapping classes,17 defined in this study as: 
Hispanic or Latino, non-Hispanic (NH) Asian, NH Black, and NH White, with the other races having 
insufficient numbers at the moment to develop reliable models in our source data. This consolidation 
allows for a more streamlined and comprehensive analysis of race and ethnicity in the context of 
RWD. 

2.1.  Data 

Genomic and clinical data from patients of multiple cancer diagnoses was obtained from the Tempus 
database. The selected cohort consisted of 132,523 de-identified records of patients whose tissues 
were sequenced with the Tempus xT next-generation sequencing (NGS) panel (596-648 genes, v2-
v4, tumor-normal matched when tissue available)11,18 from 2018 to 2022. These records had been 
previously de-identified for other studies and passed minimal data quality filters. A total of 33,232 
records had populated race, ethnicity, and geolocation data and belonged to one of the four non-
overlapping race and ethnicity categories that we imputed: 4,357 Hispanic or Latino, 1,258 NH 
Asian, 3,120 NH Black, and 24,497 NH White. Race and ethnicity information in the Tempus 
database is obtained from a combination of electronic health record integrations and data abstraction 
from clinical documents and can be self-declared by patients or observed by practitioners. 
Information could be missing because there was no attempt to collect it, because patients or 
practitioners abstained from answering, or because it was not captured in the Tempus database. 
Analyses were performed using de-identified data under human subject research exemption granted 
by Advarra, Inc. Institutional Review Board, protocol Pro00042950. 

2.2.  Determination of genetic ancestry 

We estimated genetic ancestry proportions using a re-implementation of the ADMIXTURE 
supervised global genetic ancestry estimation algorithm.19  This approach calculated the proportions 
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of ancestries for five super-populations—Africa (AFR), the Americas (AMR), East Asia (EAS), 
Europe (EUR), and South Asia (SAS)—using a previously published bespoke set of 654 ancestry 
informative markers (AIMs).20 Briefly, AIMs were selected from single-nucleotide variants present 
in the reference samples that intersect with the targeted regions of the Tempus xT NGS assay, are 
not protein-changing, and are present at significantly different frequencies across the reference 
populations.21 We sourced reference allele frequency data for these AIMs from the 1,000 Genomes 
Project,13 the Human Genome Diversity Project,22 and the Simons Genome Diversity Project 
databases.23 In the case of the AMR super-population, we excluded the 1,000 Genomes Project's 
admixed "AMR" population and only included allele frequencies for Native American individuals 
available in the other sources. To evaluate the accuracy of our methods, we compared our global 
ancestry proportion estimates on whole-genome sequencing data from the Pan-Cancer Analysis of 
Whole Genomes Project,24 with published global ancestry proportions determined by summing 
genome-wide local ancestry segments derived using the RFMix method.25 This comparison yielded 
an average mean squared error, normalized to the sum of population proportions present in the 
dataset, of 0.12. The Tempus xT assay utilizes matched normal tissue when available (present for 
51% of the study cohort) to classify variants as either germline or somatic, but germline variants 
can still be inferred in the absence of normal tissue.11 The genetic ancestry proportion estimation 
method utilizes variant calls from normal tissue or those deemed to be germline. To assess 
performance when no matched normal tissue is available, we estimated proportions from both the 
tumor sample and the matched normal sample for a subset of patients (N = 3,358) and found that the 
five estimated proportions were highly concordant, with Pearson’s correlation coefficient ranging 
from 0.9977 to 0.9999.20  

