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Abstract: We present the ReXecution framework for conducting clinician-centered assess-
ments of medical AI assistants, providing detailed insights into their reliability in realistic
clinical settings. Using this framework, we assessed AI assistants for chest X-ray (CXR)
interpretation, exploring the gap between current model capabilities and real-world radio-
logical needs. Unlike prior benchmarks that rely on automatically generated questions with
limited clinical relevance, our dataset consists of 100 expert-curated tasks that radiologists
might realistically present to an AI assistant in their day-to-day workflow. Through detailed
manual review by a radiologist, we evaluated two leading foundation models, ChatGPT-
o3 and MedGemma, on our tasks. While both models demonstrated considerable medical
knowledge and reasoning capabilities on our tasks, they frequently struggled to interpret
images and execute tasks accurately, producing correct outputs in only 5-10% of cases. Our
detailed manual evaluation highlights a critical mismatch: models often abstractly under-
stand radiology concepts but cannot reliably execute their plans when interpreting specific
medical images. This work identifies key gaps in current models’ ability to serve as compre-
hensive radiology assistants and provides insights into how the development and evaluation
of models can better align with real-world clinician needs, enabling seamless clinician-AI
collaboration.

Keywords: Clinician-AI Collaboration, Radiologist-Centered Evaluation, Vision-Language
Models, AI for Chest X-Rays

1. Introduction

Artificial intelligence (AI) for medicine has rapidly progressed from narrow classifiers to large-
scale vision-language models (VLMs) that promise to function as generalist assistants for
clinicians.1,2 In radiology, some recent studies have found that AI foundation models can
match or even exceed clinician performance on chest X-ray (CXR) interpretation tasks.3 Such
VLMs may collaborate with clinicians as interactive chatbots, providing measurements and
other useful information as radiologists interpret a study.4 Alternatively, models might perform
useful tasks in the background before a clinician even reaches a study, flagging urgent cases
or preemptively commenting on images according to a user’s standing instructions.5

Several large-scale, automatically generated benchmarks have been constructed to evaluate
assistive models on CXR tasks,3,6,7 but these benchmarks prioritize scalability and automated
scoring over clinical realism. Most are constructed from templates or report-mined labels,
producing short-answer or multiple-choice tasks with clear-cut ground truths. While useful for
coverage and automated scoring, such benchmarks overlook additional information encoded in
the images, feature frequently unrealistic questions and answers, and ultimately diverge from
how radiologists would actually interact with an AI assistant.

For instance, some benchmark questions are too trivial to require large VLMs (e.g., in-
ferring patient sex from the image), while others are overly specific or complicated (e.g., “Q:
Does the left mid lung zone contain either low lung volumes or calcified nodule? A: Yes.”).6

Moreover, such short ground-truth answers can obscure whether a model arrived at the correct
response through accurate reasoning, chance, or shortcuts. The resulting benchmarks do not
accurately represent the open-ended questions and complex reasoning processes that arise in
clinical practice (Figure 1a).
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To address these shortcomings, clinician-centered evaluation procedures are needed. In
this exploratory study, we evaluate the capabilities of cutting-edge vision-language models,
testing them on a complex, clinically relevant dataset created through radiologist-AI collabo-
ration. We score model outputs on several dimensions, assessing both their “intentions”—their
general medical knowledge and abstract planning capabilities—as well as their “execution”
when interpreting specific images and making practical judgments. Our data curation and
scoring processes comprise the ReXecution (Realistic Intention-Execution Assessment) frame-
work (Figure 1b), which can be extended beyond radiology to conduct clinician-centered
assessments in other domains of medicine.

Clinical Context:
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Fig. 1: The ReXecution framework emphasizes (a) realistic task design and (b) clinician-
led data curation and scoring, providing detailed insights into how models reason in clinical
settings. a

By applying this framework to chest X-ray interpretation, we make two primary contribu-
tions:

(1) We curated a high-quality dataset with 100 challenging, realistic evaluation tasks. Selected
from a list of automatically-generated candidates, each task was reviewed and edited by a
radiologist to ensure that it would plausibly occur in clinical practice—either when actively
interacting with a chatbot or when specifying tasks for an agent to perform independently
in the background.

