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Large Language Models (LLMs) have shown promise in clinical reasoning and question an-
swering, yet their effectiveness for real-world clinical prediction remains an open question.
We present the first large-scale study evaluating LLMs for predicting 30-day emergency
department (ED) revisits using 138,010 visits from the Adult Emergency Department at
Stanford. We assessed two modeling paradigms: (1) direct prediction, where the LLM gener-
ates revisit risk assessments in natural language, and (2) embedding-based approaches that
leverage LLM-derived vector representations (LLM2Vec) of patient data for downstream
modeling. Retrieval augmentation improved direct prediction performance (e.g., Claude
3.7 F1 from 0.3755 (95% CI [0.3647, 0.3864]) to 0.4160 (95% CI [0.4024, 0.4294])), and
embedding-based methods consistently outperformed direct approaches, with LLM2Vec
achieving F1=0.4505 (95% CI [0.4345, 0.4666]). Despite having access to comprehensive
structured and unstructured clinical data, all LLM approaches (F1=0.3022-0.4505) failed
to exceed a traditional LightGBM model using only structured data (F1=0.4614 (95% CI
[0.4496, 0.4789])). Through systematic analysis of the reasoning chains in 17,488 predictions,
we suggest potential failure patterns: reasoning may systematically degrade performance
through overweighting medical histories and similar visits, neglecting protective factors,
and risk aversion. Our work establishes essential baseline performance while revealing fun-
damental limitations in current-generation LLMs for clinical prediction tasks.
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1. Introduction

Large Language Models (LLMs) have demonstrated impressive medical knowledge, with mod-
els like Med-PaLM 2 surpassing physician performance on medical licensing examinations.1,2

These advances have generated considerable interest in applying LLMs to clinical prediction
tasks, where their ability to process unstructured clinical text and leverage pretrained medical
knowledge could address longstanding challenges in healthcare.

The Promise and Challenge of LLMs for Clinical Prediction. Emergency depart-
ment (ED) revisit prediction represents a compelling application for LLMs. Twenty percent
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of discharged ED patients return within 30 days, often due to incomplete evaluation, prema-
ture discharge, or inadequate follow-up.3 Predicting these revisits is challenging because the
underlying drivers are multifactorial—spanning clinical, behavioral, and social factors often
embedded in unstructured clinical notes and distributed across temporally separated encoun-
ters. LLMs are uniquely positioned to address this complexity through their ability to: (1)
leverage rich medical knowledge from pretraining, (2) process unstructured inputs like clini-
cal notes and radiology reports, and (3) model longitudinal patient histories across multiple
visits.4–6

Research Questions and Approach. To evaluate LLM potential for clinical prediction,
this study addresses three fundamental questions: (1) What performance can current frontier
LLMs achieve in 30-day ED revisit, and how does that compare to a traditional machine
learning approach? (2) What LLM modeling paradigms are suitable for predicting 30-day ED
revisit? (3) What clinical knowledge do LLMs use when making predictions, and how does
reasoning affect this process? Our systematic evaluation across multiple state-of-the-art models
and integration strategies provides crucial insights into both the capabilities and limitations
of current LLM approaches for complex clinical prediction tasks.

Key Contributions. Our work makes four contributions to understanding LLMs in clin-
ical prediction:

• Comprehensive evaluation framework: Using 138,010 ED visits, we establish
the first large-scale benchmark comparing direct prediction and embedding-based ap-
proaches across multiple state-of-the-art models.

• Open challenge identification: We demonstrate that current-generation LLMs can-
not exceed traditional machine learning approaches in 30-day ED revisit prediction,
even when given access to both structured and unstructured data while the traditional
approach uses only structured features.

• Modeling strategy insights: We highlight the importance of retrieval augmentation
for improving LLM performance. We also show that embedding-based approaches con-
sistently outperform direct prediction, suggesting that LLMs’ primary value may lie in
representation learning rather than end-to-end reasoning for complex prediction tasks.

• Systematic analysis of reasoning failures: Through detailed examination of 17,488
predictions, we identify patterns suggesting how reasoning may degrade LLM perfor-
mance through systematic biases, including risk aversion and medical history over-
weighting.

