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In drug discovery, measuring the effects of genetic perturbations is a powerful tool for study-
ing unknown disease mechanisms, but biological interpretation of these effects, especially
with the advent of screens involving combinatorial perturbations, remains challenging. To
address limitations in current methodology we introduce PertSpectra, a guided triple matrix
factorization that incorporates perturbation information and regularizes the model using a
known gene-gene interaction graph prior to generate sparse, biologically relevant latent fac-
tors that capture perturbational effects. We evaluate PertSpectra on three single-cell RNA-
seq datasets with both single and combinatorial genetic perturbations, measuring latent
space interpretability, predictive ability on unseen combinations of observed perturbations,
and stratification of functionally similar perturbations. We show that PertSpectra provides
an integrated modeling approach to understanding combinatorial perturbation data in the
context of drug discovery.
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1. Introduction

Perturb-seq,! single-cell RNA sequencing performed on genetic perturbation screens, has
emerged in recent years as a powerful tool in drug discovery for studying how targeted pertur-
bations of individual genes affect cellular phenotype, providing insights into disease mecha-
nisms. However, analyzing these experiments presents significant challenges, since the impact
of each perturbation is often relatively small in comparison to the noise and sparsity in the
data.? Furthermore, recent studies include multiple perturbations introduced into the same
cells,;? but few models attempt to untangle the effect of multiple perturbations. A variety of
approaches have been proposed to tackle these challenges and assist in downstream tasks, such
as interpreting perturbational effects, prediction of unseen combinations of perturbations, and
predicting the cellular effects of unseen perturbations.

Autoencoder frameworks such as CPA* and GEARS?® focus on capturing confounding variables
such as cell type and batch effects to make predictions on unseen perturbations. sVAE+% and
SAMS-VAET are generative frameworks that incorporates a sparse shift mechanism, which
capture interventions’ sparse effects as explicit latent variables, improving the perturbation
effect prediction. These models focus on predicting the transcriptional effects induced by per-
turbations, but quantifying the contributions of each gene to the latent dimensions remains
difficult, making the latent spaces produced by these models challenging to interpret without
extensive prior knowledge or expert annotations.

Other models prioritize learning an interpretable latent space, often by employing matrix
factorization techniques,®® which decomposes the observed cell-by-gene matrix into cell-by-
factor and factor-by-gene matrices. This factor-by-gene matrix, denoted the gene loading ma-
trix, captures the contribution of each individual gene to each learned factor in the latent
space, thereby enabling biological interpretation of these factors. However, matrix factoriza-
tion has several limitations in the context of interpreting perturb-seq data: (1) these models
are largely designed for observational data, and need to be modified to support perturba-
tional assays; (2) there are many ways of decomposing a matrix, and many models lack a
biologically-informed inductive bias that would bias the decomposition towards biologically
coherent factors, so these models often produce factors that remain difficult to interpret.

There are recent matrix factorization models that attempt to address some of these limitations.
GSFA'Y is a Bayesian factorization method that incorporates perturbation information in a
triple matrix factorization. Perturbation labels are encoded in a binary cell-by-perturbation de-
sign matrix, and the observed cell-by-gene matrix is decomposed into this cell-by-perturbation
matrix and learned perturbation-by-factor and factor-by-gene matrices. Thereby GSFA learns
an embedding space for perturbations, as opposed to individual cells. However, GSFA uses
uninformative priors on the gene loading matrix that do not incorporate prior biological knowl-
edge, so learned factors might not align with the underlying biology in the data. Additionally,
GSFA is optimized with Gibbs-sampling, a computationally expensive algorithm that strug-
gles with large-scale perturb-seq datasets.
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Another recent development in this direction is Spectra,’ a matrix factorization model de-
signed for observational RNA-seq data that incorporates biologically informed inductive bias
into the optimization procedure. Spectra maps the learned gene loading matrix to a gene-gene
interaction graph, which is regularized by a known gene-gene interaction graph prior. In doing
so, Spectra balances biological domain knowledge with data-driven relationships captured in
the latent factors. However, Spectra does not support perturbation labels and was not de-
signed for genetic screens.

