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The advent of spatial transcriptomics technologies has heralded a renaissance in research to advance 
our understanding of the spatial cellular and transcriptional heterogeneity within tissues. Spatial 
transcriptomics allows investigation of the interplay between cells, molecular pathways, and the 
surrounding tissue architecture and can help elucidate developmental trajectories, disease 
pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological and 
molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor for skin 
cancer. Spatial transcriptomics technologies hold promise for improving the reliability of evaluating 
photoaging and developing new therapeutics. Challenges to current methods include limited focus 
on dermal elastosis variations and reliance on self-reported measures, which can introduce 
subjectivity and inconsistency. Spatial transcriptomics offers an opportunity to assess photoaging 
objectively and reproducibly in studies of carcinogenesis and discern the effectiveness of therapies 
that intervene in photoaging and preventing cancer. Evaluation of distinct histological architectures 
using highly-multiplexed spatial technologies can identify specific cell lineages that have been 
understudied due to their location beyond the depth of UV penetration. However, the cost and inter-
patient variability using state-of-the-art assays such as the 10x Genomics Spatial Transcriptomics 
assays limits the scope and scale of large-scale molecular epidemiologic studies. Here, we investigate 
the inference of spatial transcriptomics information from routine hematoxylin and eosin-stained 
(H&E) tissue slides. We employed the Visium CytAssist spatial transcriptomics assay to analyze 
over 18,000 genes at a 50-micron resolution for four patients from a cohort of 261 skin specimens 
collected adjacent to surgical resection sites for basal cell and squamous cell keratinocyte tumors. 
The spatial transcriptomics data was co-registered with 40x resolution whole slide imaging (WSI) 
information. We developed machine learning models that achieved a macro-averaged median AUC 
and F1 score of 0.80 and 0.61 and Spearman coefficient of 0.60 in inferring transcriptomic profiles 
across the slides, and accurately captured biological pathways across various tissue architectures.  

Keywords: Deep Learning, Machine Learning, Spatial Transcriptomics, Skin Photoaging. 

1. Introduction

Spatial transcriptomics is an innovative and rapidly evolving field in biomedical research that 
combines the power of genomics and spatial mapping techniques to gain insights into the spatial 
organization of gene expression within complex tissues, such as the skin. By providing a detailed 
view of gene expression patterns in relation to cellular and tissue architecture, spatial 
transcriptomics has quickly become a valuable tool for biomedical research, including 
dermatological research.  
      The skin is the largest organ in the body, composed of multiple cell types that each play a crucial 
role in maintaining its structure and function. Though traditional genomic analysis techniques, such 
as bulk-RNA sequencing (RNA-seq), and disaggregated techniques, such as single cell RNA 
sequencing (scRNA-seq), have provided valuable information about cellular heterogeneity and 
disease progression, they lack the ability to assess localized gene expression patterns that may relate 
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with cell-cell interactions and architecture to support tissue function. Spatial transcriptomics 
approaches uniquely allow researchers to examine gene expression patterns within their anatomical 
and histological context, enabling a deeper understanding of the underlying molecular mechanisms 
driving skin biology, carcinogenesis, and disease progression. 
      An important potential application of spatial transcriptomics in dermatology is to advance the 
emerging study of skin aging.1 The skin serves as a barrier between the environment and the body 
where it is exposed to near-constant insults, including ultraviolet radiation (UVR), mechanical 
stress, and toxicants.2 These exposures, along with genetic influences, combine to induce skin 
damage, reduced function, and, ultimately, a characteristic loss of elasticity of the skin largely 
reflecting degradation of the collagen matrix.3 More recently, Zou et al. created a single-cell 
transcriptomic atlas of human skin aging using eyelid tissue and identified cell-type-specific 
associations with human skin aging.1 Further characterization of cellular changes that incorporate 
spatial information in skin can inform therapeutic strategies and interventions to combat age-related 
skin alterations and disease.  
      Currently, spatial transcriptomics technologies at whole transcriptomic-level multiplexing are 
incredibly costly and prone to several sources of variation (e.g., within/between-subject variation), 
limiting broad application. Recently, deep learning models have been proposed as a cost-saving 
alternative to predict spatial gene expression from routine tissue stains.4–6 For instance, the 
DeepSpaCE approach includes convolutional neural networks (CNNs) for spatial gene cluster and 
gene expression prediction in human breast cancer tissue sections.4 Another modeling paradigm 
aimed at predicting spatial gene expression across breast and cutaneous tumor data used a mix of 
transformer and graph neural network-based approaches.6 In addition, the performance of several 
different modeling approaches for spatial gene expression prediction in tissue was recently 
compared using stage-III (pT3) colorectal tumors. Though these studies demonstrate the potential 
to infer spatial expression patterns using histomorphological data, several crucial questions 
remained unanswered, including the applicability of these methods to non-cancerous tissue sections, 
to other biological domains (e.g., dermatology), as well as the extent to which prediction modeling 
can preserve salient biological pathways and relationships required for downstream analysis on 
larger cohorts.   
      In this pilot study, we develop and validate a deep learning method for the prediction of spatial 
gene expression across spatially variable genes in routine H&E-stained skin tissue. Predictions can 
be used to create synthetic multidimensional tissue maps—similar to those produced through spatial 
transcriptomic profiling—for tissues without corresponding spatial transcriptomics data. Use of 
deep learning models promises to reduce the cost and time associated with spatial transcriptomics 
data acquisition for dermatological applications, greatly expanding access to the technology and its 
range of unique insights. Interrogating pathways associated with spatially inferred genes can 
advance our knowledge of skin biology, improve diagnostic tools, and pave the way for more 
personalized treatment strategies. 
 
