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Clinical AI systems’ lack of interpretability limits their adoption in evidence-based medicine.
To address this challenge, we propose a computational framework that harnesses generative
AI’s medical knowledge to create interpretable structural causal models (SCMs) for clinical
decision support, quality improvement evaluation, and population health management. We
evaluated our approach through a case study using data from the Midwest Healthcare Con-
ference Causal Diagram Challenge, where we compared transformer-based large language
models against human performance on a complex causal reasoning task: estimating COVID-
19 treatment effects through target trial emulation. Both groups designed SCMs to evaluate
glucocorticoid treatment effects on 28-day mortality using real-world data from more than
2,000 hospitalized patients, benchmarked against published RECOVERY randomized con-
trolled trial results. The best performing SCMs achieved bootstrap coverage rates exceeding
90% for two of three severity strata. Both human and AI models demonstrated equiva-
lent clinical plausibility (n=3 expert reviewers) and similar statistical performance, though
both struggled with critical disease severity. Ablation experiments comparing SCM-based
approaches against traditional potential outcomes methods revealed SCMs achieved 76-98%
coverage versus 1-37% for traditional methods. These results suggest that structural causal
models can effectively bridge the interpretability gap in clinical AI by providing essential
scaffolding for reliable causal inference and enabling meaningful human-AI collaboration
while preserving methodological rigor essential for evidence-based medicine.

Keywords: Causal Inference, Large Language Models, Artificial Intelligence, Clinical Infor-
matics, Structural Causal Models, AI-Supported Interactive Evaluation

1. Introduction

Clinical artificial intelligence poses interpretability and explainability challenges.1 Although
transformer-based large-language models demonstrate impressive performance metrics,2 their
black-box nature delays meaningful and safe integration into clinical decision-making work-
flows.3 Regulatory health agencies require explainable AI systems when the device is intended
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Fig. 1. Graphical Abstract

to diagnose, treat, cure, mitigate, or prevent disease.4 However, most current AI approaches
sacrifice interpretability for accuracy and rely upon post-hoc explanations that fail to reliably
provide causal reasoning underlying their recommendations.5–7

Generative AI has demonstrated competency solving a limited set of programming tasks by
converting probabilistic text generation into deterministic executable systems.8 The key insight
is in converting uncertain outputs into structured and interpretable representations that can
be debugged, validated, and iteratively refined by humans.

The same principle can be applied to clinical reasoning. Generative AI’s medical domain
knowledge can be converted into interpretable structural causal models (SCMs) that provide
transparent, debuggable, and quantitative representations of clinical knowledge (Figure 1).
We evaluate this framework by comparing generative AI and human performance in designing
structural causal models. The evaluation uses results from the Midwest Healthcare Conference
Causal Diagram Challenge, where human participants without formal causal inference training
and with varying levels of domain knowledge designed SCMs to estimate the safety and efficacy
of COVID-19 treatment strategies (glucocorticoids in three disease severity contexts) using
real-world electronic health record (EHR) data. This study provides empirical evidence for how
structural causal models can bridge the gap between model intelligence and human reasoning
in clinical medicine.
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Collaborative Target Trial Emulation: Framework, Process, and Performance
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While transformer-based LLMs excel in knowledge breadth and speed, SCMs
provide superior accuracy, transparency, and reproducibility essential for
clinical applications. Complementary strengths suggest hybrid approaches
leveraging LLM knowledge within structural causal frameworks.

Fig. 2. Collaborative Target Trial Emulation Framework and LLM-SCM Integration.
Left: Implementation of the Causal Roadmap framework in the UIUC Challenge demonstrating sys-
tematic translation from clinical questions to validated causal models. Top right: DAG construction
process showing progression from domain knowledge specification to automated validation. Bottom
right: Comparison of Large Language Models and Structural Causal Models across key dimensions,
highlighting complementary strengths that enable hybrid approaches combining AI knowledge gen-
eration with rigorous causal inference.