(2) Using our dataset, we tested ChatGPT-o3, a leading general-purpose foundation model,
and MedGemma, a top medical foundation model trained heavily on chest X-ray inter-

aFigure 1a’s “past evaluation” question comes from an existing benchmark linking EHR and CXR
data.8 We removed a patient identification number but otherwise preserved the text.
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pretation. As our tasks elicited lengthy, nuanced answers, we manually evaluated model
performance. We obtained rich qualitative insights into radiologist experiences with AI
assistants, while also compiling descriptive statistics that highlight model weaknesses.

(3) We found that both models demonstrate sophisticated medical knowledge, accurately un-
derstand complex questions, and plan multi-step strategies to answer them. However, they
struggled to execute those strategies due to the “visual” component of visual question-
answering, frequently misreading chest X-rays and ultimately arriving at incorrect con-
clusions. Our findings indicate that, despite achieving expert-level performance on certain
tasks, AI models still fall short of providing truly comprehensive assistance to clinicians.

2. Related Works

Prior visual question-answering datasets for chest X-ray interpretation have typically mined
large numbers of questions from radiology reports, weakly labeled bounding boxes, or other
metadata. The recently released ReXVQA benchmark features approximately 696,000 LLM-
generated multiple-choice questions based on radiology reports. On a subset of 200 questions,
this benchmark found that MedGemma outperformed radiology residents with an accuracy of
83.8%, though its performance varied depending on the type of task.3

Building on an earlier dataset,8 MIMIC-Ext-MIMIC-CXR-VQA generated approximately
377,000 CXR questions by filling templates using AI-generated bounding boxes and keywords
extracted from radiology reports. About two-thirds of MIMIC-Ext-MIMIC-CXR-VQA ques-
tions require yes/no or multiple-choice answers, while the rest expect a short list of abnormal-
ities or locations.6 More recently, Medical-CXR-VQA and MIMIC-Diff-VQA each presented
approximately 700,000 questions, generated through a similar methodology.7,9

The GEMeX benchmark contains about 1,600,000 LLM-generated questions based on ra-
diology reports and bounding boxes, as well as a GPT-based scoring metric.10 While GEMeX
also focuses on multiple-choice questions or brief answers, it expands on prior benchmarks by
accepting multimodal outputs with both text and bounding boxes and by including more of
an emphasis on causal reasoning (e.g. “What implications does the tortuous aorta have?”).

While these recent datasets have been automatically constructed, the earlier SLAKE and
VQA-RAD datasets contain tens of thousands of clinician-written questions for several radiol-
ogy modalities including chest X-rays. These questions also expect short, often one-word an-
swers that can be easily be automatically scored.11,12 Outside visual question-answering, there
have been attempts to automatically score longer free-text responses in the field of radiology
report generation, yet automated metrics have struggled to evaluate complex descriptions of
chest X-rays, offering only moderate correlations with expert opinions.13,14

3. Methods

3.1. ReXecution Data Curation

The first step of our framework is the construction of a dataset that reflects real-world clinical
workflows while leveraging LLMs for efficiency. To this end, we developed a pipeline (Figure
1) to generate high-level, clinically relevant tasks for CXR interpretation through clinician-AI
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collaboration. We randomly sampled 100 chest X-ray studies from the test set of MIMIC-
CXR-JPG, a large public dataset of CXRs and associated reports from Beth Israel Deaconess
Medical Center in Boston, MA.15

For each study, we prompted GPT-o4-mini (Supplementary Table 1) to propose five can-
didate tasks across three categories. We selected these categories to require complex clinical
reasoning and the integration of multiple imaging findings:

(1) Broad abnormality query. “Describe all pleural abnormalities”, “List all visible tubes and
lines and assess for complications”, etc.

(2) High-level diagnostic reasoning. “Gather evidence of congestive heart failure”, “Perform
differential diagnosis for a lobar opacity”, etc.

(3) Measurements and temporal comparisons. “Measure the cardiothoracic ratio”, “Assess
effusion size compared to prior”, etc.

We prompted the model to generate questions that were relevant to the indication or
findings from each case’s radiology report. Indications are provided before performing the
imaging study and describe the symptoms or other clinical motivation for the study. Findings
are reported after the study is performed and represent a radiologist’s interpretation of the
images. By drawing questions from not only the radiology report but also the clinical context,
we cover multiple phases in the clinical workflow—both before and after the radiologist starts
working on the imaging study.