2.  Methods and Materials  

In this work, we attempt to predict the spatial gene expression of Visium spatial transcriptomics 
spots distributed across 40X magnification H&E slides. To this end, we use the following methods:  

1. Data collection and annotation: Acquired H&E whole slide images (WSI), and spatially 
registered Visium CytAssist assayed spatial transcriptomics slides from 4 human cheek skin 
tissue samples collected from sites histologically adjacent to basal cell carcinoma (BCC) and 
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squamous cell carcinoma (SCC) during skin cancer removal surgery. These samples were 
then graded by dermatologists for their solar elastosis status (two mild, two severe). 
Additionally, dermatologists annotated regions corresponding to distinct histological entities 
(e.g., epidermis, eccrine glands, hair follicles, sebaceous glands, and vascular/endothelial 
infrastructure). Instances of actinic keratoses were documented from a larger cohort. 

2. Preprocessing: Preprocess gene expression and WSI subarrays to capture spatially variable 
genes and genetically dense regions of tissue.  

3. Model development: Configure the SWIN-T transformer to perform two distinct modeling 
tasks, binary (dichotomized expression) and continuous gene expression prediction, on the 
1000 most spatially variable genes.  

4. Leave one-patient-out cross-validation: Evaluation on held-out slides/patients as a 
measure of external applicability. 

5. Recover spatial biology inferences: Model performance was further measured using: 1) 
pathway analysis for high performing genes, 2) topological consistency between ground 
truth and predicted expression, and 3) the ability to recapitulate genes and pathways 
associated with distinct histological structures.  

Each of these steps will be further detailed in the ensuing sections.  

2.1.  Data Collection 

 
Figure 1: Cohort Description. 261 WSIs were scanned. Four of these slides underwent further spatial 
transcriptomics profiling and were annotated for distinct histological architectures. Two are shown here. 
From left to right, the WSI, histological annotations, and Visium spatial transcriptomics spot array for (A) 
sample 14 and (B) sample 167.  

Four specimens were collected for profiling from a cohort of 261 tissue samples obtained in a single 
site Mohs micrographic surgery (MMS) clinic between March 1st 2022, and October 10th 2022. The 
samples were mostly from the head and neck, and all from sites histologically adjacent to either 
basal cell carcinoma or squamous cell carcinoma, as confirmed by histologic analysis of frozen 
section slides. The tissue was removed as part of standard surgical practice as Burow’s triangle flaps 
for skin grafting/reconstruction. Triangles are normally discarded—two triangles were collected per 
patient, in some cases bisected. One triangle underwent formalin fixation while the other triangle 
was frozen. Formalin-fixed specimens were breadloafed, encased in paraffin-embedded tissue 
blocks, and sectioned and stained for hematoxylin and eosin (H&E) using Autostainers for 
subsequent imaging at 40x resolution (0.25 micron/pixel) using Aperio GT450 scanners. Tissue 
slides were transported to the Genomics core, where after tissue decoverslipping, the Visium 
CytAssist device was used to transfer transcriptomic probes from the original glass slides to 
11mmx11mm capture areas on Visium slides. Sections from two patients were placed into each 
capture area to conserve costs and separated during the analysis stage. Whole transcriptomic 
profiling was accomplished after mRNA permeabilization, poly(A) capture, and probe 
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hybridization. The eosin stain for the tissue sections were imaged using CytAssist, which were then 
co-registered to the original 40X whole slide images (WSI). Given the limited sample size due to 
the spatial transcriptomics assay costs, four specimens were selected, representing cheek tissue from 
four females, two with mild elastosis (participant #178 and #14, ages 24 and 76 respectively), two 
with severe elastosis (participant #167 and #107, ages 55 and 84) respectively. 