2. Background and Related Work

2.1. Causal Inference in Clinical Research

The Causal Roadmap provides a systematic approach for generating high-quality real-world
evidence through explicit specification of causal questions, identification assumptions, esti-
mands, and statistical estimators, (Figure 2, left panel).9 Target trial emulation employs
this framework to design observational studies that carefully emulate randomized controlled
trials (RCTs), enabling rigorous causal inference from real-world data.10 Despite methodolog-
ical advances, causal inference remains underutilized in clinical practice. Current tools require
extensive statistical programming expertise, creating barriers for clinical researchers who have
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essential domain knowledge—precisely those best positioned to identify confounders, evaluate
clinical plausibility, and validate causal assumptions.

2.2. Structural Causal Models as an Interpretable AI Framework

Structural causal models (SCMs) represent causal relationships as directed acyclic graphs
(DAGs) where nodes denote variables and edges encode causal dependencies between them.11

The construction of SCMs follows a systematic process that transforms clinical knowledge
into formal causal structures (Figure 2, top-right panel). Domain experts specify variables
relevant to the clinical question, define directional causal relationships based on biological
mechanisms and temporal precedence, and use Pearl’s d-separation algorithm to identify bi-
asing pathways that must be controlled through statistical adjustment to obtain valid causal
estimates..12

Unlike black-box machine learning models, SCMs make causal assumptions explicit through
visual representations that clinical experts can evaluate, modify, and validate against biological
knowledge derived from randomized and observational studies.13 This ’glass-box’ approach
enables target trial emulation for therapeutic safety and efficacy evaluation, clinical decision
support for precision medicine, performance monitoring of quality improvement programs,
and outcome prediction for population health management.14 This causal graph approach
addresses fundamental limitations of current clinical AI systems by providing interpretable,
debuggable representations of causal reasoning. SCMs enable iterative refinement of causal
assumptions, transparent communication of modeling decisions, and systematic evaluation of
model validity against established clinical knowledge.15

2.3. Human-AI Collaboration in Clinical Decision Making

Effective clinical AI requires seamless integration of algorithmic capabilities with human ex-
pertise, as purely automated approaches often fail to capture nuanced clinical reasoning while
manual approaches cannot scale to complex medical data.16,17 Current systems typically pro-
vide predictions without exposing underlying reasoning processes, limiting meaningful human
oversight—a critical gap given regulatory requirements for transparent, interpretable AI out-
puts that clinicians can evaluate and validate.4

Large language models show promise for clinical documentation and treatment planning but
lack mechanisms for incorporating causal relationships or clinical knowledge in systematic,
verifiable ways.18 Complex causal reasoning tasks further challenge these models through long
context windows and the ’lost-in-the-middle’ problem.19 However, the success of generative
AI in programming tasks suggests a pathway: transforming probabilistic language genera-
tion into structured, interpretable representations that clinical experts can refine (Figure 2,
bottom-right panel). We present evidence that structural causal models provide the nec-
essary framework for this transformation, bridging model intelligence with human clinical
expertise.
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Fig. 3. Building knowledge-based Structural Causal Models in cStructure. Creating Edges: Partici-
pants could create directed edges between nodes to represent causal relationships. For example, they
might add an edge from ”Age” to ”28-day Survival” to indicate that age directly affects survival out-
comes. Adding Narratives: For each node and edge, users could provide detailed narratives explaining
the node and its causal relationship with other nodes. These narratives were crucial for explaining
the reasoning behind each causal connection and for evaluation of the model’s plausibility. Users were
encouraged to organize their graphs logically, typically with a left-to-right flow reflecting temporal
precedence, where causes precede effects. This SCM along with the narrative text was generated by
o3. User workflows in the cStructure platform are designed to follow the causal roadmap.

3. Methods

3.1. Study Design and Participants

We organized the UIUC Midwest Healthcare Conference Challenge to evaluate target trial
emulation performance by participants without formal causal inference training. Confer-
ence participants were recruited without background restrictions and designed structural
causal models via a collaborative interface to replicate RECOVERY trial effects of COVID-19
treatment using observational data, with the RECOVERY Trial serving as the gold-standard
benchmark due to its randomized controlled design.20 Data access: Participants received
comprehensive SDY1662 metadata (data dictionaries, variable definitions, statistical profiles)
but no patient-level data, with all analyses occurring via secure API calls through the cStruc-
ture interface. AI comparison: One year later, we conducted comparative analysis using
four state-of-the-art generative AI models (OpenAI o3, DeepSeek R1, Gemini Pro 2.5, Claude
Opus).