2. Related Work

2.1. Structured Electronic Health Record (EHR) Foundation Models

Transformer-based foundation models trained on structured EHR data have emerged as a
promising approach to clinical prediction. These models treat EHR sequences as analogous
to natural language, encoding events as tokens and leveraging pretraining objectives such as
masked event prediction or time-to-event modeling. For example,CLMBR (Clinical Language
Model-Based Representations) demonstrated that pretraining on longitudinal structured data
improves robustness and sample efficiency in downstream clinical tasks.7 Similarly, MOTOR
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(Many Outcome Time Oriented Representations) introduces a self-supervised time-to-event
modeling framework and achieves state-of-the-art performance across 19 clinical tasks using
over 9 billion clinical events from 55 million patients.8 These methods offer robustness to
temporal distribution shifts and perform well under limited supervision. However, they require
large-scale, site-specific pretraining, and typically exclude unstructured data such as clinical
notes or radiology reports.

2.2. LLMs for Clinical Reasoning and Outcome Prediction

In parallel, LLMs pretrained on general-domain text have demonstrated impressive capabilities
in clinical reasoning and medical question answering.9 Med-PaLM andMed-PaLM 2, for ex-
ample, surpass the passing threshold on the US Medical Licensing Examination (USMLE) and
outperform physicians on key clinical axes such as reasoning, factual accuracy, and safety.1,2

Similarly, NYUTron shows that LLMs trained on unstructured clinical notes can serve as
general-purpose predictive engines, achieving AUCs between 78.7-94.9% across five clinical
and operational tasks within a real-world health system.10 These results underscore the po-
tential of LLMs to extract high-value representations from unstructured data and generalize
across a wide range of clinical contexts with minimal task-specific tuning.5,11

The potential of LLMs in clinical prediction is enhanced by recent developments that con-
vert LLMs into effective embedding generators. These techniques, such as LLM2Vec, trans-
form decoder-only LLMs into bidirectional text encoders capable of generating dense vector
representations from multimodal EHR inputs for downstream ML tasks.12 In parallel, special-
ized text embedding models like Voyage-3-Large (Voyage AI Innovations, Inc.) have emerged
as strong baselines for general-purpose text representation learning, offering state-of-the-art
performance across diverse text understanding tasks.

2.3. LLMs for Clinical Outcome Prediction in Emergency Settings

Several recent studies have explored the use of LLMs for clinical outcome prediction in emer-
gency settings. Gebrael et al. evaluated ChatGPT’s ability to triage patients with metastatic
prostate cancer in the ED and found high sensitivity in identifying cases requiring admission,
along with improved comprehensiveness and accuracy of diagnostic suggestions compared to
physicians.13 Glicksberg et al. investigated GPT-4 for predicting hospital admissions from ED
encounters, comparing its performance to traditional ML models with and without prompt-
ing and numerical probabilities.14 Both studies highlight LLMs’ potential to support clinical
decision-making in emergency care, especially when structured and unstructured data are
combined. However, these works rely on näıve prompting strategies and do not explore the
use of LLM-derived embeddings or fine-grained modeling of revisit risk. Moreover, they focus
on admission prediction rather than revisit forecasting, which is a simpler task whose outcome
is known within hours rather than days or weeks.

3. Methods

To evaluate the readiness of LLMs for clinical prediction tasks, we evaluated five approaches
for predicting 30-day ED revisit risk. Our methods fall into two main categories: (1) direct
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prediction, where the LLM generates revisit risk assessments through its generated text out-
puts, and (2) embedding-based approaches that use LLM-generated vector representations of
patient data for modeling. (Figure 1)

Fig. 1. Overview of Large Language Model (LLM) utilization for 30-day Emergency Department
(ED) revisit prediction. Our approach explores two primary paradigms: (a, b) Direct Prediction
Methods, where LLMs generate revisit risk assessments directly via text outputs, leveraging (a) zero-
shot prompting or (b) retrieval-augmented prompting with case examples. (c, d, e) Embedding-Based
Methods generate LLM-derived vector representations (e.g., using LLM2Vec) of patient visit data
for downstream modeling, including (c) LightGBM classification, (d) k-Nearest Neighbors (KNN)
based lookup, and (e) cosine similarity scoring with retrieved outcome descriptions. Each method
processes a “Patient Document” representing the patient’s visit data.