2.2.  Preprocessing  

Prior to processing, Visium spatial transcriptomics profiles for samples contained 18,085 genes 
measured across several thousand locations throughout each slide. Each profile was then subjected 
to preliminary filtering, where genes and spots were filtered according to their abundance (i.e., cells 
with less than 500 genes, genes expressed in less than 3 cells, and cells with more than 15% 
mitochondrial gene expression were filtered out). After filtering out the regions lacking tissue using 
a custom annotation tool augmented by the SAM, the total number of Visium spots per slide reached 
2561, 3279, 3547, and 1737, each sampled in a honeycomb formation. Each Visium spot covers a 
circular capture area with a diameter of 50-micron (~200 pixels) at 40x magnification. After 
sequencing, we used the SpaceRanger package to preprocess the Visium reads into gene count 
matrices. 
      Every whole slide image (WSIs) used for the Visium assay captures an area (size of capture 
area– 11 × 5.5 mm– half the capture area per patient) that spans tens of thousands of pixels along 
each dimension. Accordingly, to make the prediction task computationally tractable, we subdivided 
every WSI into square 512 by 512-pixel image patches (i.e., subarrays) centered on each Visium 
spot. The gene expression of the central 50-micron Visium spots were aligned to each image patch. 
Data present within the image patch but falling outside the capture area of the Visium spot were 
considered to have less direct relevance to the cells being assayed. Spots were additionally annotated 
based on the aforementioned tissue histological structure using the Annotorious OpenSeadragon 
plugin. 

2.3.  Model Development 

2.3.1.  Inference Targets 

As predicting all of the genes assayed is computationally intractable, we used the SpatialDE library 
to select the top 1000 genes based on their mean spatial variance (MSV) across all slides (i.e., 
selected genes that exhibited the greatest spatial variation across the 4 slides). We then tested the 
capacity of our models to predict both dichotomized and log gene expression for all 1000 genes.  
      More specifically, in the dichotomized prediction task, patches were classified as having a 
“high” or “low” gene expression for each gene if the expression of the gene at that patch location 
was greater or lower than its mean gene expression across all other Visium spots in the 
corresponding WSI. This approach follows existing work detailed in Fatemi et al.5 For this task, 
models were trained using a binary cross entropy loss function.  
      In the continuous expression task, by contrast, models were trained to predict the log-
pseudocount log(1+counts) gene expression for each gene within the corresponding image patch 
region. For this task, loss was calculated using the mean squared error, which was found to be 
comparable to modeling counts using the zero-inflated negative binomial distribution.5  
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2.3.2.  Modeling Approach 

Previous work has established the importance of spatial and neighborhood context information in 
both the dichotomized and continuous gene expression tasks.5 In this study, we leveraged the SWIN-
T vision transformer, a hierarchical transformer that has gained repute for building hierarchical 
feature maps by iteratively merging information from nearby image patches in deeper layers.7 
Transformers divide images into smaller subimages, and numerical descriptors are extracted for 
each subimage using convolutional filters, along with information on the relative positioning of the 
subimages. Self-attention mechanisms are used to route information across the image based the 
relevance of one subregion of the image to another. In both the dichotomized and continuous 
expression tasks, the output layer of the base SWIN-T model was modified. In particular, the output 
layer was expanded to consist of two feed-forward layers of sizes 768 and 2000, chosen through 
coarse experimentation to maximize model performance. Both the dichotomized and continuous 
expression models yielded predictions for the 1000 most spatially variable genes.  