3.2. Dataset and Target Trial Framework

Dataset: We utilized ImmPort’s SDY1662 dataset containing >2,000 hospitalized COVID-19
patients from Mount Sinai Health System (March-May 2020), transformed into person-time
format (∼65,000 person-day observations) for pooled logistic regression.21 Severity classi-

Pacific Symposium on Biocomputing 2026

313



fication: Disease severity was classified using oxygen support requirements: mild-moderate
(room air or low-flow oxygen, SpO2 ≥ 94% on ≤ 4L O2), severe (high-flow oxygen, non-
invasive/mechanical ventilation without vasopressors), and critical (mechanical ventilation
with vasopressors or end-organ dysfunction: creatinine clearance < 30 mL/min or ALT > 5×
ULN).22 Missing data was handled using last observation carried forward; variables >50%
missing were excluded. Mini-cohorts: To minimize immortal time bias, we created daily
mini-cohorts evaluating treatment-eligible patients and assigning them to treatment strategies
reflecting observed exposure, with patients appearing multiple times under different assign-
ments and censoring upon strategy deviation.23,24 For example, a patient receiving steroids on
hospital day 2 would be classified as ’never treat’ in mini-cohorts 0-1 but ’10 days of steroids’ in
mini-cohort 2. Target trial: Participants estimated causal effects of glucocorticoids on 28-day
all-cause mortality stratified by severity, applying RECOVERY eligibility criteria: hospital-
ized patients ≥18 years with COVID-19, no contraindications, sufficient follow-up, comparing
glucocorticoid versus standard care. Data available at ImmPort.org under accession SDY1662.

3.3. Model Construction and Platform Implementation

cStructure platform: The platform provides a browser-based collaborative environment
with interactive DAG editing, real-time d-separation analysis for confounding pathway identi-
fication, and JSON model serialization transmitted via REST API to secure analysis servers,
with patient data remaining on secure servers while participants constructed models using
metadata only (Figure 3). Real-time d-separation algorithms (TypeScript) identified open
backdoor paths between treatment and outcome, providing automated feedback on confound-
ing control. Human-generated SCMs: Participants constructed DAGs specifying nodes
from dataset features, directional edges representing causal relationships, scientific rationale
documentation, and node classifications (Action/Outcome/Adjusted/Unadjusted), with auto-
mated validation including d-separation analysis, temporal ordering checks, and convergence
assessment. Transformer-generated SCMs: AI models received identical materials as hu-
man participants: challenge announcement, SDY1662 data dictionary, cStructure platform
description, and GraphML specification format, with standardized prompts requesting causal
diagrams evaluating steroid safety/efficacy on 28-day survival (Supplementary Materials).
SCM ablation study: To test whether causal graphs provide unique benefits beyond LLM
reasoning, we conducted controlled experiments with multiple models (OpenAI o3, Claude
Opus, Gemini Pro 2.5, DeepSeekV1) receiving Potential Outcomes tasks requesting tradi-
tional causal inference methods (IPTW, AIPW, g-computation) without graph structure, us-
ing identical data dictionaries, bootstrap requirements (n=500), and target trial descriptions,
isolating the effect of structured causal reasoning while holding constant statistical objectives,
data access, model capabilities, and evaluation framework.

3.4. Statistical Analysis and Evaluation

Causal Plausibility: Three independent and blinded clinical reviewers evaluated the causal
plausibility of the directed edges from Human (n=36) and Transformer-generated SCMS
(n=86) using an ordinal scale (0=no plausible causal pathway, 1=low/weak rationale, 2=mod-
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erate/plausible mechanism, 3=high/strong evidence). A Bayesian hierarchical model was used
to compare plausibility scores between the two groups. G-formula estimation: Causal ef-
fects were estimated using the parametric g-formula (PyGFormula v1.1.6) with 500 bootstrap
samples per severity stratum (seed=123), selected to overcome convergence issues encountered
during the challenge, with bootstrap sampling at patient level to preserve within-patient cor-
relations and risk ratios comparing predicted 28-day survival probabilities under treatment
versus standard care. Coverage analysis: Bootstrapped confidence interval coverage against
RECOVERY trial results using 500 bootstrap samples per severity stratum, ranking models
by bootstrap estimates falling outside RECOVERY 95% CIs across all strata (n=1,500 total),
with two-way binomial tests comparing each model’s coverage against the Age base model.
Sign error analysis: Directional accuracy where sign error equaled bootstrap estimate with
opposite sign of severity-specific RECOVERY point estimate, ranking models by total sign
errors across 1,500 iterations, with two-way binomial tests generated using coverage analysis
procedures. Software: Statistical analysis used Python 3.13.3, Bayesian hierarchical regres-
sion (bambi v0.15.0, pymc v5.22.0), two-way binomial tests (scipy v1.15.2) were adjusted for
multiple comparisons (n=7) with visualization via Matplotlib/Seaborn