2.3.  Benchmarking and performance metrics for race and ethnicity category imputation 

We relied on our cohort’s stated race and ethnicity data as available in the Tempus database as our 
ground truth. To assess the performance of imputation methods, we employed a range of accuracy 
measures specific to each predicted race or ethnicity category. Recall, also called sensitivity or true 
positive rate,26 measures the proportion of individuals correctly assigned to a category among all 
individuals truly in that category. Precision, or positive predictive value,26 is the fraction of relevant 
instances among the retrieved instances, i.e., the proportion of correctly assigned individuals among 
all those assigned to a category. The F1-score is the harmonic mean of precision and recall, 
providing a balance between these two metrics. We also evaluated several measures of overall 
accuracy. Cohen's kappa27 is a measure of agreement between predicted and true categories, 
accounting for the possibility of agreement occurring by chance. The correct rate, or accuracy, 
measures the proportion of all predictions that are correct.26 Log loss quantifies the difference 
between predicted probabilities of belonging to a class and the true value (0 or 1) of belonging to 
that class, with lower log loss indicating better model performance28. The area under the receiver 
operating characteristic curve, or AUC, is a measure of model performance based on sensitivity and 
specificity across all classification thresholds and thus is not sensitive to any specific chosen 
threshold. prAUC is an analogous measure based on precision and recall. A predicted probability 
threshold of >0.5 was used for all metrics that rely on a single classification for each subject. 
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In addition to these common measures, we also utilized metrics proposed by Elliot et al.6 The 
weighted error compares the true prevalence of race/ethnicity in the validation dataset to the 
predicted prevalence, providing an indication of the overall error rate. The weighted 
correlation measures the weighted average correlation (calculated using vectors of indicators) 
between true race and ethnicity and imputed category for each of the four categories, with weights 
equal to true prevalence. Together, these metrics offer a comprehensive evaluation of the 
performance of our imputation methods. 

2.4.  Heuristic imputation of race and ethnicity 

We initially imputed mutually exclusive race and ethnicity categories from genetic ancestry 
proportions using a set of heuristics (Table 1) in part derived from admixture proportions reported 
in the literature for Black and Hispanic or Latino groups in the United States.15 We defined four 
categories: Hispanic or Latino, NH Asian, NH Black, and NH White. Patients who did not fit the 
categories defined by these heuristics were labeled “complex.” This latter category could be 
considered a no-call, as patients classified as such are typically excluded from any downstream 
analyses, and for comparison with other methods described below. 
 

Table 1. Race and ethnicity imputation heuristics from genetic ancestry. Super-population codes: AFR, 
Africa; AMR, Americas; EAS, East Asia; EUR, Europe; SAS, South Asia. 

Imputed category Super-population genetic ancestry thresholds 
Hispanic or Latino  >10% AMR and >70% combined AMR, EUR, and AFR 
NH Asian >70% combined EAS and SAS 
NH Black >20% AFR, <10% AMR, and >70% combined AFR and EUR 
NH White >80% EUR and <10% AMR 
Complex Remaining patients not meeting above thresholds 

2.5.  Machine learning imputation of race and ethnicity 

We also developed machine learning (ML)-based imputation methods, wherein an ML algorithm is 
trained to classify subjects into race and ethnicity categories based on genetic ancestry and other 
inputs. For all models, a single train+test and validation set was assembled from the 33,232 patient 
records with stated race and ethnicity that fit our imputation categories and with available home 
address 3-digit ZIP code. Features used by these models included genetic ancestry proportions for 
AFR, AMR, EAS, EUR, and SAS; US census division of patient’s home state (nine geographic 
groupings of states defined by the US Census Bureau: Pacific, Mountain, West North Central, West 
South Central, East North Central, East South Central, South Atlantic, Middle Atlantic, and New 
England); and “demographic proportions,” i.e., proportions of Hispanic or Latino, NH Asian, NH 
Black, and NH White residing in each patient’s three-digit ZIP code tabulation area (ZCTA), as 
available from the 2021 5-year American Community Survey and mapped to three-digit ZIP codes 
using UDS Mapper.29 We split the train+test and validation sets 90/10 while maintaining the US 
census division proportions in each set to ensure that the sets were aligned well for populations 
whose genetic ancestry proportions vary by U.S. geography, e.g., Hispanic or Latino.15 We 
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evaluated models using three groups of features: 1) ML-ancestry: genetic ancestry proportions only; 
2) ML-ancestry+geolocation: genetic ancestry proportions and US census divisions; 3) ML-
ancestry+demographics: genetic ancestry proportions and demographic proportions. 