3.1. Data

We studied 138,010 discharged ED visits from 87,112 adult ED patients, from the Adult Emer-
gency Department at Stanford , between February 1st, 2021, and February 28th, 2024. The
dataset is split chronologically into 100,987, 19,535, and 17,488 visits for training, validation,
and test sets, with no patient overlap between splits. 30-day ED revisit rates in the train,
validation, and test splits are 17.45%, 15.77%, and 16.45%, respectively.

The dataset contains both structured and unstructured elements from the EHR. Visit-level
data includes patient demographics (age, gender, race, ethnicity), socioeconomic indicators
(payor information), and visit outcomes (length of stay, disposition). Vital signs (heart rate,
respiratory rate, oxygen saturation, temperature, systolic blood pressure, diastolic blood pres-
sure) are summarized by minimum, maximum, triage, and final values throughout the visit.
Orders data captures procedure and medication orders placed during the visit. Laboratory
results contain both categorical interpretations (normal/abnormal) and numerical values with
reference ranges. Home medication data includes generic and brand names with medication
classifications. Radiology data consists of study types and de-identified free-text narrative
impressions. Past medical history combines ICD-10 diagnosis codes and descriptions, Clinical
Classification Software (CCS) categories, and diagnosis dates. Past ED visit history includes
temporal patterns of ED utilization, with chief complaints, diagnoses, and dispositions. Hos-
pital admission data includes admit service, level of care, and hospital length of stay. While
we only predict revisits for ED patients discharged home, our predictions draw on informa-
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tion from all their previous ED visits, regardless of whether those visits ended in discharge or
admission. (Supplement: Table 1)

3.2. Prediction Using Structured EHR Data

To provide a traditional machine learning baseline, we trained a LightGBM15 model using a
binary classification objective on the structured EHR only, totaling 2,221 features. Specifi-
cally, we included five demographic variables, admission types, diagnosis codes mapped to 278
Clinical Classifications Software categories, 46 distinct chief complaints, 1,675 clinical orders
(e.g., medications, procedures), seven triage measurements, 181 laboratory test results (each
encoded as abnormal = 1 or normal = 0), and 36 summary features derived from vital signs
(e.g., minimum or maximum heart rate). Additionally, two aggregated temporal features were
derived to represent the number of ED visits and inpatient admissions within the six months
preceding each index visit. The model’s outputs are thresholded at the value that maximizes
F1 on the validation set.

3.3. Visit Documents

We developed a rule-based approach to convert the raw EHR data, including both structured
and unstructured elements, into a comprehensive visit document for each ED encounter. Each
document begins with patient demographics and medical history, followed by current medica-
tions. Previous ED visits from the past six months are summarized with their chief complaints,
diagnoses, and dispositions, including hospital admissions when applicable. The current visit
section includes arrival information, chief complaint, vital signs (with triage, final, minimum,
and maximum values), visit timeline (arrival, rooming, disposition decision, and departure
times), procedural and medication orders, laboratory and imaging results, diagnosis, and dis-
position details. For visits resulting in admission, additional details about admit time, service,
and level of care are included. Laboratory results are categorized by abnormality status (crit-
ical, abnormal, normal) to highlight significant findings. Timing information is in the format
of time, day of the week, and month. (Supplement: Table 1, Figure 1)

3.4. Direct LLM Prediction Methods

We implemented two approaches where the LLM directly predicts revisit risk through text
generation. We evaluated several state-of-the-art LLMs with different characteristics. Reason-
ing models included Claude 3.7 (claude-3-7-sonnet-20250219-v1), a multimodal model with
an optional reasoning mode designed to enhance step-by-step analytical thinking, which we
evaluated in both standard and reasoning mode; OpenAI o3-mini (2024-12-01-preview), a
smaller, more efficient variant from OpenAI’s o3 series; and Deepseek R1 (v1), a specialized
model from Deepseek AI that employs structured reasoning techniques. Models without ex-
plicit reasoning modes included GPT-4o (2024-10-21), OpenAI’s multimodal model optimized
for instruction-following and responsiveness, but without a dedicated reasoning mode that
emphasizes step-by-step analytical processing.

Zero-Shot Direct Prediction In our baseline direct prediction approach, we prompted
the LLM to assess ED revisit risk without providing examples. Additionally, we calculated
the prevalence of 30-day revisits in the training data and included that in the prompt:
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You are an expert in emergency department patient risk assessment. Given a

patient’s current ED visit data, evaluate their risk of returning to the ED

within 30 days. Assess the patient’s 30-day ED revisit risk as HIGH or LOW.

