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Post-Traumatic Stress Disorder (PTSD) remains under-detected in clinical settings, presenting 
opportunities for automated detection to identify at-risk patients. This study evaluates natural 
language processing approaches for binary PTSD classification from clinical interview transcripts 
using the DAIC-WOZ dataset, which contains semi-structured interviews with standardized 
psychological assessments. We compared embedding-based methods (SentenceBERT/LLaMA 
with logistic regression), general and mental health-specific transformer models 
(BERT/RoBERTa), and large language model prompting strategies (zero-shot/few-shot/chain-of-
thought). SentenceBERT embeddings with logistic regression achieved the highest overall 
performance (AUPRC=0.758±0.128), outperforming domain-specific end-to-end fine-tuning 
models like Mental-RoBERTa (AUPRC=0.675±0.084 vs. RoBERTa-base 0.599±0.145). Few-shot 
prompting using DSM-5 criteria and two examples yielded competitive results (AUPRC=0.737). 
Performance varied significantly across symptom severity and comorbidity status with depression, 
with higher accuracy for severe PTSD cases and patients with comorbid depression. Our findings 
highlight the potential of embedding-based methods and LLMs for scalable screening while 
underscoring the need for improved detection of nuanced presentations. 
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1. Introduction

Post-Traumatic Stress Disorder (PTSD) affects approximately 6% of the U.S. population, with 
significantly higher rates among veterans and trauma survivors.1 Despite its prevalence, PTSD 
remains under-detected in primary care settings, with studies suggesting that around 30% of cases 
go unrecognized.2 Traditional screening approaches rely on structured clinical interviews and self-
report measures, which require substantial clinical expertise and patient engagement. The 
development of automated screening tools could significantly improve detection rates, particularly 
in resource-constrained settings where mental health specialists are limited. 

Recent advances in natural language processing (NLP) and large language models (LLMs) offer 
promising avenues for mental health assessment through analysis of patient language.3, 4 While 
numerous studies have explored computational approaches to mental health detection, most have 
focused on depression and anxiety, with relatively less attention paid to PTSD.4, 5 Furthermore, 
existing PTSD detection research has predominantly relied on social media data or surveys rather 
than clinical interview, limiting applicability at the point of care.6 Prior work in clinical NLP has 
explored various approaches including transformer-based models like BERT and RoBERTa, 
embedding-based methods using SentenceBERT, and prompting strategies with large language 
models. Traditional transformer models trained on general text corpora which may have limited 
capability to capture the nuanced linguistic markers of PTSD, such as trauma-specific disfluencies, 
avoidance semantics, or fragmented narrative coherence. Though domain-adapted variants like 
Mental-BERT show promise for depression classification, their efficacy for PTSD detection remains 
unproven.7 Embedding-based approaches using SentenceBERT have demonstrated effectiveness for 
depression detection tasks.8 while instruction-tuned large language models offer potential for 
clinical assessment through prompting strategies that leverage clinical knowledge without requiring 
extensive labeled training data.9, 10 However, these approaches have rarely been applied to PTSD 
detection in clinical interview settings, representing a significant gap in the literature. 

The Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) dataset provides a unique 
opportunity to develop and evaluate computational methods for PTSD detection in a simulated 
clinical context.11-13 This dataset contains semi-structured clinical interviews conducted by a virtual 
interviewer with standardized psychological assessments as ground truth. While previous studies 
using this dataset have primarily focused on depression detection or multimodal approaches 
combining audio, visual, and linguistic features, the potential of advanced NLP techniques 
specifically for PTSD detection remains underexplored.14 

To address this gap, this study bridges critical gaps in computational PTSD detection through a 
multifaceted NLP framework that advances both methodological innovation and clinical relevance. 
Our research investigates three key aspects: First, we examine the efficacy of various language 
representation approaches for PTSD detection with models fine-tuned on labeled data, comparing 
general versus domain-specific pre-trained transformer models (BERT and RoBERTa compared 
with Mental-BERT and Menta-RoBERTa) with embedding-based methods using more recent 
architectures (SentenceBERT and LLaMA). This comparison aims to identify whether domain 
adaptation or architectural differences have greater impact on PTSD classification performance. 
Second, we explore different LLM prompting strategies (zero-shot, few-shot, and chain-of-thought) 
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for PTSD classification, which to our knowledge represents the first application of instruction-tuned 
LLMs to PTSD detection in clinical interviews. This approach investigates whether LLMs can 
leverage clinical knowledge encoded during pre-training without requiring extensive labeled data. 
By comprehensively comparing these approaches, we contribute benchmark results for future 
research on automated PTSD detection using transcripts from clinical interviews. Third, we analyze 
how model predictions vary across symptom severity levels and comorbidity with depression, 
seeking to understand if computational approaches face similar challenges to human clinicians in 
distinguishing PTSD from related conditions, and in detecting subclinical or borderline cases.  