We implemented all machine learning models in R using the caret package (v 6.0.94).30 A 
number of models based on supervised training algorithms were evaluated, including models based 
on the random forest (method=“rf”) and gradient boosting (method=“gbm”) algorithms. We 
ultimately chose a boosted logistic regression algorithm (method=“LogitBoost”,28 presented here) 
as it provided the ability to make no-call assignments and applied a probabilistic threshold in 
classification. Boosted logistic regression is a supervised machine learning algorithm that utilizes 
negative log-likelihood as a cost function. It iteratively builds decision trees to classify subjects, 
where each iteration is trained on a sample (with replacement) of the data in which subjects who 
were incorrectly classified in the previous round are more frequently sampled. The final classifier 
consists of a weighted combination of decision trees, where trees with lower log loss have more 
weight, and it returns the probabilities of belonging to each category for each subject. We chose to 
assign “No Call” to any subject with all probabilities ≤0.5. All models were trained using 10-fold 
cross validation. Grid expansion was performed to evaluate boosting iterations from 1 to 100 in 
intervals of 10. The optimal number of iterations and the final model were selected based on the 
lowest log loss value. 

3.  Results 

3.1.  Comparison of performance of race and ethnicity imputation methods 

Table 2 summarizes the overall performance of the heuristic assignment method and each of the ML 
models. The ML model that utilized combined genetic ancestry proportions and demographic 
proportions (the proportions of the population in a patient’s three-digit ZCTA belonging to Hispanic 
or Latino, NH Asian, NH Black, and NH White) achieved the best mean F1-score (0.957), Cohen’s 
kappa (0.936), correct rate (0.974), log loss (0.122), AUC (0.982), and prAUC (0.946) whereas the 
heuristic method performed the worst by most metrics: mean F1-score 0.939, Cohen’s kappa 0.903, 
correct rate 0.959, weighted correlation 0.876, and weighted error 0.009. The ML model that solely 
considered genetic ancestry proportions achieved the best weighted correlation (0.930) and 
weighted error (0.007), whereas the ML model that included geolocation in the form of the US 
Census district of a patient’s home address state had intermediate performance by most metrics. 
 

Table 2.  Overall performance of race and ethnicity imputation methods for the validation set (N=3,319). 
Metrics that rely on a single classification threshold used a predicted probability of ≥0.5 for computation. 
Refer to section 2.5 for ML method descriptions. Best performing metric indicated with bold. 
Imputation Method Mean 

F1-Score 
Cohen’s 
Kappa 

Correct 
Rate 

Weighted 
Correlation 

Weighted 
Error 

Log 
Loss 

AUC prAUC 

Heuristic 0.939 0.903 0.959 0.876 0.009 - - - 
ML-ancestry 0.954 0.934 0.973 0.930 0.007 0.127 0.980 0.930 
ML-ancestry+geolocation 0.955 0.935 0.973 0.926 0.009 0.131 0.979 0.898 
ML-ancestry+demographics 0.957 0.936 0.974 0.928 0.013 0.122 0.982 0.946 
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When evaluating performance by category, we found that recall, precision, and F1-score were 
all at or above 0.932 for the NH Asian, NH Black and NH White categories (Table 3). Performance 
of all imputation methods was worst for the Hispanic or Latino category, with recall ranging from 
0.859-0.887, precision from 0.833-0.964, and F1-score from 0.859-0.909. 
 

Table 3. Performance of race and ethnicity imputation methods on validation set (N=3,319) per classification 
category. Refer to section 2.5 for ML method descriptions. Best performing metric for each category 
indicated with bold. 