If the revisit risk is HIGH, provide the most likely chief complaint for a

potential return visit. Consider that the 30-day ED revisit prevalence in

this hospital is 17.45%. Pay special attention to patterns in previous visits

, particularly repeated visits for similar complaints. Return your assessment

in JSON format: {"risk": "HIGH" or "LOW", "risk_factors": {"list key factors

driving the risk assessment"}}.

Retrieval-Augmented Generation We enhanced the direct prediction approach by im-
plementing Retrieval-Augmented Generation (RAG), where each prediction was informed by
similar cases. We used a pretrained embedding model (LLM2Vec-Meta-Llama-3-8B-Instruct-
mntp-unsup-simcse) to generate embeddings for visit documents and retrieved the 10 most
relevant cases from the training set for each test patient based on cosine similarity. These
retrieved cases were then provided to the LLM as few-shot examples to augment the same
prompt used by zero-shot direct prediction:

Following are 10 examples:

###

{patient’s EHR data using the same template}

30-day revisit: {’Yes’ or ’No’}

####

...

Now, assess the following case:

3.5. Text Embedding-Based Prediction Methods

We implemented three distinct methods using LLM-derived embeddings to predict ED revisit
disposition. For our primary experiments, we used LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-
unsup-simcse, which converts a Llama 3 8B instruction-tuned model into a text embedding
model. To establish a performance baseline, we repeated all experiments using Voyage-3-Large,
a state-of-the-art general-purpose text embedding model.

Embedding Similarity Classification Our first approach uses semantic similarity to
classify outcomes by comparing visit document embeddings with outcome description embed-
dings. We created natural language descriptions for each possible outcome and measured how
closely each visit’s embedding matched these outcome descriptions. The outcome descriptions
were:

• No revisit with 30 days: “No return visits to the Emergency Department occur within
30 days following the current Emergency Department visit.”

• Revisit within 30 days: “A return visit to the Emergency Department occurs within 30
days following the current Emergency Department visit for any reason.”

Predictions were made by computing cosine similarities between the patient visit embed-
ding and each outcome description embedding, with the highest similarity score determining
the predicted outcome. Formally, for patient visit embedding p and outcome description em-
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bedding o, the cosine similarity is calculated as:

cos(p,o) =
p · o

∥p∥∥o∥
=

∑n
i=1 pioi√∑n

i=1 p
2
i

√∑n
i=1 o

2
i

(1)

where p · o represents the dot product of the two vectors, and ||p|| and ||o|| represent their
Euclidean norms (magnitudes). To enhance the discriminative power of our model, we train
a single linear projection layer for the outcome embeddings. This projection is implemented
as oproj = Wprojection · o, where Wprojection is a learnable weight matrix. This projection helps to
align the outcome embeddings with the relevant semantic features in the patient data space.

LLM Embeddings with LightGBM For our second approach, we trained a LightGBM
model on the patient document embeddings to predict 30-day ED revisit. We selected Light-
GBM15 due to its widespread use and demonstrated strong performance in predicting hospital
admissions and readmissions across various clinical settings.16–18

K-Nearest Neighbor Prediction Our third embedding-based approach used k nearest-
neighbor (KNN) retrieval to identify similar cases for prediction. We created patient document
embeddings for visits in the training set. These embeddings were stored in a FAISS (Facebook
AI Similarity Search) vector database for efficient similarity search. During prediction, we
retrieved the k most similar cases based on cosine similarity between the document embedding
of the patient in query and those in the vector store. Note that because there is no patient
overlap between splits, the retrieved cases will only belong to patients different from the one we
are making predictions for. To predict the probability of 30-day ED revisits, we calculated the
proportion of similar cases in the training set that resulted in revisits, with Laplace smoothing
applied to avoid zero probabilities:

P (revisit) =
count of revisit neighbors+ 1

total neighbors+ 2

We experimented with multiple k values (10, 20, 30, 50, 100, 500, 1000, 2000, 5000, 10000)
to find the optimal neighborhood size using the validation set.