Inspired by these contributions and motivated by the complementary limitations of exist-
ing approaches, here we introduce PertSpectra, a scalable guided triple matrix factorization
method designed for genetic perturbation experiments, which leverages prior biological knowl-
edge. We incorporate perturbational information as a fixed binary design matrix as in GFSA,
and employ graph regularization on the gene loading matrix to guide the latent factors in a
biologically-meaningful direction as in Spectra. Notably, this construction naturally supports
additive combinatorial perturbations, as the perturbation design matrix can simply have mul-
tiple perturbations encoded for a given cell. PertSpectra is designed to (1) correctly predict
both single and combinatorial perturbed cell expression profiles and (2) yield interpretable
latent factors that yield insights into the functional impact of perturbations. Our main con-
tributions can be summarized as:

e A triple matrix factorization formulation incorporating perturbation information as a
fixed binary matrix.

e A functional protein graph!'! prior used during optimization to incorporate functional
information into the learned latent factors.

e A set of qualitative and quantitative evaluations against baseline methods on three
real-world perturb-seq datasets, one of which was generated in-house, to demonstrate
state-of-the-art performance. We introduce an interpretability analysis as a part of
these benchmarks.

We evaluate PertSpectra on three perturb-seq datasets including single and combinatorial per-
turbations, and demonstrate that Spectra produces biologically coherent, highly interpretable
latent factors, while maintaining or improving performance on predictive tasks, compared
with similar models. We benchmark PertSpectra against scETM, a single cell topic model, and
GSFA, a perturbation-focused matrix factorization, to show the benefits of both incorporating
perturbation information and inductive bias to model genetic perturbation experiments.

2. Background and Problem Setting
2.1. Data and Preprocessing

Three perturb-seq datasets were analyzed: Norman® (growth-pathway specific combinatorial
knockouts in the K562 cell line), Replogle? (genome wide, CRISPRI in the K562 cell line),
and an in-house dataset (combinatorial knockouts in the A549 cell line along the TNFa and
IL1B mediated signaling along the NFxB pathway). The gene-by-sample matrices for each
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individual dataset were filtered to remove cells with low counts and genes with expressed in few
cells and then log-normalized with scanpy'? (full details in appendix A). The top 5000 highly
variable genes across all samples were then selected. The identity of the perturbation for each
cell was encoded in a binary matrix H, where H;; = 1 <= gene j was perturbed in cell i.
PertSpectra also incorporates prior knowledge from the StringDB!! knowledge graph of known
protein-protein interactions. We filtered to high-confidence, validated interactions and subset
the graph to genes measured in the perturb-seq experiments (full details in appendix A).

Table 1. Evaluation datasets

Dataset Type # Cells # Perts
In-house Combinatorial 65648 182
Norman Combinatorial 101484 235
Replogle Single 105943 517

2.2. Training Setup

For the combinatorial perturbation datasets (in-house and Norman), we evaluated model per-
formance on unseen combinations of observed singleton perturbations. Therefore, we held
out 30% of combinatorial perturbations and reserved all cells that received those combina-
torial perturbations for the test set. We then further divided the rest of the cells into 80-20
train/validation sets, proportionally to the perturbations received.

For the single perturbation datasets (Replogle), we wanted to evaluate model performance
on unseen cells for seen perturbations. Therefore, data was divided into a 80-20 train/test
split by cell, and the training split was further divided into a 80-20 train/validation split.

2.3. Spectra

As PertSpectra utilizes several components of Spectra, it stands to give a brief overview of
the Spectra model.

A perturb-seq experiment yields an expression matrix X of dimensions n x g, where n is the
number of cells and g is the number of genes. Spectra learns a gene loading matrix 8 with
dimensions z x g, and cell loading matrix « with dimensions n x z where z is the number
of latent factors. The cell loading matrix « is restricted to be strictly positive, under the
assumption that a transcriptional profile of a cell is the sum of a set of active pathways,
and negative pathway activation is difficult to interpret in a biological setting. This gives the
decomposition

E[X;] = o0, (1)

where Xj; is the expression of gene j in cell i, a; € R7 is the cell loading for cell 4, and 8; € A?
(where A% is the set of positive z-vectors that sum to 1) is the gene loading for gene j.
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Spectra also addresses technical variation that may be present in the data. Certain genes
that are involved in basic cellular functions are often highly expressed, while other important
genes, such as transcription factors, may be lowly expressed. Matrix factorization methods
may give higher weight to genes in the former group and less weight on the latter group,
leading to poor latent factors. Spectra corrects for this by introducing a learned parameter
v; as a gene-specific scaling factor, bounded from below by a hyperparameter 6. This allows
the model to capture high expression and variability of specific genes, without increasing the
weights of gene factors and giving too much or too little importance to specific genes. Thus,
the base model of Spectra is given as

E[Xj] = (vj + 6], (2)
The objective function to learn Spectra’s parameters ® = {«, 6, v} is given by
E(@) = )\Erecon(@) + Egraph(@)y (3)

where Lyecon is the reconstruction loss, Lgrqpn is the penalty term on the gene loading matrix
6, and \ a hyperparameter controlling the balance between the two loss terms. We give a brief
overview of the intuition and formulation of the components of the loss function.