    Classification Category, N 

Metric Imputation Method Hispanic or 
Latino, 435 

NH Asian, 
130 

NH Black, 
301 

NH White, 
2,463 

Recall Heuristic 0.887 0.983 0.983 0.966 
 ML-ancestry 0.876 0.962 0.993 0.987 
 ML-ancestry+geolocation 0.877 0.969 0.983 0.988 

  ML-ancestry+demographics 0.859 0.976 0.993 0.990 
Precision Heuristic 0.833 0.935 0.942 0.985 

 ML-ancestry 0.938 0.933 0.967 0.981 
 ML-ancestry+geolocation 0.941 0.932 0.969 0.981 

  ML-ancestry+demographics 0.964 0.932 0.968 0.978 
F1-Score Heuristic 0.859 0.959 0.962 0.976 

 ML-ancestry 0.906 0.947 0.980 0.984 
 ML-ancestry+geolocation 0.908 0.950 0.976 0.984 

  ML-ancestry+demographics 0.909 0.954 0.980 0.984 
 

3.2.  Performance of heuristic method 

Perhaps unsurprisingly, the heuristic method for assigning race and ethnicity categories based on 
genetic ancestry proportions alone underperformed by all measures as compared to the ML models 
(cf. Table 3). For the Hispanic or Latino category (the most difficult to predict using the selected 
features), the heuristic method did have the highest recall (0.887), but this was achieved at the cost 
of low precision (0.833), also reflected in this method obtaining the lowest F1-score (0.859) for that 
category. The heuristic method did achieve the highest recall, precision, and F1-score for the NH 
Asian category. Overall, although the heuristic method did not perform as well as the ML method, 
its performance was not far behind, achieving an overall correct classification rate of ~96% 
compared to ~97% for the ML models. The no-call rate (i.e., patients assigned to the “complex” 
category) was 2.5%. 

3.3.  Performance of ML-ancestry boosted logistic regression model 

We found that the boosted logistic regression model that utilized only genetic ancestry proportions 
improved upon the heuristic method for all overall performance metrics, with an overall correct 
classification rate of 97.3%. It had lower recall (0.876) but higher precision (0.938) for the Hispanic 
or Latino category than the heuristic method. The model had a recall of 0.962-0.993 for the three 
non-Hispanic categories, indicating that it correctly identifies the vast majority of patients in those 
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categories and is usually correct in its predictions, with precision ranging from 0.933-0.981. The 
no-call rate was very low at 0.7%. 

3.4.  Performance of ML models including geolocation and demographics  

Adding geolocation or demographic composition obtained from patients’ home address ZCTA areas 
to the genetic ancestry proportions (ML-ancestry+geolocation and ML-ancestry+demographics) 
slightly improved model performance according to most metrics, yielding a correct classification 
rate of 97.3% and 97.4%, respectively. The ML-ancestry+demographics model had the best overall 
performance by all metrics except the less commonly used weighted metrics, which emphasize 
performance according to the true prevalence of each race and ethnicity category in the validation 
dataset. Individual category performance metrics followed a similar pattern to that of the ML-
ancestry model. Notably, the ML-ancestry+geolocation model had the best precision for the 
Hispanic or Latino category (0.964), which may be desirable for use cases where correct predictions 
of this category are valued over high recall. The no-call rate was 1.1% for ML-ancestry+geolocation 
and 1.0% for ML-ancestry+demographics. 

3.5.  Reclassification of stated race and ethnicity categories by imputation 

We selected the ML-ancestry model for further characterization because of its minimal input needs 
by applying it to the entire labeled dataset, regardless of whether geolocation data was available 
(N=35,229). The resulting confusion matrix (Table 4) compares the imputed categories with the 
stated race and ethnicity from the Tempus database, including the rate of no-calls and the number 
and fraction of misclassified records for each stated category. The confusion matrix for the 
validation dataset mirrors this table in terms of percentages (data not shown).  
 

Table 4. Confusion matrix comparing imputed race and ethnicity category to stated category for the ML-
ancestry model on all labeled data, including records without geolocation information (N=35,229). 
Percentage of each stated category and numbers of patients (in parentheses) are indicated in each cell. Total 
percentage and number of misclassified patients for each stated category is given in the last row. 
 Stated category 
Imputed category Hispanic or Latino NH Asian NH Black NH White 
Hispanic or Latino 82.3% (4,059) 0.2% (2) 0.5% (18) 0.8% (195) 
NH Asian 0.8% (39) 96.5% (1,285) 0.2% (6) 0.2% (57) 
NH Black 1.8% (91) 0.1% (1) 97.7% (3,231) 0.2% (49) 
NH White 11.4% (560) 2.5% (33) 0.6% (19) 98.5% (25,266) 
No Call 3.7% (180) 0.8% (10) 1.0% (32) 0.4% (96) 
Misclassified 14.0% (690) 2.7% (36) 1.3% (43) 1.2% (301) 