After generating questions, we prompted GPT-o4-mini (Supplementary Table 1) to score
all questions on 5-point Likert scales, based on whether it (i) is clinically relevant, (ii) is
answerable from CXR alone, and (iii) requires reasoning beyond simple pattern matching.
Additionally, the LLM assigned multiple types of content tags (e.g., areas of interest, main
pathology). The tagging and scoring system are described in more detail in the appendix
(Supplementary Table 2).

A radiologist then selected a final question for each case, considering high-scoring can-
didates first and re-scoring selected questions to verify that they aligned with our goals.
During this process, they verified that selected questions were clinically important and clearly
phrased. They also leveraged the content tags to ensure that the selected question pool covered
a large variety of medical topics and tasks, reflecting realistic caseloads. Where needed, the
radiologist rephrased questions or wrote new ones to maintain quality, diversity and clinical
relevance. Additionally, while most questions (n=89) concerned a single case, the radiologist
verified whether MIMIC-CXR contained a sufficiently recent prior study for questions covering
disease progression over time.

The resulting tasks covered a wide range of clinical use cases. Based on the content tags,
many areas of interest were represented: lung parenchyma (37%), pleura (15%), cardiac sil-
houette and mediastinum (14%), hilar regions (11%), devices (9%), osseous structures (4%),
diaphragm and soft tissues (6%), and airways (3%). Pathology tags covered pneumonia, effu-
sions, atelectasis, lymphadenopathy, pneumothorax as well as some rarer pathologies—aligning
with the clinical distribution seen in routine radiology practice.

A score histogram (Supplementary Figure 1a) shows the distribution of quality scores
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across the selected question set, indicating the overall high quality of the included items. For
more details on the variation in our dataset, breakdown plots are provided in the appendix
(Supplementary Figure 1b).

3.2. Vision-Language Models

We evaluated two state-of-the-art VLMs that represent different development paradigms:

• ChatGPT-o3 (OpenAI, closed-source generalist). The strongest reasoning model
in the GPT family at time of writing. It is a multimodal foundation model capable of
ingesting multiple images and producing both text and figures.

• MedGemma-4b-it (Google, open-source medical). A vision-language model fine-
tuned on medical imaging with strong performance on multiple-choice CXR benchmarks.
We selected MedGemma specifically for its strong performance on ReXVQA, a multiple-
choice benchmark where it was found to exceed the performance of radiology residents.3

It is optimized for processing one input image at a time and returns text-only outputs.

For ChatGPT-o3, we provided all available CXR views and instructed the model to gener-
ate bounding-box annotations for localized findings. If no abnormalities were found, the model
was not required to draw boxes; when ChatGPT-o3 found abnormalities but did not annotate
them, we did not force it to generate bounding boxes. For MedGemma, we provided a single
PA (or AP if unavailable) image per case, or both images only for temporal comparisons.
No bounding boxes were requested as this is not supported by MedGemma. Except for the
bounding box directions, the prompts were harmonized across the models to reduce bias.

3.3. ReXecution Metrics

In our framework, we assess text outputs on four dimensions (Figure 2) that capture both a
model’s abstract medical knowledge and concrete visual abilities. Each text output was scored
by a radiologist on each dimension:

(1) Process. Did the model correctly interpret the task and plan an appropriate strategy? (e.g.,
while gathering evidence of cancer, but only looking for lung lesions without considering
bone lesions)

(2) Execution. Did it accurately identify and describe image findings without hallucinations
or omissions? (e.g., attempting to look for lung lesions, but hallucinating a granulomatous
lesion)

(3) Synthesis. Did it integrate findings into sound, clinically appropriate conclusions, account-
ing for uncertainty? (e.g., claiming that a granuloma is suggestive of cancer while ignoring
more plausible explanations such as infection)

(4) Language. Was the response clear, concise, and professional? (e.g., rambling and repeating
itself when answering a question)

In practice, radiologists would struggle to use a model with poor Execution or Synthesis
scores, and they would struggle to trust a model with poor Process scores even if it sometimes
guessed at correct answers. We therefore calculate an aggregated Content score, which judges
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Fig. 2: Demonstration of different content error types. The ReXecution framework judges
content on Process, Execution, and Synthesis.

output content based on its weakest link. The Content score is equal to the minimum of the
Process, Execution, and Synthesis scores. In other words, an output cannot receive a Content
score of 5 unless it successfully performs all relevant tasks required to answer the question
correctly—ranging from question comprehension, detection of findings, to reasoning about
their clinical implications.