This work has implications for the development of automated PTSD screening tools in mental 
health settings. By leveraging advanced NLP techniques for PTSD detection, our research may help 
address the significant gap in PTSD screening and assessment, particularly in primary care and other 
settings where specialized mental health resources are limited. 

2. Methods

2.1.  Dataset 

For this study, we utilized the DAIC-WOZ dataset, a specialized collection of clinical interviews 
designed for psychological assessment research. The corpus contains semi-structured clinical 
interviews conducted by a virtual interviewer named Ellie, whose responses were controlled by 
human operators following a consistent protocol. The DAIC-WOZ dataset comprises multimodal 
data from 189 participants, including audio, video, and transcribed textual data. Each interview 
followed a clinical protocol designed to elicit information relevant to psychological assessment, 
beginning with neutral rapport-building questions before progressing to more specific inquiries 
about symptoms related to psychological distress. Pre-interview, participants completed 
standardized psychological assessments, including the PTSD Checklist-Civilian Version (PCL-C), 
which was used to establish ground truth diagnostic labels.12 Among 189 participants, 56 (29.6% of 
the sample) met criteria for PTSD, while the remaining 133 were non-PTSD participants. 
Additionally, participants completed the Patient Health Questionnaire-8 (PHQ8) for depression 
assessment, enabling analysis of comorbid conditions. Among them, 42 (22.2% of the sample) were 
diagnosed as having depression and 147 were categorized as non-depressed participants. 

2.2.  Data Preprocessing and Model Architecture 

This study focused on exploring the predictive power of natural language from clinical interviews. 
For our analysis, we focused exclusively on the patient-side transcripts, extracting only the verbal 
content produced by participants while excluding interviewer questions and prompts. This approach 
allowed us to isolate linguistic features directly attributable to the participants, minimizing potential 
confounding from interviewer speech patterns or question framing, which have been shown to 
influence model predictions of depression.14 
      For our baseline approach, we employed BERT (Bidirectional Encoder Representations from 
Transformers),15 a pre-trained language model that generates contextual word embeddings capturing 
semantic information. We experimented with both a general domain “bert-base-uncased” model and 
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a domain-specific “mental-bert” variant, that has undergone additional pre-training using mental 
health-related posts collected from Reddit.7 To address BERT's 512-token input limitation with 
lengthy clinical transcripts, we developed a chunking strategy that segmented each transcript into 
512-token portions. From each chunk, we extracted the representation from the [CLS] token, which 
provides a 768-dimensional vector serving as an aggregate representation of that segment. To create 
a fixed-length representation for the variable-length transcripts, we computed the mean of all chunk 
embeddings, thereby preserving information from the entire transcript while maintaining consistent 
dimensions for the downstream classifier. We also implemented RoBERTa, which was trained with 
a larger corpus than BERT and with augmented training objectives,16 utilizing both “roberta-base” 
and “mental-roberta” variants.7 Models were trained for 10 epochs using AdamW optimizer with 
weight decay regularization,17 18 with a learning rate of 2e−5, batch size of 4, and binary cross-
entropy loss. To address class imbalance, we implemented weighted random sampling during 
training, assigning weights inversely proportional to class frequencies to ensure balanced 
representation of PTSD and non-PTSD cases in each mini-batch.19 A linear layer with sigmoid 
activation was used as a classification layer for binary classification. 
      In addition to end-to-end fine-tuning approaches, we implemented embedding-based PTSD 
classification using representations generated from SentenceBERT and LLaMA followed by logistic 
regression. Embedding-based approaches produces semantically meaningful sentence embeddings 
directly without task-specific fine-tuning like BERT, making it computationally efficient for 
classification tasks. For SentenceBERT, we utilized the “paraphrase-multilingual-mpnet-base-v2” 
model, which produces 768-dimensional vectors for each text segment under 128 words.20 Similar 
to our BERT implementation, we chunked transcripts and applied mean pooling to generate 
transcript-level embeddings. For LLaMA embeddings, we used pre-computed 16,384-dimensional 
vectors that were generated through mean pooling across entire transcripts without chunking, 
leveraging the model's ability to handle longer sequences effectively. Both embedding approaches 
were followed by logistic regression classification using scikit-learn's implementation (C=1.0, 
liblinear solver, maximum 1000 iterations). For the logistic regression models, balanced class 
weights were automatically computed as inversely proportional to class frequencies in the training 
data, effectively upweighting the minority PTSD class during optimization. 
      All models were evaluated using the same 5-fold stratified cross-validation to ensure robust and 
unbiased performance estimation across different data splits and across all methodologies. 