4. Results

4.1. Overall Performance Comparison

All performance metrics are reported with 95% confidence intervals computed using bootstrap
resampling with 1,000 iterations. Among LLM-based approaches, embedding methods consis-
tently outperformed direct prediction. LLM-derived embeddings (LLM2Vec) achieved com-
petitive performance at F1=0.4505 (95% CI [0.4345, 0.4666]) compared to Voyage-3-Large
(F1=0.4608 (95% CI [0.4375, 0.4667])). Notably, RAG provided consistent improvements
across all direct prediction models. However, we also found that a structured EHR base-
line achieved performance (F1=0.4614 (95% CI [0.4496, 0.4789])) that exceeded LLM-based
methods (F1=0.3022-0.4505). (Figure 2, Supplement: Table 2-7)

4.2. Direct Prediction Performance

Figure 3 demonstrate the performance of various LLMs in directly predicting ED revisits
without additional context. F1 scores ranged from 0.3022 to 0.3889, with o3-mini achieving
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Fig. 2. Comparison of the best model across modeling paradigms.

the highest performance among zero-shot approaches. The precision-recall breakdown reveals
that models exhibited different operational characteristics, with Deepseek R1 and Claude 3.7
(reasoning) favoring high recall (>85%) at the expense of precision (<20%), while GPT-4o
and Claude 3.7 (standard) achieved a more balanced precision-recall profile.

Incorporating retrieval augmentation with the top 10 similar cases substantially improved
performance across all models. The most significant gains were observed in GPT-4o (from
F1=0.3403 to 0.3867) and Claude 3.7 (standard), with the latter achieving the highest overall
F1 score of 0.4160 (95% CI [0.4024, 0.4294]) among direct prediction methods. This im-
provement suggests that providing LLMs with similar cases enables them to identify relevant
patterns that enhance prediction accuracy, potentially mirroring how clinicians draw upon
their experience with similar patients. (Figure 3; Supplement: Table 2,3)

Fig. 3. Performance of direct prediction with and without retrieval augmentation (RAG) across
LLMs.

4.3. Embedding-Based Method Performance

Figure 4 present the performance of different embedding approaches across three prediction
methods: embedding similarity classification, LightGBM, and KNN-based prediction. Em-
bedding similarity classification achieved the highest performance across all metrics (F1,
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precision@recall=0.95, precision@recall=0.85) for both embedding models. Voyage-3-Large
achieved the highest performance in both similarity classification (F1=0.4608 (95% CI
[0.4375, 0.4667])) and LightGBM (F1=0.4521 (95% CI [0.4358, 0.4667])) approaches. However,
LLM2Vec demonstrated competitive performance with F1=0.4505 (95% CI [0.4345, 0.4666]) in
similarity classification and F1=0.4386 (95% CI [0.4231, 0.4531]) in LightGBM, showing that
the performance gap between LLM-derived and specialized embedding models is relatively
modest. (Supplement: Table 4-6)

For our KNN approach, we observed performance variations across different neighborhood
sizes. With LLM2Vec embeddings, performance improved as k increased from 10 (F1=0.3688
(95% CI [0.3536, 0.3838])) to 500 (F1=0.4082 (95% CI [0.3927, 0.4218])), before declining with
larger k values. Similarly, with Voyage-3-Large embeddings, performance peaked at k=100
(F1=0.4002 (95% CI [0.3849, 0.4137])). The inverted-U performance curve across k values
suggests a trade-off between capturing relevant cases and introducing noise, indicating that
while a moderate number of similar cases provides useful signal for revisit prediction, extremely
large neighborhood sizes dilute this signal by incorporating less relevant cases. The competitive
performance of simple KNN approaches (F1 >0.4) validates that both LLM2Vec and Voyage-
3-Large capture clinically relevant patient similarity—when patients are similar in embedding
space, their revisit outcomes are also similar, making the prevalence of revisits among retrieved
neighbors a reliable predictor. (Supplement: Table 6)

Fig. 4. Performance of embedding-based methods (similarity classification, LightGBM, KNN) using
LLM2Vec and Voyage-3-Large (left) and the impact of k on performance for KNN (right).