Additionally, image outputs from ChatGPT-o3 were scored on two dimensions by a ra-
diologist. Image Content scores reflect whether the model correctly localizes the regions it
is attempting to box. If a model attempts to label a pleural effusion but instead boxes a
lower part of the hemidiaphragm, this error would be considered an Image Content issue.
Image Style scores reflect whether the model plans out a useful illustration, attempting to
box findings mentioned in the text without cluttering the image with unrelated boxes. If a
model boxes and labels a pacemaker when asked to calculate the cardiothoracic ratio, this
unnecessary addition would be considered an Image Style issue.

Scoring for each dimension followed a customized 5-point scale (1 = poor, 5 = excellent).
The full rubric is provided in the appendix (Supplementary Table 2).

3.4. Statistical Analysis

For each of the five text scores, we tested whether there was a significant difference between
ChatGPT-o3 and MedGemma by applying the Wilcoxon signed-rank test for paired non-
parametric comparisons and controlling for multiple testing using the Benjamini–Hochberg
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false discovery rate procedure. We did not run statistical tests between different score types
(e.g. Content vs. Language) because each dimension was measured using custom criteria,
making formal statistical comparisons infeasible. Aggregate means are reported with standard
deviations.

3.5. Inter-Reader Agreement

To gauge the reproducibility of our evaluation rubric, a senior radiologist independently re-
scored roughly a quarter of the dataset. They labeled 51 model outputs, 15 of which contained
boxed images from ChatGPT-o3. Agreement with the primary reader was quantified using
quadratic-weighted Cohen’s κ (QWK), appropriate for our five-point ordinal scale, and mean
absolute differences (MAD). Where both readers provided scores, we used the average of the
two scores for our final results to provide more robust performance metrics.

4. Results

4.1. Quantitative Overview of Text Content and Language

We found that both models struggled to produce factually accurate answers (Table 1).
ChatGPT-o3 received an average Content score of 2.71, with 10.0% of outputs receiving a
5. MedGemma received an average Content score of 2.84, with only 4.9% of outputs receiving
a score of 5. MedGemma’s failure to generate an answer for 19 tasks was concerning. The
underlying issue was a built-in limit on the number of tokens it can process at once, which
was triggered by tasks that elicited particularly detailed answers. However, both models gener-
ally maintained a professional writing style and used appropriate radiological vocabulary, with
56.8% of MedGemma outputs and 31.0% of ChatGPT-o3 outputs receiving Language scores of
5. When comparing ChatGPT-o3 and MedGemma’s performance, we tested only data points
that received outputs from both models and found no statistically significant difference.

Metric ChatGPT-o3 (n = 100) MedGemma (n = 81) padj

Content 2.71± 1.31 2.84± 1.14 0.52

Language 4.15± 0.73 4.33± 0.96 0.66

Table 1: Aggregate metrics for content and language clarity.

4.2. Breakdown of Content Errors

Errors were frequent across all four content categories (Table 2), driving the low overall content
scores seen above. We noted that both models received their highest average scores in Process
and their lowest average scores in Execution, with gaps of .65 for MedGemma and 1.27 for
ChatGPT-o3. Differences in error distributions also differed strikingly across categories (Figure
3). Only 5.0% of MedGemma’s Process scores and 8.0% of ChatGPT-o3’s Process scores fell
under 3, compared to 34.5% of MedGemma’s Execution scores and 42% of ChatGPT-o3’s
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Execution scores. Synthesis scores were left-skewed like Process scores, indicating that scores
were rarely very poor. After correcting for multiple-hypothesis testing, we again found no
statistically significant difference between ChatGPT-o3 and MedGemma.

Metric ChatGPT-o3 (n = 100) MedGemma (n = 81) padj

Process 4.17± 0.95 3.91± 0.94 0.10

Execution 2.90± 1.44 3.26± 1.27 0.19

Synthesis 3.85± 1.06 3.49± 1.21 0.10

Table 2: Content metric breakdown in individual task performances.

Fig. 3: Score distributions showing both models avoided low scores on Process but had a large
spread in Execution scores and rarely reach an overall Content score of 5.