For L, econ, Spectra uses the Poisson log likelihood
Lrecon(©) = =X log(X(©)) + X(©), (4)

where X is Spectra’s estimated gene expression from its learned parameters ©. Spectra chooses
this loss term as this function derived from the Poisson distribution has been widely used for
modeling single cell RNA-seq counts.®!? Furthermore, it does not overly weight highly ex-
pressed or lowly expressed genes, as the loss scales according to the expression values of X.
Thus, this serves as a reasonable objective function for reconstructing the gene expression.

For Lg.qpn, we are first given a prior knowledge adjacency matrix A, where edge A;; = 1
if there is a direct biological relationship between genes 7 and j. Spectra generatively defines
its own gene-by-gene adjacency matrix as a weighted inner product of @ with itself, with
parameters that allow for random edge generation/deletion:

PlA;; = 1] := (1 = x)(1 = p){0i, BO;) + x(1 = p), (5)

where B is a learned scaling factor, x is an edge creation rate, and p is an edge deletion rate.
Spectra lets P[A;; = 1], or the the probability of an edge between genes i and j, be correlated
to similarity of the factor distribution between the two genes captured by 6; and 6;. B is a
scaling factor that prevents the regularization from discouraging discovery of new gene-gene
relationships. If genes i and j show clear relationship from the data but not in the prior
information, a simple inner product (6;, B6;) would discourage the model from learning this
new discovery. Thus, B prevents heavy bias towards the prior information graph. Furthermore,
parameters « and p allow for the model to add or delete edges if the expression data that drives
0 deviates from the relationships in the prior graph. Therefore, cliques and communities within
this generated graph, that represent gene groups with shared latent factors, should reflect
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functional groupings of genes. By regularizing this factor-dependent gene-gene graph against
a prior graph derived from experiments, Spectra constrains the learned 6 to yield biologically
interpretable factors. Therefore, the graph regularization loss is the negative log likelihood:

£graph(®) = _Aij IOg(]P)[AU = 1]) - (1 - AZ]) 10g(1 - ]P[AU = 1])7 (6)

Spectra optimizes £(©) using the Adam optimizer, with a learning rate schedule of [1.0, 0.5,
0.1, 0.01, 0.001, 0.0001] and maximum number of epochs set at 10,000.

3. Methods
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Fig. 1. a. Input for PertSpectra, b. Illustration of PertSpectra model, ¢. Downstream applications
of a trained PertSpectra model

3.1. PertSpectra Architecture and Training Procedure

PertSpectra is a guided triplet matrix factorization model that incorporates both perturba-
tion information from the experiment as well as biological knowledge graphs. Specifically, we
modified Spectra, a single-cell matrix factorization method, to account for perturbation in-
formation. A perturbation sequencing experiment outputs a gene expression matrix X with
dimensions n x g and perturbation labels vector h of length n, where n is the number of cells
and ¢ is the number of genes. We can transform A into a binary matrix H of dimensions
n x p, where p is the number of unique perturbations, such that H; ; =1 <= h; = j. Unlike
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Spectra, which decomposes the gene expression matrix into two matrices, PertSpectra has the
following factorization:

E[Xj] = (vj +0)H]PW (7)

where H; € {0,1}? is the binary encoding of the known perturbation design vector for cell
i, P; is a p x z perturbation loading matrix, and W; € A* (where A% is the set of positive
z-vectors that sum to 1) is the gene loading vector for gene j, and z is the latent dimension.

Since the H matrix is fixed, PertSpectra learns estimates of the P and W matrices. We
can then treat W as a loading matrix (analogous to Principal Components Analysis), which
provides the ability to study each factor based on the loadings of the genes in W. The graph
regularization biases these loadings towards capturing known gene-gene relationships, further
increasing the ability to interpret the results. Since the P matrix has dimensions p x z, or
factors per perturbation, this provides a per-perturbation relation to each factor. Therefore,
this factorization gives us (1) biologically interpretable gene loadings and (2) an association
of the latent factors to perturbations, rather than individual cells.