2.3.3.  Data Augmentation and Hyperparameter Selection 

To improve the robustness and generalizability of these models to varied histological contexts, all 
images in the training set were subject to a series of data augmentation transformations implemented 
using the Albumentations package.8 Images were first resized to 448 by 448 pixels in size, the input 
dimensionality for the SWIN-T model. Horizontal flips and random brightness contrast were then 
performed with probabilities 0.5 and 0.2, respectively. A shift, scale, and rotate transformation was 
also applied to every image with a probability of 0.3. A shifting limit of 0.1, a scaling limit of 0.1, 
and a rotation limit of 30 were used here. Additionally, random rectangular areas of the images were 
erased– a maximum of 8 holes were produced per image, each hole obscuring at most 16 by 16 
pixels.  
      Hyperparameters were obtained for both the dichotomized and continuous expression models 
via a coarse hyperparameter grid search. For the dichotomized models, optimal performance was 
observed while using a batch size, learning rate, and training length of 64, 0.5×10−6, and 20 epochs. 
Whereas for the continuous models, optimal performance was observed while using a batch size, 
learning rate, and training length of 64, 0.33 × 10−6, and 20 epochs. The Lion optimizer was used 
in both cases.9  

2.4.  Cross Validation 

Model performance was measured via leave-one-patient-out cross-validation (LOOCV). In this 
procedure, three of the four Visium spatial transcriptomics samples were used for training and 
validation, while the remaining sample was used for testing. This procedure was repeated four times 
to account for all possible training/testing combinations. Reported performance metrics for each 
gene are the macro-averaged (across slides, weighting each slide equally) median (across genes) 
area under the receiver operating characteristic curve (AUROC) and F1 score (F1) statistics for the 
dichotomized task, and correlation coefficients (Spearman coefficient) to compare true versus 
predicted pseudocounts– log(1+counts)– for the continuous task. Macro performance statistics 
underwent 1,000 sample nonparametric bootstrapping across the Visium spots to yield 95% 
confidence intervals. 
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2.5.  Biological Salience 

To assess for the model’s ability to capture meaningful biological information from tissue histology, 
model predictions were also scrutinized for their ability to 1) recapitulate a range of biologically 
salient pathways, 2) maintain the shape and spatial signature of ground truth spatial gene expression 
data in lower dimensional space (i.e., preserves key relationships; spots cluster similarly) using the 
aligned-UMAP procedure, and 3) facilitate the inference of biologically salient features, such as 
histological markers. These tasks are detailed below.  

2.5.1.  Pathway Analyses 

Given the nature of histomorphological data, it is unreasonable to expect that every gene can be 
predicted from tissue histology alone. Accordingly, we sought to determine the biological pathways 
associated with sets of differentially performing genes to answer understand what biological 
properties make a gene amenable to prediction. We utilized the GO Biological Process 2023 
database through the EnrichR package, to perform a pathway analysis on predicted genes stratified 
by decile after ranking genes based on predictive performance.10,11 The top 3 pathways were selected 
for each decile—from 90th to 100th decile (i.e., top performing genes) to the  0th to 10th device (i.e., 
worst performing genes)—based on their combined score (i.e., magnitude of representation and 
statistical significance). Detected pathways were also filtered by tissue specificity (i.e., could 
reasonably be involved with the skin).  
      We further sought to identify whether the gene signatures correspondent to different histological 
architectures was congruent between true and predicted expression. First, the top 100 most 
differentially expressed genes were found using the Wilcoxon rank-sum test in a one vs. rest fashion 
for each tissue architecture (e.g., follicles versus non-follicular structures) using both predicted and 
ground truth data. A pathway analysis using GO Biological Process 2023 database through the 
EnrichR package was then performed for the top true and predicted differentially expressed genes 
for each architecture. The top 10 pathways were selected by combined score for each histological 
category. Detected pathways were compared between ground truth and predicted gene expression 
for each sample under the hypothesis that similar pathways should be associated with the same 
architectures.  