 
Additionally, Figure 1 provides a visual representation of the allocation of patients from their 

stated race and ethnicity to their imputed categories through a flow diagram. 
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The confusion matrix further indicates that the Hispanic or Latino category experienced the 
highest rates of no-calls (3.7%) and misclassifications (14.0%), whereas the NH White category had 
the lowest (0.4% and 1.2%, respectively). The flow diagram in Figure 1 illustrates that most patients 
were assigned to their stated category, with the majority of misclassifications occurring between 
Hispanic or Latino and NH White categories. Nevertheless, the overall misclassification rate of this 
model was very low at 0.9%.  
 
Fig. 1. Flow diagram showing the relationship between stated (left) and imputed (right) race and ethnicity. 

categories with the ML-ancestry model in all labeled data, including records without geolocation information and 
excluding no-calls (N=34,911). 

3.6.  Distribution of race and ethnicity categories imputed on unlabeled patients 

We also imputed race and ethnicity categories using the ML-ancestry model for all patients in the 
cohort (N=132,523) and examined the distribution of availability of race and ethnicity labels across 
categories (Figure 2). A total of 35,229 patients belonged to one of the four imputation categories 
according to their stated race and ethnicity data (“labeled”). There were 62,674 patients with no 
available race or ethnicity data at all (“unlabeled”), and an additional 34,620 with only partial 
information, i.e., either stated race or stated ethnicity (or both) were available, but patients did not 
fall into one of the four imputation categories, most frequently because ethnicity was unavailable 
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(“partially labeled”). Imputed categories had comparable levels of unlabeled data, with the No Call 
and NH Asian categories having the most (53% and 52%, respectively) and NH Black having the 
least (44%). The Hispanic or Latino category had the highest level of labeled data by far (40%) due 
to the definition of that category only requiring a stated ethnicity of “Hispanic or Latino” and 
allowing stated race to be any value, including a missing value. The remaining categories had 22-
26% labeled data. We observed that about half of each of the NH Asian, NH Black, and NH White 
imputed categories had records with a concordant stated race but a missing ethnicity (data not 
shown). 

 
Fig. 2. Counts of patients in the full dataset (N=132,523) by label availability status and race and ethnicity 
category as imputed using the ML-ancestry model. Labeled = stated race and ethnicity are available, and a 
patient falls into one of: Hispanic or Latino, NH Asian, NH Black, or NH White based on this information. 
Unlabeled = neither stated race nor ethnicity is available. Partially labeled = either stated race or ethnicity 
is available, but the patient cannot be placed in one of the four listed categories.  

3.7.  Analysis of potential biases 

The dataset used to develop our ML models is heavily imbalanced, with the largest group of patients 
(~74%) having a stated category of NH White, and the smallest group (~4%) having a stated 
category of NH Asian, potentially leading to overfitting to the majority category and biasing model 
performance. To address these potential problems, we evaluated additional models beyond those 
discussed here, wherein each model was trained in the same way except that each train+test set was 
downsampled to require an equal number of patients in each category, matching that of the category 
with the smallest number of patients. However, the downsampled models exhibited worse overall 
performance by all of our metrics and, within each category, had lower F1-scores (data not shown). 
Additionally, the performance metrics computed on the train+test sets during cross-validation were 
only slightly better than those computed on the validation set, alleviating concerns of overfitting. 
Importantly, the performance metrics we considered included metrics broken down by classification 
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category to enable evaluation of whether any particular category was underperforming relative to 
the others. We also considered metrics that are suited to imbalanced data, such as Cohen’s kappa. 