2.3.  Large Language Models Approach 
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We then explored the use of Large Language Models (LLMs) for PTSD prediction through various 
prompting strategies. We used LLaMA 3.1 with 405B parameters, a state-of-the-art open weight 
large language model, for this task in comparison with the fine-tuned models.21, 22 This approach 
allowed us to assess whether LLMs could effectively identify linguistic markers of PTSD in patient 
speech without fine-tuning on labeled data. For our zero-shot learning approach, we developed a 
clinically informed prompt that framed the task as a diagnostic assessment performed by a 
psychiatrist specializing in trauma. The prompt incorporates the DSM-5 diagnostic criteria for 
PTSD,23 which cover four key symptom clusters: intrusion symptoms, avoidance, negative 
alterations in cognitions and mood, and alterations in arousal and reactivity. We excluded the PTSD 
diagnostic Criterion A (exposure to traumatic events) as our analysis focused on linguistic markers  



For few-shot learning, we enhanced the prompt by including a small number of labeled examples 
from our dataset. We selected the positive case with the highest PCL-C (PTSD Checklist – Civilian 
Version)24 score and the first negative case with the lowest score we encountered in the dataset to 
serve as anchors for the classification task. These examples provided the model with concrete 
instances of how PTSD manifests linguistically in our specific clinical interview context. 

We further incorporated a chain-of-thought methodology where the model was instructed to 
produce a step-by-step reasoning process before making the final classification. The prompt directs 
the model to first analyze the transcript for specific PTSD indicators across all symptom clusters, 
then synthesize this information into a brief rationale (under 100 words) justifying the classification 
decision, and finally output a binary classification (0 for no PTSD, 1 for PTSD). Our implementation 
followed a two-stage process: first, we used the chain-of-thought prompt to generate the detailed 
reasoning, then extracted this reasoning and fed it into a separate zero-shot classification prompt to 
obtain the final binary classification result and probability scores. Through this approach we aimed 
to improve classification accuracy by encouraging more structured analytical reasoning that mimics 
clinical diagnostic processes. The detailed prompt can be found in Table 1. 
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Table 1. Prompt Structure for PTSD prediction 

Component Prompt 
Role 

specification 
You are a highly experienced psychiatrist specializing in trauma and mental health disorders. 

Task 
description 

Your task is to analyze patient transcripts—containing only the patient's speech—and classify whether the 
patient has PTSD or not. 

DSM-5 
Criteria 

According to the DSM-5 diagnostic criteria, PTSD is characterized by: a. Intrusion Symptoms: At least one 
symptom such as recurrent, involuntary, and intrusive distressing memories of the traumatic event(s); 
recurrent distressing dreams related to the event(s); dissociative reactions (e.g., flashbacks) in which the 
event seems to recur; intense or prolonged psychological distress at exposure to internal or external cues that 
symbolize or resemble the traumatic event(s); or marked physiological reactions to such cues. b. Avoidance: 
Persistent avoidance of stimuli associated with the traumatic event(s), evidenced by efforts to avoid 
distressing memories, thoughts, or feelings about or closely associated with the event(s) and/or avoidance of 
external reminders (people, places, conversations, activities, objects, or situations) that trigger these 
memories. c. Negative Alterations in Cognitions and Mood: Two or more symptoms such as inability to 
remember an important aspect of the traumatic event(s) (typically due to dissociative amnesia); persistent 
and exaggerated negative beliefs or expectations about oneself, others, or the world; persistent, distorted 
cognitions about the cause or consequences of the traumatic event(s) leading to self-blame or blaming others; 
persistent negative emotional state (e.g., fear, horror, anger, guilt, or shame); markedly diminished interest in 
significant activities; feelings of detachment or estrangement from others; or a persistent inability to 
experience positive emotions. d. Alterations in Arousal and Reactivity: Two or more symptoms such as 
irritable behavior and angry outbursts (with little or no provocation); reckless or self-destructive behavior; 
hypervigilance; exaggerated startle response; problems with concentration; or sleep disturbances. 

Output 
format 

(Answer) 

Based on these criteria and your analysis of linguistic patterns, coherence, sentiment, and emotional 
expressions in the transcript, output 0 if there is no indication of PTSD and 1 if PTSD is present.  Provide 
only the classification result (0 or 1) without any additional explanation. 