4. Results

We evaluated causal diagrams, constructed by human participants and transformer-based
language models, as transparent and interpretable bridges between domain expertise and
quantitative clinical reasoning. Human participants from the Midwest Healthcare Conference
Challenge (n=3 teams) and four transformer models (OpenAI o3, DeepSeek R1, Gemini Pro
2.5, Claude Opus) independently constructed causal diagrams to estimate COVID-19 gluco-
corticoid treatment effects on 28-day mortality using real-world data from more than 2,000
hospitalized patients. All models employed target trial emulation methodology with similar
data access and challenge specifications. Performance was assessed through bootstrap cover-
age analysis against published RECOVERY trial benchmarks (n=500 iterations per disease
severity stratum), sign error analysis for directional accuracy, and expert review of the causal
plausibility of each directed edge.

Table 1: Performance comparison of transformer and human models showing causal plausi-
bility scores, bootstrap outlier counts, and coverage percentages across disease severity strata.
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Model Type Rank Nodes Edges Adj. Set Plaus. Total Coverage
Final Score Outliers (%)

LLM 1 15 35 13 2.25(0.68) 563 62.4
Human 2 15 20 5 2.38(0.58) 576 61.6

o3
Team 1
GeminiPro2.5 LLM 3 13 22 4 2.59(0.36) 580 61.3

Age Base 4 3 3 1 3 604 59.7

Team 2 Human 5 13 16 5 2.42(0.40) 610 59.3
Team 3 Human 6 6 5 4 2.27(0.86) 612 59.2
DeepSeekR1 LLM 7 5 7 2 2.52(0.42) 612 59.2
ClaudeOpus LLM 8 19 22 9 2.29(0.74) 640 57.3

Legend: Adj. Set Final = Adjustment Set Final, Plaus. Score = Average Causal Plausibility Score
(standard deviation)



removing one feature from two nodes (ferritin log2 was removed from Inflammatory Markers
leaving CRP log2, and Asthma was removed from Chronic lung disease node leaving COPD),
and 2) unadjusting CAD, Chronic lung disease, Cancer Flag, and Sex. The OpenAI o3 model
required unadjusting the CAD and Sex nodes (Figure 3), and the DeepSeek R1 model re-
quired unadjusting the CRP log2 node to remove a mediator. Notably, the GeminiPro 2.5
model required no HITL modifications (Supplementary Materials).

4.1.2. Causal Plausibility

To evaluate the quality of the causal relationships posited by each structural causal model
(SCM), we calculated an average Plausibility Score (0 = implausible to 3 = strong biological
basis and clinical evidence) for all directed edges across human-generated (n = 36) and LLM-
generated (n = 86) models. These scores were derived from a blinded, expert review by three
clinical domain experts, who assessed each edge for biological and clinical plausibility using
the 0-3 ordinal scale, (Table 1). Plausibility Scores were nearly identical between Transformer
models and human teams, with score distributions differing by 5% at each level (0: 4% vs 6%;
1: 12% vs 12%; 2: 27% vs 22%; 3: 57% vs 60%) and statistically equivalent means (2.37±0.62
vs 2.38±0.56; Cohen’s D=0.02). Overall, both human and LLM-derived models demonstrated
a similar capacity to construct relationships deemed plausible by a domain expert.

4.1.3. Sign Error Analysis and Directional Accuracy

We performed a sign error analysis to assess the directional accuracy of treatment effect es-
timates compared to RECOVERY trial benchmarks (Figure 4, Top and Middle Panels).
A sign error was defined as a bootstrap point estimate having the opposite sign of the corre-
sponding severity-specific RECOVERY trial estimate.