2.5.2.  Similar Clustering of Visium Spots and Consistent Topology via Aligned-UMAP 

Model predictions were further assessed for their ability recapitulate the topology (i.e., relationships 
between spots) of ground truth Visium spatial gene expression data within a lower dimensional 
space. This was accomplished through the comparison of Uniform Manifold Approximation and 
Projection (UMAP) embeddings (i.e., numerical representations that could be plotted in a 2D 
scatterplot; closer points share similar expression/biological relevance) for the ground truth and 
predicted expression profiles (on held-out slides) extracted using the SWIN-T model. Ground truth 
and predicted gene expression profiles for each slide were co-projected to a lower dimensional space 
using the Aligned-UMAP procedure to preserve the relative orientation and alignment between 
spots to enable comparison between the approaches. Each Visium spot from the WSI was plotted as 
2D scatterplot point and colored according to its gene expression profile as dictated by the Leiden 
clustering algorithm. In other words, ground truth Visium spots sharing similar transcriptional 
information are grouped to the same Leiden cluster, while genetically dissimilar spots are grouped 
to different Leiden clusters. These ground truth cluster assignments were overlaid on the scatterplots 
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for the predicted expression patterns. It is expected that the relative positioning between the clusters 
would be preserved in the 2D scatterplot for the predicted expression, which would measure the 
extent to which model predictions recapitulated patterns associated with distinct histological regions 
of each WSI.  
      Aside from overlaying the original ground truth clusters, predicted expression profiles were also 
separately clustered through the Leiden algorithm, yielding a separate set of cluster assignments for 
the same Visium spots. These assignments were compared to the ground truth Visium spatial 
transcriptomics profiles’ clusters. Similar clustering assignments would provide further evidence 
for greater correspondence between transcriptional data and information derived from the histology.  
 
3.  Results†  

3.1.  Prediction of Spatial Transcriptomic Patterns from Histology 

In the dichotomized prediction task, the SWIN-T vision transformer model achieved a macro-
averaged (i.e., across genes) median AUC and F1 score of 0.80 and 0.61, respectively, across the 
testing sets (Supplementary Table 1). The model performed best on genes ADIPOQ, PLIN1, and 
PKP3 (involved in fatty acid metabolism12, triacylglycerol storage13, and desmosome function and 
stability14, respectively) , and worst on genes ANKRD35, ALAS1, and MIA (of which the latter two 
are known to be involved in heme biosynthesis15 and melanocyte migration16, respectively) . 
Dichotomized model predictions for genes ADIPOQ, PLIN1, and PKP3 are visualized across 
sample #14 and #178 (Figure 2), demonstrating spatial concordance between true and predicted 
expression. In the continuous prediction task, models achieved a macro-averaged median Spearman 
coefficient of 0.60 across the testing sets (Supplementary Table 1). The model performed best on 
genes KRT14, CXCL14, and COL1A2 (involved in epithelial cell integrity17, keratinocyte function18, 
and collagen synthesis19, respectively) and worst on genes CKM, MYLPF, and ODF21 (the former 
two are known to be involved in energy homeostasis20 and muscle development21). Continuous 
model predictions for genes KRT14, CXCL14, PI16 were visualized across samples 107 and 167 
(Supplementary Figure 2), demonstrating spatial concordance between true and predicted 
expression. Note that models in both the dichotomized and continuous prediction tasks were trained 
to predict the same set of 1000 spatially variable genes.  

 
Figure 2: Dichotomized RNA Expression Prediction. Dichotomized spatial gene expression was inferred 
for (A) samples #14 and (B) #167 and compared with the respective ground truths. A spot is colored yellow 
if gene expression in this spot exceeds global mean gene expression. Performance is displayed for the top 
performing genes, ADIPOQ, PLIN1, and PKP3, which achieved macro-averaged AUC values of 0.942, 
0.938, and 0.918, respectively.  

 
† Supplementary materials can be found at the following DOI: https://doi.org/10.5281/zenodo.8197850  
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3.2.  Pathway Analysis 

For each performance decile, the top 3 most salient biological pathways by combined score were 
determined (Supplementary Table 2). Across both the dichotomized and continuous prediction 
tasks, biological pathways associated with the top performance decile (i.e., 90th to 100th percentile 
genes ranked by performance) pertained to skin and epidermis development and maintenance, skin 
cell proliferation, and the regulation of extracellular matrix and cell-cell adhesion (Table 1). By 
contrast, biological pathways associated with genes in the worst performance decile (i.e., 0th to 10th 
percentile genes ranked by performance) across both the dichotomized and continuous prediction 
were far less associated with relevant biological phenomena, pertaining to immune signaling, cell-
turnover regulation, gas transport, and muscle cell development (Table 1). More generally, 
biological pathways associated with higher-performing genes tended to be more closely related to 
skin development, differentiation, pigmentation, and fat metabolism, while distinct trends were less 
clear for those biological pathways associated with lower-performing genes (Supplementary Table 
2).  
 