Output 
format 

(Answer + 
reasoning) 

Based on these criteria and your analysis of linguistic patterns, coherence, sentiment, and emotional 
expressions in the transcript, output 0 if there is no indication of PTSD and 1 if PTSD is present. Format 
Your Output as Follows: - The classification at the start in the format: “Final Classification: 0” or “Final 
Classification: 1”. - Step-by-step reasoning for the classification in less than 100 words. 

Few-shot 
examples 

Here are two examples, one positive and one negative: Transcript for a participant with PTSD: xxx. 
Classification: 1; Transcript for a participant without PTSD: xxx. Classification: 0 

of current PTSD symptomatology that would be observable in the interview transcripts. This 
approach augments the LLM's ability to perform psychiatric assessment by providing explicit 
diagnostic criteria, without requiring examples from our dataset.  



2.4.  Performance Evaluation 

For each model, we report multiple complementary metrics to provide a comprehensive view of 
predictive performance. Area Under the Precision-Recall Curve (AUPRC) was selected as our 
primary metric due to its robust performance in imbalanced datasets, providing better discriminant 
ability for rare-case scenarios compared to AUROC.25 AUPRC is particularly valuable in clinical 
settings where identifying positive cases (PTSD patients) is the primary concern, as it focuses on 
precision and recall trade-offs across different classification thresholds. 
      We also report Area Under the Receiver Operating Characteristic curve (AUROC) to evaluate 
discrimination performance across all possible classification thresholds, and balanced accuracy to 
account for potential class imbalance in our dataset. Balanced accuracy estimates the arithmetic 
mean of sensitivity and specificity, giving equal weight to performance on positive and negative 
classes regardless of their proportional representation. For all models, we determined optimal 
classification thresholds using the Equal Error Rate (EER) method, where the false positive rate 
equals the false negative rate. This threshold was then applied to calculate balanced accuracy, 
ensuring fair performance comparison across different model architectures.  
      For LLM-based prompting approaches, we implemented specialized methods to derive 
probability scores for metric calculation. For the zero-shot and few-shot approaches, we extracted 
logits from the model for both class labels (0 and 1) and converted to probabilities using SoftMax 
normalization. This approach provides a continuous measure of the model's confidence in each 
classification. For the chain-of-thought approach we employed a two-stage process, first collecting 
the reasoning output without the final classification, then feeding this reasoning back to the model 
to obtain logits for possible classifications. These logits were then normalized to probabilities for 
AUROC and AUPRC calculation. This methodology ensured comparable measurements across all 
model types despite their fundamental differences in classification approaches. 

2.5.  Comorbidity and Severity Analysis 

To investigate the relationship between PTSD and depression diagnoses, we conducted a 
comprehensive stratified analysis by comorbidity status and symptom severity. For comorbidity 
analysis, we examined prediction performance separately for patients with and without comorbid 
depression, allowing us to assess whether models performed differently across these clinically 
distinct subgroups. This analysis was conducted using AUPRC as the primary metric to maintain 
consistency with our overall evaluation framework. 
      For severity analysis, we stratified participants into discrete PCL-C severity bins designed to 
have approximately equal sample sizes within each group, ensuring robust statistical comparisons 
across severity levels. For PTSD-positive participants, we created four severity bins: 39-46 (lowest 
severity), 47-53, 54-62, and 63-85 (highest severity). For PTSD-negative participants, we 
established four corresponding bins: 17-19 (lowest scores), 20-25, 26-30, and 31-56 (highest scores 
approaching clinical threshold). This overlap in score ranges between diagnostic groups, present in 
the original data, underscores the complexity of PTSD diagnosis and explains some of the 
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classification challenges observed in our models. We calculated classification accuracy for each 
model within these severity bins to determine how symptom intensity affected model performance 
across the spectrum of PTSD presentations. The analysis was performed across all three approaches: 
end-to-end, embedding-based and prompt-based models, to identify consistent patterns and 
understand the challenges models face across different clinical presentations of PTSD. 

3. Results

3.1.  Supervised Learning Approaches 

3.1.1. End-to-End Fine-tuning Models 

The performance of different end-to-end fine-tuning BERT-based models for PTSD classification 
is presented in Table 2. Our analysis revealed substantial performance differences between models 
pre-trained on general text corpora versus those specialized for mental health domains. 

The domain-specific models consistently outperformed their general-domain counterparts 
across all evaluation metrics. Mental-BERT achieved an AUPRC of 0.647±0.101, representing a 
24.0% improvement over BERT-base (0.522±0.092). Similarly, Mental-RoBERTa demonstrated 
superior performance with an AUPRC of 0.675±0.084, a 12.7% increase from RoBERTa-base 
(0.599±0.145).  