Sign error measurement revealed substantial performance variation. Across all severity levels
(n = 1, 500 bootstrap iterations), the two best-performing models were Transformers: Claude
Opus (11.1% error rate) and o3 (11.2% error rate), both significantly outperforming the base-
line (p = 2× 10−8). Transformer-generated models generally showed superior directional accu-
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4.1. Comparative Performance of Human and Transformer Models

4.1.1. Model Complexity

Structural complexity varied across human and transformer-generated models, as indicated by
node count (5–19), edge count (5–35), and adjustment set node count (2–13) (Table 1). A key
difference was that the human teams iteratively refined their graph topology and adjustment
status to ensure statistical convergence. In contrast, Human-in-the-Loop (HITL) modifications
were limited to changing adjustment status and enforcing the one-feature-per-node require-
ment, with no edges being added or removed. Specifically, the Claude Opus model required: 1)



racy compared to human models, particularly in the critical disease stratum.

Directional accuracy varied sharply by severity. In mild-moderate disease (Severity 1), o3
achieved the lowest error rate at 9.0%. Severe disease (Severity 2) showed exceptional accu-
racy, with all models exhibiting minimal error rates (0% − 0.6%). Conversely, critical disease
(Severity 3) had the poorest directional accuracy, with all models exceeding a 19% error rate.
Performance in this stratum ranged from 19.6% (Claude Opus) to 46.6% (Team 3), suggest-
ing challenges likely due to sample size limitations, unmeasured confounding, and/or true
differences in the causal effect of glucocorticoids in this subpopulation.

4.1.4. Coverage Analysis

Table 1 presents the comparative performance of structural causal models submitted by
the three top-ranked participating teams (Team 1, Team 2, and Team 3), four transformer-
based large language models (o3, Gemini Pro 2.5, DeepSeek R1, Claude Opus) one year after
the conclusion of the challenge, and a simple base model (Age). The best-performing model
overall was generated by OpenAI’s o3 transformer, achieving rank 1 with 563 total bootstrap
outliers corresponding to 62.4% coverage of RECOVERY trial confidence intervals (unadjusted
two-sided binomial p-value = 0.032 compared to Age base model, n=1500) . The second-
ranked model was human-generated, achieving similar performance with 576 outliers (61.6%
coverage). It is also noteworthy, that the top-performing human team utilized a literature-
based approach with a parsimonious adjustment set (n=5 adjusted nodes), whereas the top-
performing transformer model generated the most complex causal graph (n=35 edges) with
the largest adjustment set (n=13 adjusted nodes).

When comparing coverage performance against the Base model (Age as the only adjustment
node), statistical significance varied by severity stratum (Figure 4, Bottom Panel). In
mild-moderate disease (Severity 1, n=500), only the o3 model outperformed the Base model
(p-value = 0.013). For severe disease (Severity 2, n=500), three models showed superior perfor-
mance: Team 1, o3, and Gemini Pro 2.5 (all p-values < 0.0005), while Claude Opus performed
significantly worse than the Base model (p-value < 0.001).

A critical finding was the universal poor performance in the critical disease severity stra-
tum (Severity 3), where all models achieved 0% coverage (500/500 bootstrap outliers). This
suggests fundamental challenges in modeling treatment effects with this dataset using the
gformula, potentially due to limited sample size and/or unmeasured confounding in this sub-
group. In contrast, both mild-moderate and severe disease strata showed reasonable coverage
performance, with the best models achieving >97% coverage for severity 1 and 90% coverage
for severity 2 disease.

This provides initial evidence that state-of-the-art AI systems can construct models with
performance similar to human domain experts without formal causal inference training, though
both approaches face limitations in complex clinical scenarios.
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Fig. 4. Top panel: Bootstrapped Risk Ratio (RR) distributions across severity levels with ridge
plots showing probability densities for each SCM. Red dashed line (RR = 1.0) indicates no effect;
distributions right/left suggest increased/decreased 28-day mortality risk. Models ranked by total
bootstrap sign errors. Middle panel: Sign error distribution by model and severity. Sign errors
defined as bootstrap estimates with opposite sign from corresponding RECOVERY trial point esti-
mates (500 iterations per severity, 1,500 total per model). Bottom panel: Bootstrap CI coverage
versus RECOVERY benchmarks. Forest plot comparing coverage performance between human par-
ticipants (blue) and AI models (red) across severity strata. Points show proportion of 500 bootstrap
estimates within published RECOVERY 95% CIs. Models ranked by total outliers (estimates outside
RECOVERY 95% CIs); 500 samples per stratum, 1,500 total. Dashed line indicates RR = 1.