Table 1: Performance Pathway Analysis. Combined performance statistics for both the dichotomized and 
continuous models were used to perform a performance-stratified pathway analysis. AUC and Spearman 
coefficient were used to stratify genes in the dichotomized and continuous tasks, respectively. The top 3 pathways, 
measured via EnrichR using the Go Biological Process 2023 database, are reported for the highest and lowest 
performance deciles. Refer to Supplementary Table 2 for an extended version of this table detailing all 
performance deciles. 

Gene Performance Task Pathway Score Overlap P-value 
Top performing 
genes: 90-100th 
Percentile Genes  

Dichotomized Establishment of Skin Barrier 2127 6/19 6.9E-10 
Skin Epidermis Development 1785 6/21 4.0E-04 
Keratinocyte Proliferation 803 2/6 1.4E-11 

Continuous Positive Regulation of 
Epidermis Development 

2725 4/9 7.3E-08 

Desmosome Organization 2654 3/6 2.4E-06 
Intermediate Filament Bundle 
Assembly 

1905 4/7 4.2E-06 

Bottom performing 
genes: 0-10th 
Percentile Genes  

Dichotomized Interleukin-2-Mediated 
Signaling Pathway 

615 2/7 2.8E-04 

Cellular Response to 
Interleukin-2 

615 2/7 5.1E-04 

Negative Regulation of T Cell 
Apoptotic Process 

615 2/7 5.1E-04 

Continuous Gas Transport 504 3/15 5.3E-05 
Positive Regulation of 
Respiratory Burst 

493 2/8 6.7E-04 

Regulation Of Skeletal Muscle 
Cell Differentiation 

493 2/8 6.7E-04 

 
      The top 100 differentially expressed genes for each histological sub-type were determined for 
both ground truth and predicted data samples, and these genes were leveraged for further pathway 
analyses. The pathway analysis results for the top 100 differentially expressed genes for 
dichotomized and continuous gene expression data are reported in Supplementary Table 3 and 
Supplementary Table 4. Across both dichotomized and continuous gene expression data, pathways 
associated with the formation of the sebaceous gland and epidermis were found to be in high 
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agreement between ground truth and predicted expression, while the agreement was more modest 
other in histological features (Table 1; Supplementary Table 3).  

3.3.  Topological Consistency 

3.3.1.  Leiden Clustering 

A visual inspection of the aligned-UMAP diagrams demonstrates similar clustering patterns and 
topological consistency between the predicted and the ground truth expression data across both 
models trained for dichotomized and continuous regression tasks (Figure 3; Supplementary 
Figure 2). We noted that the Leiden clusters assigned to the ground truth expression were similar 
to those assigned to predicted expression embeddings. Nonetheless, differences remained. We did 
not observe complete separation in the predicted expression embeddings, representing a fuzzier or 
more connected/intermediate topological structure (Figure 3; Supplementary Figure 2). These 
spots in the predicted data were, accordingly, located between Leiden clusters more often than spots 
in the ground truth genetic data, where Leiden clusters tended to be far more spatially distinct. This 
feature was noted for both dichotomized and continuous expression models, although this pattern 
was more prevalent for dichotomized expression (Figure 3; Supplementary Figure 2). 
      Model predictions in both the dichotomized and continuous expression tasks also preserved the 
general shape of ground truth genetic data while plotted across each whole slide image 
(Supplementary Figures 3 and 4). We further observed, however, that predicted data tended to 
contain genetically intermediate states, as evidenced by the greater number of Leiden clusters 
produced in the predicted data compared to the ground truth data while using the same Leiden 
clustering resolution (Supplementary Figures 3 and 4). Though models in both tasks produced 
data that captured larger macro-architectural differences in gene expression found across skin tissue, 
the dichotomized model tended to produce data that more closely preserved the relationships 
determined using Leiden clustering plotted across the slide found across the ground truth data 
(Supplementary Figure 3). Models in the continuous expression task, though high performing, 
tended to produce data that recapitulated the spatial genetic variation of macro-architectural features 
in skin tissue less well, evidenced, again, by disparities in the number and placement of Leiden 
clusters when comparing the predicted and ground truth data (Supplementary Figure 4). 