Mental-RoBERTa achieved the highest AUPRC performance (0.675±0.084) among all end-to-
end fine-tuning approaches, establishing it as the best-performing transformer-based model for 
PTSD detection. Notably, while RoBERTa variants typically outperform BERT models in many 
natural language processing tasks due to their more robust pre-training, in our experiments the 
advantage of Mental-RoBERTa over Mental-BERT was modest:  only outperformed in AUPRC but 
underperformed in AUC and balanced accuracy. The domain of pre-training emerged as the 
dominant factor influencing performance, with both mental health-specific models substantially 
outperforming their general-domain counterparts. 

Table 2. Performance comparison of general and mental health-specific BERT and RoBERTa for PTSD detection 

BERT-base Mental-BERT RoBERTa-base Mental-RoBERTa 
AUPRC 0.522±0.0 92 0.647±0.101 0.599±0.145 0.675±0.084 

AUC 0.723±0.108 0.794±0.059 0.723±0.107 0.786±0.046 
Balanced Acc 0.702±0.101 0.739±0.091 0.662±0.088 0.695±0.092 

3.1.2. Embedding-based Models 

We then evaluated embedding-based classification using frozen pre-trained representations 
followed by logistic regression to assess whether this two-stage approach could outperform end-to-
end fine-tuning within the supervised learning category. 
      The SentenceBERT embedding + LR approach achieved an AUPRC of 0.758±0.128, 
representing a 12.3% improvement over the best end-to-end model (Mental-RoBERTa: 
0.675±0.084). This approach also demonstrated strong discriminative ability with an AUROC of 
0.856±0.069 and balanced accuracy of 0.801±0.097. The LLaMA embedding + LR method also 
showed competitive performance with an AUPRC of 0.693±0.094, AUROC of 0.835±0.046, and 
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balanced accuracy of 0.747±0.029, similarly exceeding Mental-RoBERTa's performance across all 
metrics (as shown in Table 3). 
      Both embedding-based approaches outperformed end-to-end fine-tuning, with SentenceBERT 
+ LR demonstrating the strongest performance among supervised learning methods. This finding 
suggests that pre-trained sentence-level embeddings, when combined with logistic regression on a 
small dataset, can capture linguistic patterns associated with PTSD more effectively than end-to-
end fine-tuning. The strong performance of both embedding approaches indicates that frozen 
language model representations contain rich semantic information that can be effectively leveraged 
by simpler linear classifiers. Moreover, the computational efficiency of embedding-based 
approaches makes them particularly attractive for clinical applications, as they eliminate the need 
for resource-intensive fine-tuning while delivering superior performance within the supervised 
learning category. 

3.2.  Instruction-Tuned Language models 

We evaluated various prompting strategies for PTSD classification using LLaMA 3.1 to assess 
whether large language models could achieve competitive performance without requiring labeled 
training data or domain-specific fine-tuning. 
      Zero-shot classification using LLaMA prompted with DSM-5 criteria achieved an AUPRC of 
0.701, AUROC of 0.841, and balanced accuracy of 0.751 (Table 3). This approach leveraged the 
model's pre-trained knowledge by providing explicit psychiatric diagnostic criteria in the prompt, 
demonstrating that LLMs can effectively utilize clinical guidelines to identify linguistic markers of 
PTSD without any training examples from our dataset. 
      Adding one positive and one negative example case to the prompt improved performance across 
most metrics. The few-shot approach achieved an AUPRC of 0.737, balanced accuracy of 0.804, 
and the highest AUROC of 0.875 among all instruction-tuned methods (Table 3). The superior 
AUROC performance indicates exceptional discriminative ability, suggesting that strategically 
selected examples enhance the model's ability to distinguish between PTSD and non-PTSD cases. 
      Chain-of-thought prompting, which required the model to provide step-by-step diagnostic 
reasoning before classification, achieved an AUPRC of 0.579, AUROC of 0.705, and balanced 
accuracy of 0.681 (Table 3). This approach showed the lowest performance among instruction-tuned 
methods, indicating that explicit diagnostic reasoning steps do not improve PTSD classification 
accuracy in this context. 