4.1.5. SCM Ablation using Potential Outcomes

The SCM ablation results show structural causal models consistently outperformed traditional
potential outcomes implementations across all tested models. Traditional PO approaches
yielded poor coverage rates of 1-30%, 2-37%, and 1-10% across severities 1-3, with DeepSeekV1
failing to generate any causal estimate despite repeated debugging attempts. The wide PO
confidence intervals occasionally produced better sign error rates—notably Claude PO’s 0.8%
versus SCM’s 13.6% in Severity 1—suggesting imprecise estimates sometimes captured cor-
rect directionality by chance rather than proper calibration. The PO approaches exhibited
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systematic failures regardless of sophistication level, from basic IPTW to advanced cross-
fitted ensemble methods, all mishandling the person-time data structure, treatment eligibility,
and immortal time bias (see Supplementary Materials). These findings suggest causal graphs
provide essential scaffolding for reliable inference in complex longitudinal settings.

Table 2: Performance comparison between Structural Causal Models (SCM) and Potential
Outcomes causal inference.

Model Method Severity 1 Severity 2 Severity 3

Inside CI% / Correct Direction%

OpenAI o3
SCM 97.8% / 91.0% 89.6% / 100.0% 0.0% / 80.8%
PO 0.8% / 0.2% 1.8% / 63.4% 10.2% / 60.0%
∆ +97.0pp / +90.8pp +87.8pp / +36.6pp -10.2pp / +20.8pp

Claude
SCM 96.0% / 86.4% 76.0% / 99.4% 0.0% / 66.6%
PO 19.6% / 99.2% 36.6% / 63.8% 0.6% / 7.4%
∆ +76.4pp / -12.8pp +39.4pp / +35.6pp -0.6pp / +59.2pp

Gemini 2.5
SCM 94.8% / 82.4% 89.2% / 100.0% 0.0% / 55.6%
PO 29.6% / 88.6% 10.2% / 100.0% 9.8% / 23.2%
∆ +65.2pp / -6.2pp +79.0pp / 0.0pp -9.8pp / +32.4pp

RECOVERY Benchmarks: Severity 1: RR=1.19 [0.92, 1.55] (harm) — Severity 2: RR=0.82 [0.72,
0.94] (benefit) — Severity 3: RR=0.64 [0.51, 0.81] (benefit).
Legend: SCM = Structural Causal Model, PO = Potential Outcomes, ∆ = Improvement, pp =
percentage points

5. Discussion

5.1. Causal Reasoning Comparative Performance Analysis

Our evaluation of state-of-the-art transformer models (OpenAI o3, DeepSeek R1, Gemini Pro
2.5, Claude Opus) against human participants from the Midwest Healthcare Conference Chal-
lenge revealed nuanced performance differences on a complex causal reasoning task (Target
Trial Emulation). All participants successfully constructed causal models and implemented
analytical pipelines, though with varying degrees of sophistication in handling the person-
time data structure and time-varying confounding inherent in the COVID-19 treatment effect
estimation task.

With respect to directional accuracy, transformer-generated models significantly lower rates
of sign errors compared to the baseline model. Even in the critical disease stratum (Severity
3) where coverage proved challenging, transformer models maintained better directional con-
sensus. Sign errors are particularly clinically relevant when population health management
decisions must be made with limited quality evidence, as was the case during the early days
of the Covid-19 pandemic. This superior directional performance suggests transformer models
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may better capture underlying biological plausibility even when statistical precision remains
elusive.