To optimize this factorization, we consider a reconstruction loss term between the predicted
and observed normalized expression and a graph regularization penalty on W. Formally, the
objective function for learning PertSpectra’s parameters @ is

L(O) = ALrecon(®) + Lygrapn(©). (8)
As in the original Spectra model, we use Poisson log likelihood for the reconstruction loss:
Erecon =-X log(X) + X, (9)

where X is PertSpectra’s estimated gene expression from its learned parameters. To account
for imbalance in the number of cells receiving a certain perturbation in the training set,
we weight the reconstruction loss in the following manner: For cell i receiving perturbation
h;, we weight its reconstruction loss by the reciprocal of the number of cells that received
perturbation h;:

1

N =17 10
(& (10)

where C; = {k : hy = h;,1 < k < n}. Thus, the reconstruction 1oss L, econ(®) becomes
Lrecon(©) = 1| — X10g(X(®)) + X(©)], (11)

where 1 € R is a vector of the cell weights as described above.

For the graph penalty loss, we use the graph regularization term used by Spectra. Given
an input prior graph A, we generatively defined PertSpectra’s adjacency matrix as

PlAyj = 1] := (1 = r)(1 = p)(Wy, BW ;) + k(1 = p), (12)

with x and p representing the same learned edge creation/deletion parameters as described in
Spectra. Then, we define the graph penalty function as

Loraph(©) = —A;jlog(P[A;; = 1]) — (1 — Ajj) log(1 — P[A;; = 1]), (13)
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We optimize PertSpectra’s objective function using AdamW, with a learning rate schedule of
[1.0, 0.5, 0.1, 0.01, 0.001, 0.0001] and maximum number of epochs set at 10,000.

3.2. Benchmark Model Training Procedure

We benchmarked PertSpectra against two models designed specifically for interpretability of
gene expression data: scETM and GSFA. scETM™" is a topic model designed for learning a
triplet factorization of cell-by-topic, topic-by-embedding, and embedding-by-gene matrices.
The learned topics should be biologically relevant, and the matrix factorization yields inter-
pretability for analyzing the learned topic and gene embeddings. While designed for obser-
vational single cell RNA-seq datasets, scEETM’s topics should provide similar interpretability
analysis and biologically-relevant latent embeddings.

GSFA'Y is a Bayesian factorization model that, similarly to PertSpectra, factorizes the gene
count matrix into cell-by-perturbation, perturbation-by-embedding, and embedding-by-gene
matrices, where the first matrix is given from a perturb-seq experiment and the latter two
matrices are learned. Unlike PertSpectra, GSFA imposes mixture priors on the loading ma-
trices rather than a graph regularization, and parameter optimization is achieved via Gibbs
Sampling.

We chose these models as benchmarks as a form of ablation for different aspects of our proposed
model. scETM does not leverage perturbation information in learning the loading matrices,
so improvement over this model would demonstrate the benefits of explicitly incorporating
perturbation information in learning interpretable latent factors. GSFA is a similar guided
factorization model, but does not incorporate prior knowledge in regularizing the learned fac-
tors; thus, improvement over GSFA would demonstrate the importance of leveraging prior
information to yield more interpretable factors.

To train scETM, we used the gene by sample count matrix as input, as scETM does not
account for perturbation information. The expression matrix was filtered with the same steps
as mentioned above, and the counts were normalized as described by the scETM paper (raw
count of the gene divided by the total counts in each cell). The train-test splits as described
above for PertSpectra were used to split the data for scETM. To train GSFA, the expression
matrix was normalized as described in their methodology. Because of memory constraints of
the Gibbs Sampling algorithm, GSFA was trained on subsets of the in-house and Norman
datasets. We downsampled the train-test splits used for PertSpectra, proportionally to the
perturbation labels. GSFA was not able to train on the Replogle dataset, and we encountered
persistent out-of-memory issues when training on more than 20,000 cells on an EC2 instance
with 128 Gb of RAM and 32 vCPUs.
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Fig. 2. a. Spearman correlation between predicted and observed mean gene expression by pertur-
bation, b. Predicted vs observed mean expression for the perturbation RIPK1 (inhouse), c¢. Training
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4. Evaluation
4.1. Predicting Unseen Combinations of Perturbations