3.3.  Cross-Method Performance 

Table 3 presents a comprehensive comparison across all approaches. SentenceBERT + LR achieved 
the highest AUPRC (0.758±0.128) among all methods, representing the best overall performance 
for PTSD detection. However, few-shot prompting demonstrated the best discriminative ability 
(AUROC: 0.875) and competitive balanced accuracy (0.804). 
      Within supervised learning approaches, embedding-based methods consistently outperformed 
end-to-end fine-tuning, with both SentenceBERT + LR and LLaMA + LR exceeding Mental-
RoBERTa across all metrics. Among instruction-tuned approaches, the strong performance of zero-
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shot and few-shot approaches demonstrates that these models have successfully encoded substantial 
domain knowledge relevant to mental health assessment during pre-training, enabling competitive 
performance without labeled training data. 
      The results reveal distinct trade-offs between approach categories: supervised learning methods 
achieved the highest performance but require labeled training data, while instruction-tuned 
approaches achieved competitive performance with few trained data but need substantial 
computational resources to host the large models, offering advantages in scenarios where clinical 
training data is scarce or unavailable. 
Table 3. Performance comparison of fine-tuning, embedding-based, and prompting approaches for PTSD detection 

 End-to-end Embedding-based Prompt-based 
Mental RoBERTa SBERT + LR LLaMA + LR LLaMA ZS LLaMA FS LLaMA CoT 

AUPRC 0.675±0.084 0.758±0.128 0.693±0.094 0.701 0.737 0.579 
AUC 0.786±0.046 0.856±0.069 0.835±0.046 0.841 0.875 0.705 

Balanced Acc 0.695±0.092 0.801±0.097 0.747±0.029 0.751 0.804 0.681 

3.4.  Model Predictions Patterns: Severity and Comorbidity Effects 

3.4.1. Severity Analysis 

Results of our evaluation of model performance across different PTSD severity levels, based on 
PCL-C self-report scores, are shown in Figure 1. All six approaches (Mental-RoBERTa, 
SentenceBERT + LR, LLaMA + LR, and the three LLaMA prompting methods) exhibit similar 
performance patterns across PTSD severity levels, suggesting consistent challenges in classification 
based on symptom intensity. 

For PTSD-positive participants, most models demonstrated improved accuracy with increasing 
severity. Several approaches achieved perfect or near-perfect accuracy for the most severe cases 
(63-85 range): LLaMA + LR (100%), few-shot (100%), Mental-RoBERTa (92.9%), zero-shot 
(92.9%), and chain-of-thought (92.9%), while SentenceBERT + LR achieved 85.7%. These findings 
suggest that extreme cases at both ends of the severity spectrum (very low or very high PCL-C 
scores) are easier for models to classify correctly, while cases with moderate severity present the 
greatest challenge. 

Conversely, for PTSD-negative participants, all models showed declining accuracy with 
increasing severity scores, indicating that PTSD-negative participants with more severe symptoms 
are more likely to be inaccurately classified as having PTSD. Accuracy dropped substantially from 
the lowest severity bin (17-19) to the highest bin (31-56) across all approaches: Mental-RoBERTa 
(80.6% to 46.9%), SentenceBERT + LR (83.3% to 59.4%), LLaMA + LR (86.1% to 56.2%), zero-
shot (88.9% to 59.4%), few-shot (94.4% to 62.5%), and chain-of-thought (72.2% to 56.2%). This 
suggests that subclinical cases approaching the diagnostic threshold pose greater classification 
challenges, likely due to their linguistic similarities with mild PTSD presentations. 

Pacific Symposium on Biocomputing 2026

273



 
 

 

  
Figure 1. Accuracy of PTSD prediction by PCL-C severity score 

3.4.2. Comorbidity Analysis 

We then evaluated the predictive accuracy for PTSD while considering the influence of depression 
comorbidity, with results shown in Table 4. A striking finding emerged when comparing model 
performance across depression comorbidity groups using AUPRC as the evaluation metric. For 
patients with comorbid depression, all models demonstrated remarkably high AUPRC scores: few-
shot achieving 0.961, Mental-RoBERTa reaching 0.953, SentenceBERT + LR achieving 0.925, 
zero-shot reaching 0.915, LLaMA + LR achieving 0.879, and chain-of-thought reaching 0.859. In 
contrast, performance was substantially lower for PTSD classification among patients without 
depression, with AUPRC scores ranging from 0.381 to 0.574 across all models. 

This performance pattern was consistent across all methodologies, suggesting that the observed 
performance disparity reflects a complex interplay between comorbidity status and symptom 
severity. Supporting this interpretation, our correlation analysis revealed strong associations 
between PTSD and depression severity scores (overall Spearman ρ = 0.8426, p < 0.001). Further 
analysis revealed that participants with depression exhibited significantly more severe PTSD 
symptoms, with a median PCL-C score of 59.5 compared to PTSD participants without comorbid 
depression (median = 49.5; Welch's t-test: t=3.620, p<0.001). 