4.3. Overview of ChatGPT-o3 Image Quality

For 62 tasks, ChatGPT-o3 successfully produced images, otherwise deciding that no image
was necessary or failing to follow that part of the instructions. Upon assessment of these
images, we found frequent errors in ChatGPT-o3’s boxes and labels, with an average Image
Content score of 3.06±1.22. Only 10.1% of images received a 5 for Image Content, indicating
that most images contained a misplaced box or label. ChatGPT-o3 performed better at Image
Style with an average score of 3.63±1.33. 36.2% of images received an Image Style score of 5,
indicating that ChatGPT-o3 generally showed better judgment when planning what to box
and label.

4.4. Qualitative Observations

As suggested by the quantitative findings, we found that both models showed strong theoretical
knowledge while struggling to interpret images correctly in practice, yet we also observed
distinct behavioral patterns and failure modes across the two models (Figure 4). ChatGPT-o3
often found the correct regions of interest but misclassified the abnormality type. It was also
prone to making mistakes on laterality, mixing up the left and right sides of the image; this
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Past benchmark tasks are frequently unrealistic, narrow or 
irrelevant to clinical practice.

Past Evaluation: Automatically Generated Tasks
Task 1 : Evaluate the right lower paramediastinal area. Pose a differential diagnosis, list all evidence supporting each 
diagnosis, and draw a conclusion on which diagnosis is most likely. Box and label each feature on the image(s). If there is 
no abnormality present, state so.

Did the patient show any abnormalities in the left 
hemidiaphragm in the same month after being 
diagnosed with unspecified pleural effusion 2 years 
ago?

Our Evaluation: Clinician-Curated Tasks

Task: Describe any evidence of tracheal deviation or mass effect 
that could suggest a goiter. Box and label the relevant mediastinal 
and tracheal contours on the image(s). If the trachea is midline …

Report: 
There is slight rightward 
deviation of the superior 
trachea which may be the 
result of mass effect from a 
goiter. …

Task: Describe any evidence of tracheal deviation or mass effect …

Describe any radiographic evidence of a new or 
recurrent infectious process compared to the prior 
study. Box and label any new opacities …

Clinician-curated tasks represent realistic, challenging 
requests that appear in clinical practice.

Task: List all pleural abnormalities present on this chest …

Task: List all intravascular devices and lines seen on this …

Task: Describe any radiographic evidence of pneumothorax …

VLM Output: The tracheal air column stays essentially in the 
midline from the thoracic inlet down to the level of the carina; no 
convincing lateral displacement or focal narrowing is seen …

Content: Poor

Style: Excellent

Generate 5 Candidate Tasks per Case

Manually Revise and Select Final Task

Run Models on Task

Manually Score Accuracy and Reasoning

Report: 
There is slight rightward 
deviation of the superior 
trachea which may be the 
result of mass effect from a 
goiter. …

54437537

57320234

52266880

Question Generation

Question Curation & Selection

Models Run on Task

VLM Output: The tracheal air column stays essentially in the 
midline from the thoracic inlet down to the level of the carina; no 
convincing lateral displacement or focal narrowing is seen …

Task: Describe any evidence of tracheal deviation or mass effect 
that could suggest a goiter. Box and label the relevant mediastinal 
and tracheal contours on the image(s). If the trachea is midline …

Scoring Accuracy & Reasoning

Task: Measure the maximum depth of the pleural effusion …

Task: Describe any evidence of tracheal deviation or mass effect …

Task: List all pleural abnormalities present on this chest …

Task: List all intravascular devices and lines seen on this …

Task: Describe any radiographic evidence of pneumothorax …

GPT-o3 Image Output

The red “right pleural effusion” box is too large to be useful for locating 
effusions.

The blue “costophrenic angle” box does not overlap with either 
costophrenic angle.

The image annotation mixes up left and right, placing the red and blue 
boxes on the wrong side of the body.

Radiologist Concerns

Overall, the image casts doubt on the more accurate text output.

Task 2 : Describe all imaging findings that support pulmonary edema. Box and label all such findings on the image(s). If 
there is no evidence of pulmonary edema, say so.

After creating a lengthy checklist 
with seven possible signs of 
edema, the model hallucinated 
that all those signs are present, 
when in fact only a small pleural 
effusion and cardiomegaly are. 
By boxing these supposed signs 
on the image, the model may 
further confuse users.