We first evaluated the models’ ability to reconstruct gene expression levels for unseen cells or
unseen combinations of perturbations. We computed Spearman correlation on the observed
vs. predicted mean normalized gene expression for each perturbation or combination. This
measures the ability of the model to correctly predict the gene expression profile of cells
with unseen combinations of seen perturbations for the combinatorial datasets (in-house and
Norman), and the ability of the model to correctly predict the gene expression profiles of
unseen cells with seen perturbations for the single perturbation datasets (Replogle). We see
that PertSpectra and scETM perform comparably across the in-house and Norman datasets
(mean correlations of 0.95 and 0.94 for in-house, 0.94 for Norman for both methods), and
PertSpectra achieves better performance than scETM on the Replogle dataset (0.92 and 0.77,
respectively), with the error bars representing the standard deviation of the distribution of
correlations and significance shown with ***: p < 0.001, **: p < 0.01, *: p < 0.05, and ns: no
significance (Figure 2). GSFA’s poor performance may be attributed either to the model’s
focus on interpretability rather than reconstruction, or due to the down-sampling procedure
we used to avoid out-of-memory issues.

We also evaluated the training runtime of these models, as they varied drastically. We found
that PertSpectra scaled best as experiment size (number of cells sequenced) increased, as it
uses a gradient-based optimization with GPU capabilities. GSFA performed poorly in this
metric, due to its use of Gibbs Sampling to optimize its parameters and lack of GPU integra-
tion.

4.2. Biological Structure in the Perturbation Embedding

Next, to evaluate how well the perturbation latent factors P capture the underlying biology
in the data, we reasoned that perturbations that target functionally related genes would have
similar latent factors. Importantly, the model does not receive information on which gene
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Cluster ID Description

Fig. 3. Hierarchical clustering on distance matrix computed on PertSpectra’s perturbation loading
matrix shows meaningful biological structure

is targeted by each perturbation, and therefore cannot leverage the graph prior provided to
influence the embedding space, ensuring that distances in the perturbation embedding are re-
flecting signals gleaned from the data, and not from the prior graph. As an initial exploratory
task, we first qualitatively analyzed the P matrix from the Norman dataset. To do so, com-
puted the pairwise Euclidean distance matrix, performed hierarchical clustering, and tested
the resulting clusters for enrichment of genes that share a biological pathway, using Gene
Ontology (GO) annotations and a software package gprofiler.!> We then filter significant GO
terms (p-values | 0.05) and picked out the top 1 or 2 most common GO terms that show up for
each cluster to indicate the prevalent biological functions assigned to that cluster. We see that
biological functions clustered together, indicating that information about the perturbations’
biological impacts were captured in the perturbation loading matrix structure.
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Fig. 4. a. Area under the Precision-recall curve (AUPRC) for StringDB known relationships, b.
AUPRC for CORUM known relationships, c. Precision-recall curve for PertSpectra on the Norman
dataset

Having established that our model is capturing biological information, we then conducted
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a quantitative analysis comparing against sScETM and GSFA. We used StringDB!' and CO-
RUM!' as the true labels, where the pair of genes A and B have a label of 1 if that relationship
exists in the database, and 0 otherwise. To generate pairwise similarity between perturbations
from the models, we compute pairwise euclidean distance and normalize it to the range [0, 1]
using the learned perturbation loading matrices, either learned directly in the case of Pert-
Spectra and GSFA (P and «, respectively), or for scETM the aggregated perturbation loading
matrix. We take (1 — distance matrix) to generate pairwise similarity. Finally, we computed
the AUPRC between pairwise similarity of perturbations in the learned latent space and prior
gene-gene relationship labels from knowledge bases. We find that PertSpectra performs com-
petitively across the three datasets, suggesting that the learned factors across the three models
capture similar levels of biological relationships between the perturbations (Figure 4).

One limitation of this analysis is that because of the use of a similarity metric, rather than
a classifier, to identify gene-gene relationship labels, we found that the distribution of the la-
bels may not be well calibrated. For example, as seen in Figure 4c., the precision-recall curve
is not well calibrated, indicating that this recall metric may be flawed. Therefore, analyzing
the interpretability of the learned latent substructure required the following more in-depth
analysis.