4.4. The Challenge of Reasoning: When Sophisticated Models Perform
Worse

Contrary to expectations, explicit reasoning modes didn’t consistently improve prediction
performance. This finding is particularly striking given that reasoning capability is often con-
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sidered a hallmark of advanced LLMs. We conducted a quantitative and qualitative analysis
on the responses of Claude 3.7 with RAG in the reasoning mode because it allows a controlled
comparison against the standard mode to evaluate the impact of reasoning. (Supplement C,D)

4.4.1. Reasoning Mode Performance Patterns

Claude 3.7’s standard mode (F1=0.3755 (95% CI [0.3647, 0.3864])) outperformed its reason-
ing counterpart (F1=0.3217 (95% CI [0.3125, 0.3311])). To understand this phenomenon, we
analyzed prediction changes when reasoning was enabled, focusing on the 4,891 cases where
Claude 3.7’s predictions differed between standard and reasoning modes.

The analysis revealed a systematic bias: the reasoning mode predominantly changed pre-
dictions toward higher risk. Of cases where predictions were flipped after enabling reasoning:

• Correct improvements: 542 cases changed from Low to High risk correctly, 69 cases
changed from High to Low risk correctly

• Incorrect changes: 4,271 cases changed from Low to High risk incorrectly, 9 cases
changed from High to Low risk incorrectly

4.4.2. Systematic Analysis of Reasoning Failures

We conducted a comprehensive qualitative analysis using GPT-4o to examine Claude 3.7’s
reasoning chains on cases where reasoning changed the prediction. Summarizing the qualitative
analysis with Claude Sonnet 4 suggest several factors that may cause reasoning-mode failures:

When Reasoning Hurts Performance (4271 cases): The most common failure oc-
curred when correct low-risk predictions became incorrect high-risk predictions. Key patterns
included:

• Medical history overweighting : Excessive emphasis on chronic conditions and complex
medical histories while undervaluing protective factors, including no prior ED visits,
normal test results, stable vital signs, and etc. (87.59% cases)

• Risk aversion: The step-by-step reasoning made the model more conservative, favoring
high-risk predictions to avoid missing potential problems (76.96% cases)

• Statistical misinterpretation: Focus on small percentages of similar cases that experi-
enced revisits while ignoring that the majority did not return (41.65% cases)

When Reasoning Helps Performance (542 cases): Reasoning successfully identified
missed high-risk cases by:

• Capturing subtle risk factors : Noticing demographic and social predictors, such as in-
surance status, medication adherence issues, that affect follow-up (90.04%)

• Identifying untreated conditions : Finding abnormal laboratory results with no or inad-
equate corresponding interventions (63.28% cases)

• Leveraging temporal patterns : Finding escalating patterns by connecting current visit
to recent ED visits for related complaints (26.38% cases)

• Catching concerning vital signs : Noticing worsening vitals at discharge, such as low
SpO2, persistent tachycardia, that signal instability (25.46% cases)

• Recognizing diagnostic mismatches : Identifying cases where discharge diagnoses didn’t
match presenting symptoms (10.52% cases)
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4.4.3. Factors Underlying LLM Predictions

To characterize what factors drive LLM predictions, we used OpenAI’s text-embedding-3-
large to embed the “risk factors” in Claude 3.7’s responses and applied k-means clustering,
identifying 56 factor groupings. The full list with random samples from each grouping can be
found in Supplement Table 8. The five most frequently considered factors align with established
revisit prediction literature: (1) Population Revisit Patterns - comparisons to similar cases and
hospital baseline rate (n=3530), (2) Very Recent Prior Visits - ED visits within days/weeks
of current presentation (n=2755), (3) Frequent ED Utilization - patterns of multiple recent
visits (n=1857), (4) ED Length of Stay - duration of encounters (n=1821), and (5) Ongoing
Treatment Protocols - continued therapies requiring follow-up (n=1757).19–21

To understand whether the LLM utilized the provided similar cases for prediction, we
prompted GPT-4o to classify any references to the retrieved cases in the reasoning chain,
showing that 99.15% of the cases have references. Besides, the k-mean clustering above shows
that comparisons to similar cases and hospital baseline revisit rates is the most used risk
factor, confirming again that the LLM really reasons over similar cases.

5. Discussion

Current LLMs Cannot Exceed Traditional Approaches Despite Capability to Pro-
cess Richer Data Our study reveals a striking finding that despite providing LLMs with com-
prehensive structured and unstructured clinical data, all LLM-based approaches (F1=0.3022-
0.4505) failed to exceed a simple LightGBM model trained only on structured EHR features
(F1=0.4614 (95% CI [0.4496, 0.4789])). While LLMs showed varying effectiveness depending
on integration strategies, the fundamental limitation persists across all approaches, challenging
assumptions about LLMs’ readiness for complex clinical prediction tasks.