GPT-o3 Text Excerpt Radiologist Concerns

Classical radiographic sign How it appears here

Upper‑lobe vascular re-
distribution (“cephalization”)

Engorged vessels in the upper lungs 
are as large as …

Perihilar (“bat‑wing”) alveolar 
opacities

Ill‑defined, symmetrical haze 
spreading outward from both hila …

Kerley B lines
Short, horizontal septal lines at the 
extreme lateral left base …

… …

Though the model ultimately 
presents five possible diagnoses, 
it never produces discriminating 
arguments to correctly assess the 
likelihood of each diagnosis 
–instead mainly repeating the 
same evidence. It thus fails to 
argue for one diagnosis over the 
others.

MedGemma Text Excerpt Radiologist Concerns

Pneumonia: This is a common 
cause of opacity in the lower 
lobes, especially the left.

Atelectasis: This refers to 
the collapse of lung tissue. 
It can be caused by …

…

Evidence:
* Hazy opacity in the left 
lower lobe
* The opacity is localized to 
the lower lobe
* The patient’s clinical history 
(if available) would be crucial 
to determine …

Evidence:
* Hazy opacity in the left 
lower lobe
* The opacity is localized 
to the lower lobe
* Atelectasis can be 
caused by a number of 
factors …

…

Task 3 : Evaluate the left lower lobe opacity. Pose a differential diagnosis, list all evidence supporting each diagnosis, and 
draw a conclusion on which diagnosis is most probable. If there’s significant uncertainty on the final diagnosis, state so in 
the conclusion.

Fig. 4: Error examples highlighting radiologist’s concerns on three cases.

pattern has definite potential to mislead clinicians, who can also struggle with this aspect of
radiological imaging. Often, ChatGPT-o3 tended to explain its reasoning in depth, even when
arriving at incorrect conclusions. This verbosity aided transparency but occasionally reduced
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clarity, confusing clinicians or slowing them down.
On the other hand, we found that MedGemma tended toward brevity, providing little

insight into its reasoning, providing insufficient detail and under-reporting secondary findings.
For example, when asked to gather all evidence of a pathology, the model described some
findings like pleural effusions and consolidation while neglecting other findings such as rib
crowding or volume loss. It also gave overly broad descriptions of abnormalities, such as
stating that an “opacity” is present without further specifying that the opacity was an “air-
bronchogram.” For 19 tasks, MedGemma failed to finish generating answers due to an excessive
token count; it is possible that those answers would have contained the desired level of detail
if they had been successfully generated.

4.5. Inter-Reader Agreement

Moderate agreement was obtained for Execution (κ = 0.57), and Image Style (κ = 0.48). We
observed lower rates of agreement on other dimensions (Table 3). Low rates of agreement were
likely driven in part by the lack of variance in our score distributions; for example, nearly all
Process scores fell into the range of 3-5, leading to lower Cohen’s κ values. We note that mean
absolute differences were under 1 for all text content categories; even when their orderings
across cases differed, reader scores for any individual case were typically close together, as
seen on Figure 5.

Fig. 5: Plot of both readers’ scores, which generally differ by a maximum of one category.

5. Discussion

This study presented the ReXecution framework and evaluated the performance of two leading
foundation models on expert-curated questions that reflect the interpretive demands that AI
assistants would face in real-world radiology practice. Our evaluation set was built to mirror
everyday radiological workstation questions requiring complex, detailed answers—contrasting
with current benchmarks that rely on automatically generated multiple-choice or short-answer
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Evaluation Category QWK MAD Main Reader (µ± σ) Reader #2 (µ± σ)

Process 0.215 0.667 4.118± 0.840 4.510± 0.784

Execution 0.573 0.882 2.961± 1.399 3.176± 1.337

Synthesis 0.291 0.706 3.824± 1.014 3.902± 0.878

Language 0.560 0.510 4.235± 0.862 4.078± 0.771

Image Content 0.327 1.200 2.733± 1.438 1.933± 1.223

Image Style 0.484 1.000 3.667± 1.047 2.933± 1.438

Table 3: Quadratic Weighted Kappa (QWK), Mean Absolute Difference (MAD), and reader
score distributions (mean ± SD) for each evaluation category.

questions and fall short of modeling clinical settings. Through expert review of tasks and model
answers, we gathered rich qualitative information on how current AI models would perform
when supporting radiologists at the workstation.