Table 4. AUPRC comparison of PTSD prediction in patient with/without depression 

AUPRC Overall patient with depression Patient without depression 
Mental RoBERTa 0.675±0.084 0.953±0.048 0.521±0.171 

SBERT + LR 0.758±0.128 0.925±0.073 0.574±0.137 
LLaMA + LR 0.693±0.094 0.879±0.070 0.562±0.100 

LLaMA zs 0.701 0.915 0.492 
LLaMA fs 0.737 0.961 0.467 

LLaMA cot 0.579 0.859 0.381 

4.  Discussion 

Our findings demonstrate the potential of advanced NLP approaches for detecting PTSD from 
clinical interview transcripts, while also revealing important challenges and considerations for 
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clinical implementation. The results highlight several key insights at the intersection of 
computational linguistics and mental health assessment. 
      Among supervised learning methods, embedding-based approaches demonstrated superior 
performance over end-to-end fine-tuning. The SentenceBERT embedding + logistic regression 
approach achieved the highest AUPRC performance (0.758±0.128), outperforming the best end-to-
end model (Mental-RoBERTa: 0.675±0.084). This suggests that decoupling embedding generation 
from classification through a two-stage approach offers significant advantages for PTSD 
classification from clinical transcripts, particularly when working with limited labeled data. The 
effectiveness of logistic regression with balanced class weights demonstrates that sophisticated 
neural network architectures are not always necessary for clinical text classification when high-
quality embeddings are available. 
      Within end-to-end fine-tuning approaches, domain-specific models (Mental-BERT and Mental-
RoBERTa) substantially outperformed their general-domain counterparts (BERT-base and 
RoBERTa-base), underscoring the importance of domain adaptation in mental health applications. 
This finding aligns with prior work in clinical NLP that has shown domain-specific language 
representations better capture the nuanced linguistic patterns associated with psychological 
distress.7, 26 The superior performance of mental health-specific models suggests that these pre-
trained representations more effectively encode the subtle linguistic markers of PTSD. 
      Our exploration of more complex supervised learning approaches—including BERT/Mental 
BERT embeddings, deep feed-forward neural networks and complex pooling strategies—did not 
yield performance improvements over the embedding + logistic regression approach, suggesting 
that for clinical interview transcripts, simpler approaches may be more robust and generalizable. 
      Among instruction-tuned approaches, our exploration of LLM prompting strategies revealed 
that zero-shot classification using clinical criteria can achieve competitive performance without any 
training examples, highlighting the potential of instruction-tuned LLMs to leverage encoded 
linguistic information.3 This finding has significant implications for low-resource scenarios where 
labeled clinical data is scarce or unavailable. The few-shot approach achieved the highest 
discriminative ability (AUROC: 0.875) among all instruction-tuned methods, suggesting that 
strategically selected examples can enhance LLM performance for clinical classification tasks, 
consistent with findings in other clinical NLP applications.10 
      Contrary to expectations, the chain-of-thought reasoning strategy showed lower performance 
despite its more structured analytical process. This pattern contrasts with findings in other domains 
where chain-of-thought reasoning typically enhances performance.9 This could indicate that the 
linguistic markers of PTSD in transcripts are detected by LLMs more through implicit pattern 
recognition than through the explicit application of diagnostic criteria in a sequential reasoning 
process. 
      The substantial performance differences observed across symptom severity levels and 
comorbidity status represent particularly clinically relevant findings. Most models exhibited a clear 
bidirectional pattern: declining accuracy with increasing severity for PTSD-negative cases and 
improving accuracy with increasing severity for PTSD-positive cases. This severity-dependent 
performance mirrors challenges faced by human clinicians, where clear-cut cases are more readily 
identified than those with moderate or subclinical presentations.27 This diagnostic complexity is 
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further illustrated by the inconsistencies between PTSD diagnoses and patient-submitted PCL-C 
scores observed in the DAIC-WOZ dataset. Such inconsistencies typically arise because clinical 
interviews and self-report measures often diverge in moderate severity cases—clinicians may apply 
diagnostic thresholds differently than standardized cutoffs used in self-report scales, and patients' 
subjective experiences of symptoms may not align with clinically observable manifestations, 
creating a challenging middle ground where diagnostic agreement is lowest. 
      The markedly higher performance for patients with comorbid depression raises important 
considerations for clinical implementation. This enhanced model performance in comorbid cases 
likely reflects the more readily detectable transdiagnostic symptoms—such as emotional 
dysregulation, sleep disturbances, and cognitive difficulties—that represent cross-cutting 
dimensional constructs consistent with Research Domain Criteria (RDoC) frameworks.28, 29 These 
shared symptom dimensions create stronger, more detectable linguistic signals when both conditions 
are present at higher severity levels. Rather than representing confounding between conditions, the 
substantial overlap in severe presentations indicates that comorbid cases manifest more pronounced 
psychological distress across multiple symptom domains, creating a more robust linguistic signature 
that facilitates computational detection.30 This interpretation is strongly supported by the consistent 
pattern observed across all model architectures and prompting strategies, suggesting a fundamental 
linguistic phenomenon rather than a model-specific limitation. 
      This finding has two primary clinical implications. First, automated screening tools based on 
current approaches may be most effective as part of a staged screening process, where they are used 
to identify potential cases for further clinical assessment rather than as standalone diagnostic tools. 
This approach could provide value in places where mental health specialists are limited, serving as 
an efficient tool to flag cases requiring clinical attention. Second, these tools may require specific 
calibration for different patient populations, considering both symptom severity and comorbidity 
profiles. The development of more sophisticated models that can distinguish PTSD-specific 
linguistic markers from general indicators of psychological distress remains an important direction 
for future research. 