 
Figure 3: Dichotomized Expression Topological Analysis. (A) From left to right, ground truth spatial 
Leiden clustering, ground truth aligned UMAP, and predicted aligned UMAP for sample #14. (B) From left 
to right, ground truth spatial Leiden clustering, ground truth aligned UMAP, and predicted aligned UMAP 
for sample #178. In both rows, the same spots are colored identically according to their ground truth gene 
expression profiles after Leiden clustering analysis. Dichotomized gene expression data was used here. The 
Leiden clustering resolution was set to 0.2. 

A B
Ground Truth Predicted Ground Truth Predicted
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3.3.2.  Histological Annotations 

Performing Aligned-UMAP on the ground truth and predicted expression data for Visium spots 
tagged by histological structures demonstrated that embeddings in both groups clustered by distinct 
histological regions of skin tissue (Figure 4; Supplementary Figure 5). That is, Visium spots 
corresponding to similar histological structures clustered in similar locations across both UMAP 
plots, preserving the genetic relationships between these histological architectures. The distinctness 
of these clusters was preserved for both dichotomized and continuous gene expression predictions, 
though predicted continuous expression data appeared to preserve the topology better than 
dichotomized gene expression data (Figure 4; Supplementary Figure 5). 

 

 
Figure 4: Dichotomized Expression Histological Analysis. Aligned-UMAP procedure was used to reduce 
the dimensionality of both the ground truth and predicted dichotomized gene expression vectors for (A) 
sample #14 and (B) sample #178. Spots are colored according to their histological annotations. 