4.  Discussion 

Although a direct comparison of our methods with other imputation methods was not possible due 
to the absence of PHI (such as surnames or addresses) in our de-identified dataset, we compared our 
performance to that reported in the literature. Our models consistently and substantially 
outperformed these prior methods.6–9,31 E.g., the weighted correlation of our ML-ancestry model 
was 24-33 percentage points better, while its weighted error was an order of magnitude lower than 
other methods (Table 5). 
 

Table 5.  Comparison of performance metrics of ML-ancestry and other imputation methods based on 
metrics reported in the literature. Best performing metric indicated with bold. BISG = Bayesian Improved 
Surname and Geocoding;6 CTBF = CT-based full;9 CTBR = CT-based reduced.9 
Imputation Method Cohen’s 

Kappa 
Correct  

Rate 
Weighted 

Correlation 
Weighted 

Error 
Reference 

ML-ancestry 0.934 0.973 0.930 0.007 This study 
BISG 0.58 0.78 0.597 0.089 Xue et al, 2019a9 
CTBF 0.67 0.81 0.668 0.048 Xue et al, 2019a9 
CTBR 0.65 0.81 0.595 0.051 Xue et al, 2019a9 
Random Forest 0.67 0.807 0.672 0.025 Xue et al, 2019b8 

 
In our study, the category with the lowest recall was Hispanic or Latino, ranging from 86-89%. 

This category also had the highest level of no-calls (3.4% vs. ≤1%). Prior methods report an even 
more pronounced drop in performance for this category.6–9,31 However, the ML-
ancestry+demographics model provided the best precision (96%) at a good recall rate (86%), while 
the Heuristic method provided the best recall (89%) but at a significantly lower level of precision 
(83%). Although the intended use of the imputation may dictate the best trade-off, we believe that 
precision is the most important feature as minimization of misclassified subjects is generally more 
desirable. The drop in performance in the Hispanic or Latino category may be due to the fact that 
self-affiliation with this category corresponds more with culture and language than with genetic 
similarity,14 with levels of admixture within this group varying widely depending on country of 
origin and among the coasts of the US.15  

As with all RWD analyses, our work has potential limitations. Differences between patients with 
complete vs. incomplete stated race and ethnicity could affect model training and therefore 
imputation performance. The unequal distribution of imputed categories in labeled and unlabeled 
data suggests that there are indeed some slight differences in the composition of patients who lack 
race and ethnicity data, with imputed NH Asian category most likely to be missing this information, 
but therefore also most able to benefit from imputation. Given the limited numbers of American 
Indian or Alaska Native and Native Hawaiian or Other Pacific Islander individuals in our dataset as 
well as the insufficient public allele frequency information from these groups, we are unable to 
develop models to impute those categories, meaning those individuals will be misclassified, 
typically as Hispanic or Latino and NH Asian, respectively. As the Tempus database grows and 
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additional AIM allele frequencies become available, our model could be retrained to enable 
classification using these additional categories. While the performance of our models on populations 
outside the US is unknown, or indeed with differently ascertained population samples, our results 
suggest that retraining with additional data pertaining to those populations could yield similar 
performance in other settings. 

When developing our race imputation methods, we adhered to established recommendations for 
ethical imputation.32 We audited input data for bias, scrutinized methodological choices for potential 
bias introduction, rigorously assessed the accuracy of the imputed data, and our aims are to use this 
data to study or reduce disparities. Our adherence to these guidelines underscores our commitment 
to the responsible use of race imputation in promoting equity in healthcare. 

5. Conclusions

Addressing racial disparities is pivotal to advancing equity in precision medicine. However, the 
frequent unavailability of data disaggregated by race and ethnicity in RWD can lead to biased 
outcome predictors,34 inadequate representation in clinical trials,33 and poorly targeted policies, 
potentially exacerbating disparities.34 While the ultimate goal is to have complete self-reported data 
for optimal race and ethnicity information, our study highlights the efficacy of using genetic ancestry 
data to impute these categories in a de-identified setting, mitigating the challenge of data sparsity 
for these data in RWD from US populations. Our approach could allow more accurate identification 
of racial disparities in certain healthcare settings where genetic data are available, contributing to 
the development of fair artificial intelligence predictors and more targeted and equitable healthcare 
interventions. 
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