4.3. Interpretability of Loading Matrices

Fraction of Perturbations With Recovered Signal
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Fig. 5. Recovery of known biological functions from hypergeometric test interpretability analysis

We evaluated the interpretability of the loading matrices P and W with the following
analysis. We reason that the matrix factorization learned ”good” latent factors if 1) the gene
loading weights indicate latent variables represent different biological functions and 2) the
perturbation loadings associate perturbations to those biologically representative latent vari-
ables. From the 2 x g loading matrix W, we can extract the biological functions represented
by each latent factor by applying Gene Set Enrichment Analysis (GSEA)!" on each loading
vector W; for i € 1,2,...,z. GSEA is a statistical analysis that identifies over-represented sets
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of genes that correspond to biological phenotypes. Thus, since the loading weights W indicate
the contribution of each gene to each loading vector, GSEA performed on the W; captures the
biological functions represented by each latent factor. We can then observe the P matrix, and
for each perturbation retrieve the top k factors associated with each perturbation. Thus, we
can observe the biological functions assigned by the model to each perturbation. To quantify
the quality of recall of these biological functions, we can observe the overlap with a known,
annotated set of gene sets that contain the perturbed gene. We then perform a hypergeomet-
ric test on the overlap of the model’s biological functions and the known biological functions,
with significance (p-value < 0.001) indicating that the model can recall the correct biological
functions non-randomly. The hypergeometric test accounts for the sizes of the model’s GO
term set and the known GO term set, which controls for a naive model assigning arbitrary
number of GO terms to a perturbation to get a good recall. For each perturbation, we can
perform this hypergeometric test and calculate the fraction of perturbations in which a model
can confidently recall gene sets. Full details of the analysis available in Appendix C.

In the first step of this analysis, scEETM did not yield statistically significant GO terms for
its factors, suggesting that scETM’s gene loading matrix did not sufficiently capture known
biological patterns. Thus, scETM could not be included in this analysis. In comparing Pert-
Spectra to GSFA, we find significant improvement in perturbation recovery via the learned
loading matrices (Figure 5). The fraction of perturbations that have significant p-values from
the hypergeometric test is much higher for PertSpectra in both the in-house (0.95 vs 0.43)
and Norman (0.65 vs 0.53) datasets. This gives further confidence to PertSpectra’s ability to
capture biological function in its latent factors.

5. Discussion and Future Work
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Fig. 6. Radar plot summarizing model performance across metrics/downstream analyses

In this paper, we introduce PertSpectra, a guided matrix factorization framework designed
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for perturb-seq data that incorporates biological domain knowledge to learn interpretable, bio-
logically coherent representations of cellular response to perturbations. PertSpectra regularizes
the gene loading matrix with a known gene-gene interaction graph prior, introducing crucial
inductive bias to guide the factorization towards biologically coherent latent factors, thereby
increasing the interpretability of the measure responses. Furthermore, PertSpectra’s factor-
ization incorporates a binary design matrix to encode the perturbation labels, a construction
which naturally extends beyond single perturbations to capture additive effects of seen or
unseen combinatorial perturbations. Overall, PertSpectra generates highly interpretable la-
tent factors, accurately predicts associations between perturbations and biological processes,
and scales seamlessly into larger datasets. In addition to interpretability, we demonstrate that
PertSpectra is competitive with or outperforms other methods across a variety of datasets
and tasks, including on held-out cells and unseen combinations of perturbations (Figure 6).
Genetic perturbation experiments hold the potential for discovering key biological mechanisms
driving cellular phenotypes - we hope that PertSpectra will aid in the computational analysis
of these experiments to gain deeper insights into novel biology.

We note that while PertSpectra can associate perturbations with biological functions in the
form of gene-set signatures, this relationship does not indicate a causal relationship and should
not be construed as such. There is extensive work in learning causal mechanisms from perturb-
seq data,'® 29 which is a separate effort from interpretability frameworks for identifying asso-
ciations from perturbations to functional processes. Furthermore, due to the linear nature of
matrix factorization, PertSpectra is limited to interpreting effects of single perturbations or
additive effects of combinatorial perturbations. Further research is required for interpretation
of non-additive synergistic combinations of perturbations, and would be important in several
applications, including target discovery of combinatorial therapeutics.

6. Code Availability

The code for implementations, analysis, and figures are available at
https://github.com /insitro/PertSpectra.

7. Data Availability

The model weights, precomputed metrics, the inhouse dataset, and reference datasets
used in downstream analyses are available at s3://pert-spectra/ and on zenodo
https://zenodo.org/records,/14740509.
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