4.  Discussion 

In this work, we developed a set of spatial gene expression inference models for histopathologically 
normal skin tissue in the context of molecular changes associated with photoaging. We make use of 
the novel CytAssist co-registration/imaging technology, allowing for 40X resolution imaging of 
tissue slides. Beyond quantitative validation of performance (e.g., AUC, F1, Spearman coefficient), 
we also reaffirmed the biological relevance of the predicted expression pattern. In particular, 
extracted histological features from our models remained faithful to underlying biological pathways, 
buttressing their potential use across a range of biological inference tasks, and lending credibility to 
their role in democratizing the spatial transcriptomics paradigm to the broader research community.  
      With the Visium CytAssist technology, our models were trained with histological information 
at >4 times the spatial resolution of previous studies. We achieved comparable performance to a 
prior study that utilized an Inception convolutional neural network for both dichotomized and  
continuous prediction of gene expression.5 While acknowledging the need for caution when 
comparing these models, as they represent different biological domains (Skin vs Colon; different 
genes used in the models), observed performance disparities may arise from variations in 
methodology. These differences could include the utilization of distinct imaging resolutions (40X 
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vs 20X) or the selection of different modeling approaches (ZINB vs raw log gene expression). Since 
our predictions were made within a more focused visual receptive field, disregarding the 
surrounding wider tissue architecture, future work can explore the examination of larger-scale 
histological context. 
      The pathway and topological analysis provided useful insights on the nature of spatial RNA 
inference from histology. It is important to highlight that our findings suggest that genes with a clear 
histological basis are more likely to be accurately predicted compared to genes lacking such a 
theoretical histological foundation. Our results also demonstrate the importance of developing 
models germane to the biological question at hand: a model trained on colon tissue is not expected 
to perform well on skin tissue. Hence, investigating modeling approaches that prioritize specific 
biological phenomena emerges as a promising direction for future research. Genes that demonstrate 
good performance, or effectively recapitulate histological patterns, could potentially be utilized for 
further research applications across larger cohorts.  
      The topological analysis demonstrated that predicted expression profiles did not cluster as 
distinctly as the original expression patterns. When coloring by Leiden cluster affiliation and 
histological association, the predicted spot level gene expression fell between ground truth clusters, 
representing intermediate histological states learned by the neural networks. Future work may seek 
to understand which histomorphological features relate to different molecular pathways through 
newly established interpretation approaches22. The integration of coregistered slide imaging with 
spatial molecular information can facilitate such analyses. Moreover, by subsetting predicted and 
true gene expression based on shared molecular pathways (such as genes involved in epithelium 
development, cell-cell junctions, immune function, etc.) and conducting comparable topological 
analyses, it is possible to identify the molecular pathways that exhibit the highest degree of 
topological distinctiveness. Nevertheless, topological analyses have emerged as a timely and 
relevant topic in the realm of single-cell and spatial analyses, offering the potential to uncover 
additional dimensions of cellular and histological heterogeneity23–25. 
      This study reinforces the potential of spatial transcriptomics approaches for research and clinical 
applications. For example, photoaging, which is linked to skin cancer risk, lacks reliable 
measurement tools due to variations in histological assessments and self-reported UV exposure. 
Existing analyses typically focus on specific cellular components (e.g., dermal fibroblasts, elastosis, 
keratoses), often disregarding or unaware of photoaging-related factors. Expanding spatial 
molecular findings through RNA inference to a larger cohort can help identify cell-type specific 
sources of photoaging in specific tissue architectures while controlling for numerous potential 
confounders and presents an intriguing area of follow up given the models established in this study. 
Spatial RNA inference can uncover novel cellular components related to precancerous alterations 
resulting from chronic sun exposure. By targeting profiling of these tissue regions, researchers can 
explore residual heterogeneity, while examining cell-type specific alterations and additional factors 
related to accelerated aging, with the caveat that tissue from this cohort is histologically adjacent to 
surgical site of repair, potentially harboring a cancerization field effect. 
      In clinical practice, the use of virtual RNA models has the potential to inform treatment planning 
and assess treatment response. If these models can identify proxy measures of photoaging, spatial 
molecular inference can be employed to evaluate the effectiveness of skin therapeutics through 
quantitative assessment of biomolecular changes at screening, baseline, and endpoint. This approach 
offers a more objective and quantitative measurement of the impact of treatments on skin health and 
can enhance the validity of therapeutic interventions. Similarly, applications are envisioned for 
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treatment of non-healing skin ulcers and separately hair loss driven by an autoimmune response 
(e.g., alopecia areata), revealing potential components of relevant immune polarity (e.g., M1/M2 
macrophage balance, etc.).26,27 Additionally, virtual RNA inference models can inform disease 
management options for various solid tumors, functioning similar to immunohistochemical assays 
(e.g., immunoscore) that shed light on the infiltration of cytotoxic immune cell lineages, identifying 
independent risk factors of tumor recurrence and survival. Spatial molecular assessments can 
identify targetable therapeutic pathways for personalized treatment options. 
      This study is not without limitations that can direct for future research. Our sample size was 
small, limiting our ability to account for potential variability in histology and surgical sites. 
Additionally, the non-biopsied nature of the samples and their proximity to potentially precancerous 
tumor tissue may introduce differences in gene expression related to factors other than UV exposure. 
Introducing matching normal control tissue, considering factors like limited sun exposure and low 
field effect potential, along with expanding the cohort to control for additional age ranges, sex, and 
tissue site, could help reveal photoaging differences specific to these groups. Skin tone is another 
confounding factor that should be addressed, and it can be controlled using measures such as the 
Fitzpatrick skin phototype scale or derived continuous measures. To improve rigorous quantitative 
photoaging assessments, various measures of photoaging can be combined using factor analyses, 
leading to meaningful composite measures, such as DNA methylation, age-related measures, 
elastosis, and UV questionnaires. Additionally, one general limitation of our topological analyses 
included their more qualitative, rather than quantitative, nature. Shifts in distribution between 
ground truth and predicted Visium spot topology could also be captured using more nuanced 
mathematical notions such as the KL-divergence, Wasserstein distance, maximum mean 
discrepancy, and silhouette score. Addressing these limitations and incorporating a more diverse 
and extensive sample size can enhance the reliability and applicability of future studies in this field. 

5. Conclusion

Machine learning technologies that can infer spatial molecular information from routine tissue stains 
have the potential to facilitate low-cost accessible spatial transcriptomic assessments for large scale 
molecular epidemiological studies. Such studies can uncover novel risk factors of early 
photocarcinogenesis or inform relevant treatment/therapeutic options by expanding the set of 
targetable molecular pathways within specific tissue architectures. Our skin study sets the stage for 
larger-scale studies to identify spatial molecular correlates of skin sun damage and evaluate novel 
therapeutics that may reverse this damage. While our models exhibited impressive performance in 
predicting dichotomized and continuous gene expression within tissue slides, it is crucial to 
acknowledge the need for further development and validation of this approach. When utilizing these 
algorithms, it is important to consider the genes that are known to be influenced by histological 
characteristics. Additionally, any novel findings obtained through these tools should be corroborated 
and validated using well-established immunostaining techniques, ensuring the reliability and 
robustness of the results. 
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