Coverage analysis revealed a complex performance landscape across severity strata. While the
top-performing transformer model (o3) achieved similar overall coverage to the best human
team (62.4% vs 61.6% bootstrap coverage against RECOVERY trial benchmarks), perfor-
mance varied substantially by disease severity. In mild-moderate disease (Severity 1), only o3
significantly outperformed the age baseline (p = 0.013), while human teams showed no sig-
nificant improvement. For severe disease (Severity 2), three models—Team 1, o3, and Gemini
Pro 2.5—demonstrated highly significant superior performance (all p < 0.0005), while Claude
Opus performed significantly worse than baseline (p < 0.001). Universal poor performance
in the critical disease severity stratum (0% coverage across all models) suggests fundamen-
tal challenges in modeling this particular treatment effect that transcend both human and
AI approaches, likely reflecting dataset limitations rather than methodological deficiencies.
Specifically, we found that sparse confounder patterns paired with missingness observed in
this real-world dataset posed convergence challenges and statistical modeling limitations for
the participants. While this represents a common impediment to causal inference applications
in practice, a larger and more complex dataset may have revealed greater distinctions across
human and AI performance.

The SCM ablation experiments suggests that framework choice influences transformer per-
formance on complex causal tasks. SCMs explicitly encode time-oriented causal relationships
in their graph structure, while potential outcomes frameworks require practitioners to sep-
arately specify these elements when implementing estimators like pooled logistic regression
or marginal structural models. The consistent struggles of PO implementations across all
transformer models—particularly with person-time data and immortal time bias—hint that
translating abstract potential outcomes notation into concrete analytical code demands addi-
tional implicit reasoning that current AI systems find challenging. This pattern supports our
broader finding that SCMs facilitate human-AI collaboration by providing explicit, visual rep-
resentations of causal assumptions that both parties can evaluate, rather than leaving critical
temporal dynamics implicit in statistical code.

5.2. Generative AI to Causal Graph Interface

We developed a novel interface that translates generative AI medical knowledge into
regulatory-aligned structural causal models,14 addressing fundamental limitations in current
clinical AI systems. By combining the knowledge generation capabilities of large language mod-
els with the transparency and rigor required for target trial emulation, quality improvement
monitoring, and clinical decision support, this approach provides an interpretable workflow for
healthcare causal inference tasks. The cStructure platform integrates collaborative visual in-
terface design, automated d-separation evaluation, and privacy-preserving statistical analysis
to enable rapid systematic validation of AI-generated causal assumptions against established
clinical knowledge.
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5.3. Transformer-Based AI for Clinical Causal Reasoning

While transformer-based generative AI provides rapid access to vast medical domain knowl-
edge with improving accuracy, their probabilistic nature and inscrutable generation processes
necessitate structured frameworks that enable human oversight and validation in safety-critical
applications. Our results demonstrate that structural causal models can bridge AI capabili-
ties and human expertise by exposing interpretable causal reasoning that can be evaluated,
modified, and validated using real-world data. The improved directional accuracy of trans-
former models suggests complementary strengths to human-generated models, while also serv-
ing as accelerators for human-led causal reasoning—particularly for non-experts—when SCMs
provide the structured conduit. Practical implementation required extracting LLM domain
knowledge into visually accessible representations with explanatory text that enable rapid
human-in-the-loop (HITL) evaluation and debugging. This transparent design allowed clinical
experts to identify potential biases, verify confounder adjustment, and modify assumptions
based on domain knowledge. While transformer models required HITL modifications for statis-
tical convergence—primarily unadjusting nodes causing convergence failures—we deliberately
restricted interventions to adjustment status only, preserving AI-generated topology. This
constraint simulates realistic rapid review scenarios, contrasting with human teams who iter-
atively revised both topology and adjustment sets, yet provides a more realistic assessment of
how practitioners might use AI-generated causal models in time-constrained clinical settings.

5.4. Future Directions

Future research should expand evaluation to diverse causal reasoning tasks across multiple
clinical domains, therapeutic areas, and patient populations to establish the generalizabil-
ity and utility of human-AI equivalence in causal model construction. Additional priorities
include developing standardized evaluation frameworks for clinical causal reasoning, investi-
gating hybrid human-AI collaborative approaches that leverage complementary strengths (e.g.
Covid Causal Diagram DREAM Challenge), and exploring real-time clinical deployment of
AI-generated causal models with appropriate safety monitoring and validation protocols. The
framework’s potential for regulatory applications warrants investigation through partnerships
with health agencies to establish guidelines for AI-assisted causal inference in evidence gener-
ation.

Supplement: Supplemental methods, materials, tables, and figures are available at
https://github.com/cstructure/interpretable-clinical-scm
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