5.  Limitations and Future Directions 

Several limitations should be considered when interpreting our findings. First, this study relied on a 
single dataset (DAIC-WOZ) with a relatively small sample size (189 participants), which may limit 
the generalizability of our findings. The limited sample size may explain why embedding-based 
approaches outperformed end-to-end fine-tuning approaches, as the latter require training the entire 
neural network and may be more prone to overfitting with insufficient training data. Second, the 
chunking and mean-pooling approach used to handle long transcripts may obscure the detection of 
temporal patterns that could be diagnostically relevant for PTSD, such as fragmented narratives 
when discussing traumatic events. While we explored alternative pooling strategies including 
attention-based and hierarchical long short-term memory pooling mechanisms, these did not 
improve performance over simple mean pooling. Third, while our approach incorporates DSM-5 
criteria in prompting strategies, the linguistic patterns captured by computational models may not 
fully align with the clinical reasoning process used in traditional diagnostic approaches. Fourth, our 
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few-shot prompting strategy used a simple selection method (highest and lowest PCL-C scores), 
which may not represent optimal example selection for enhancing model performance. More 
sophisticated example selection strategies based on linguistic diversity, diagnostic complexity, or 
active learning principles could potentially improve few-shot performance. Fifth, our evaluation was 
limited to a single LLM architecture (LLaMA 3.1), and performance may vary across different 
instruction-tuned models such as GPT-4, or other state-of-the-art LLMs. Finally, the DAIC-WOZ 
dataset, while valuable for its standardized interview format, may not fully represent the diversity 
of PTSD presentations across different trauma types, cultural backgrounds, and demographic 
groups. Evaluation on structured interview data may also limit generalizability to unstructured 
conversations. Future validation in diverse clinical settings and interview styles is essential to 
establish broader clinical utility. 
      Our work suggests several promising directions for future research. First, evaluation on larger, 
more diverse clinical datasets is needed to validate our findings and assess the scalability of 
embedding-based approaches. Second, multimodal approaches that combine linguistic analysis with 
audio and visual features could potentially enhance detection accuracy, particularly for patients who 
may not express their psychological distress linguistically. Third, developing more sophisticated 
sequence modeling approaches that can capture temporal dynamics while maintaining the efficiency 
of embedding-based methods represents an important technical challenge. Finally, future work 
should explore how these computational approaches can be integrated into clinical workflows to 
augment rather than replace clinician judgment, including developing interpretable models that 
provide clinicians with transparent reasoning for their predictions.   

6.  Conclusion 

Our comprehensive evaluation of language modeling approaches for PTSD detection demonstrates 
both the potential and limitations of current computational methods. embedding-based methods, 
particularly SentenceBERT combined with logistic regression (AUPRC=0.758±0.128), outperform 
both domain-specific end-to-end fine-tuning and large language model prompting strategies. While 
domain-specific pre-training showed clear benefits over general models, and prompt-based 
approaches achieved competitive performance without requiring labeled data (few-shot 
AUROC=0.875), all methods demonstrated substantially higher performance for patients with 
comorbid depression and performed worse with moderate-severity cases, suggesting current 
approaches may detect general psychological distress rather than PTSD-specific markers. These 
findings provide practical insights for clinical implementation, highlighting the computational 
efficiency and clinical viability of embedding-based approaches while underscoring the need for 
more nuanced methods to address the significant challenges in PTSD recognition and facilitate 
earlier intervention for those affected by this widespread condition.  
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