Our findings reveal important insights into both the promise and the limitations of present-
day foundation models in radiology. When performing our tasks, both ChatGPT-o3 and
MedGemma displayed strong medical knowledge and abstract reasoning, with ChatGPT-o3’s
detailed explanations proving particularly useful. However, both struggled to execute their
plans due to weaker image understanding—they often knew what to do, but not how to do
it. Quantitatively, Process scores topped Execution scores by 0.65 points for MedGemma and
1.27 points for ChatGPT-o3, underscoring a gap between planning and pixel-level perception.
Average Content scores were only 2.7-2.8 out of 5, and ≤ 10% of answers were marked as
completely correct. In addition to observing errors in text outputs, we noted frequent errors
in ChatGPT-o3’s image outputs. Only 10.1% of 62 annotated images showed perfect localiza-
tion, while nearly half of the figures were stylistically sound but spatially inaccurate. Ideally,
image outputs would improve explainability and help users find subtle findings mentioned
by text outputs, yet current image annotations are as likely to decrease trust in correct text
outputs or confuse users.

We found no statistically significant differences between ChatGPT-o3, a leading general-
purpose model, and MedGemma, a cutting-edge foundation model trained specifically for
medical imaging tasks. While the two models demonstrated qualitatively different patterns
of behavior, both impressed readers with their abstract medical knowledge regardless of their
mistakes and occasional unreliable conclusions.

We observed interesting practical differences when using models, beyond the fact that only
ChatGPT-o3 could illustrate its outputs. MedGemma was constrained in its inputs, officially
recommending that users only provide one image at a time. This constraint substantially
restricts the amount of relevant information users can provide, since imaging studies routinely
contain chest X-rays taken from different views. MedGemma was also limited in the number
of tokens it could process at once and thus failed to perform tasks that elicited longer, more
complex outputs. To keep up with the offerings of large, general-purpose models, medical
foundation models must make use of multimodal data and increasing amounts of context.
The main usability issue we encountered with ChatGPT-o3 was that it sometimes failed to
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follow the “bounding box” parts of our instructions, outputting only a text output. In some
instances, it completely ignored that part of our instruction, while in others it acknowledged
the request but requested guidance on what to draw. While this behavior might be acceptable
from an interactive chatbot, it could also prove frustrating in situations where models are
expected to act independently and follow instructions the first time.

Broadly speaking, our findings complicate recent claims that chest X-ray models are reach-
ing expert-level performance on classification and even radiology report generation. For ex-
ample, a recent multiple-choice benchmark found that MedGemma achieved 83.8% accuracy
on multiple-choice chest X-ray questions,3 yet only 4.9% of MedGemma’s outputs were free of
content errors on our complex tasks. With a focus on radiologist-centered evaluation, our work
shows the importance of “stress-testing” models on difficult, clinically relevant tasks, reveal-
ing shortcomings in model performance before they enter real-world workflows. More work is
needed to help models match their theoretical prowess with concrete skills, perhaps by focusing
on fine-grained image localization tasks and on findings like rib crowding or air bronchograms
that—though common—may be overlooked by existing labeled datasets. Such advances can
bridge the gap between current AI capabilities and real-world clinical needs, allowing models
to provide comprehensive support and achieve true clinician-AI collaboration.

6. Limitations

While we cover a large range of tasks related to abnormality detection, diagnostic support,
and measurement, we omitted some clinically relevant use cases, such as “quality control”
tasks for flagging otherwise low-quality chest X-rays. We also did not include “unanswerable”
questions that required models to request more information or refrain from answering. Since
our focus was on posing realistic questions, we did not design questions to purposefully mislead
the model by emphasizing irrelevant or counterintuitive details, though such “trick” questions
may have revealed important biases and merit consideration in other work.

We occasionally encountered ambiguous edge cases when scoring answer content, as it is not
always clear whether an error arises from the “Process”, “Execution”, or “Synthesis” phase;
we attempted to mitigate this issue by aggregating those scores in a single “Content” score to
penalize all content-related errors on a task, no matter the phase. Score subjectivity was also
reflected in the fair-to-moderate inter-reader agreement—demonstrating inherent subjectivity
in clinician evaluation and emphasizing the need for multi-reader evaluation. Finally, our semi-
automated pipeline required considerable radiologist effort, even with only 100 studies. Future
work may leverage LLMs more heavily, improving scalability while maintaining realism.

7. Supplementary Materials

Materials are available at https://rajpurkarlab.github.io/rexecution-supplementals/.
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