Zero-Shot Prediction Demonstrates High Recall but Limited Precision Direct
zero-shot prediction using LLMs yielded modest performance (F1 scores 0.3022-0.3889), with
these models demonstrating a tendency toward high recall at the expense of precision. This
overestimate of revisit risk is potentially caused by the characteristics of ED patients who
typically have multiple comorbidities and acute presentations. The clinical consequence of
such behavior would be an excessive number of false positives, limiting practical utility in
resource-constrained healthcare environments where targeted interventions must be allocated
efficiently.

Retrieval-Based Methods Offer Interpretability and Clinically Meaningful Con-
text Notably, our simple KNN approaches using LLM embeddings achieved competitive per-
formance (F1=0.4082 (95% CI [0.3927, 0.4218]) and 0.4002 (95% CI [0.3849, 0.4137]) for
LLM2Vec and Voyage-3-Large respectively), suggesting the similar cases are clinically infor-
mative. This approach combines reasonable performance with high interpretability, as similar
cases can be presented alongside predictions to provide clinicians with concrete examples in-
forming the risk assessment. Such transparency may enhance clinical trust and adoption while
enabling physicians to incorporate their judgment when similar cases reveal important nuances
not captured in the prediction itself.

Retrieval augmentation with similar cases significantly improved LLM performance across
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all models evaluated. This enhancement was particularly pronounced for Claude 3.7 (standard
mode with reasoning disabled) and GPT-4o. The consistent benefit of retrieval augmentation
suggests that LLMs can effectively leverage pattern recognition from relevant cases—a process
that mirrors clinical reasoning, where physicians draw upon their experience with similar
patients to inform prognostication. This finding aligns with recent work showing that case-
based reasoning can enhance clinical decision support systems.14

Embedding-Based Models Yield Strong Performance with Tradeoffs in Inter-
pretability Embedding-based approaches demonstrated superior performance compared to
direct prediction methods, with LLM2Vec embeddings achieving F1 scores exceeding 0.45
when combined with embedding similarity classification. However, this performance gain
comes with a tradeoff in interpretability—while direct LLM predictions can include explana-
tory text and reference similar cases, methods built on embeddings function as relative black
boxes from a clinical perspective.

Our analysis of LLM reasoning suggests a potential paradox The very capa-
bility that makes LLMs appear more “intelligent”—their ability to engage in step-by-step
reasoning—may systematically degrade prediction performance in clinical contexts. Through
automated analysis of reasoning chains, we observed that explicit reasoning appears more
risk averse and may overly focus on small percentages of similar cases that experienced re-
visits while potentially ignoring that the majority did not return. It also seems to overweight
complex medical histories and seek confirmatory evidence for identified risk factors, while
potentially discounting contradictory evidence and protective factors. These potential confir-
mation biases in LLM reasoning may mirror well-documented challenges in human clinical
decision-making,22 though further validation with human expert review is needed to confirm
these patterns.

Limitations and Future Directions Our dataset includes EHR components unavailable
in MIMIC-IV-ED, the only publicly available ED dataset, precluding external validation. We
focused on binary revisit prediction rather than more clinically actionable outcomes such as
preventable returns or severity-stratified revisits. Our outcome data captures only Stanford
ED revisits, potentially missing visits to other emergency departments; however, this limita-
tion affects all methods equally and should not bias comparative performance. We did not
prospectively evaluate the impact of these predictions on clinical decision-making or patient
outcomes. Our models use complete ED visit data available at discharge, limiting immediate
applicability for pre-emptive interventions during the visit, though many interventions can be
delivered after discharge (e.g., expedited clinic or telemedicine follow-up), and LLMs’ flexi-
ble input format enables adaptation to earlier time points during visits at potential cost to
accuracy. While our findings reveal fundamental limitations of current LLMs for this task, tar-
geted post-training approaches warrant investigation. Supervised fine-tuning or reinforcement
learning from human feedback (RLHF/DPO23,24) incorporating physician evaluations could
potentially improve both prediction accuracy and clinical alignment.

Supplement https://github.com/dkimlab/PSB 2026 EDLLM Supplement
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