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for discovering disease relationships by analyzing over 1,300 disease—condition pairs using
GenoMAS, a fully automated agentic Al system. Beyond identifying robust gene-level over-
laps, we develop a novel pathway-based similarity framework that integrates multi-database
enrichment analysis to quantify functional convergence across diseases. The resulting disease
similarity network reveals both known comorbidities and previously undocumented cross-
category links. By examining shared biological pathways, we explore potential molecular
mechanisms underlying these connections—offering functional hypotheses that go beyond
symptom-based taxonomies. We further show how background conditions such as obesity
and hypertension modulate transcriptomic similarity, and identify therapeutic repurpos-
ing opportunities for rare diseases like autism spectrum disorder based on their molecular
proximity to better-characterized conditions. In addition, this work demonstrates how bi-
ologically grounded agentic Al can scale transcriptomic analysis while enabling mechanis-
tic interpretation across complex disease landscapes. All results are publicly accessible at
github.com/KeeeeChen/Pathway_Similarity_Network.
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1. Introduction

Modern disease classification is predominantly grounded in clinical symptoms, anatomi-
cal locations, and observable phenotypes.!3 While practical for diagnosis and treatment,
this symptom-centric taxonomy often obscures deeper biological relationships between dis-
eases—especially those with divergent clinical manifestations but shared molecular origins.*5
In contrast, transcriptomic signatures® capture gene expression patterns directly reflective of
underlying cellular mechanisms, offering a biologically principled lens to reexamine disease
relationships.

Recent studies have shown that transcriptomic profiling not only reveals disease-specific
pathways related to susceptibility,”® progression,® 1!
shared molecular programs®!415 across phenotypically distinct diseases. These shared pat-
terns, often invisible to clinical observation,'%!7 have profound implications for disease reclassi-
fication,'®!” biomarker discover,?%2! and therapeutic repurposing.???* However, realizing these
benefits at scale remains challenging:?42° each transcriptomic dataset requires extensive pre-
processing, normalization, and analysis—an effort that is labor-intensive and difficult to repli-
cate consistently across diverse biological and demographic contexts. Existing frameworks such
as Hetionet?® and DisGeNET?" have provided valuable resources for studying disease—disease
associations, yet they are largely knowledge-based: relying on curated gene—disease links or
heterogeneous databases. As a result, they are limited in capturing transcriptomic mechanisms
directly from large-scale molecular data or in accounting for condition-specific variation across
diseases.

To address this, we leveraged GenoMAS,?® a fully automated, agentic Al system that
performs large-scale transcriptomic analyses across 1,384 disease—condition pairs drawn from
the GenoTEX?? benchmark dataset. Each pair represents a disease under a specific biological
or demographic condition (e.g., age, sex, obesity, comorbidity), enabling nuanced profiling
across 132 diseases and 911 cohorts. Powered by a team of specialized LLM agents, the agentic
system performs end-to-end processing, from data cleaning to statistical inference, to identify
the genes associated with the disease status under the conditions. In other words, the agentic
system identified the transcriptomic signatures for each pair of disease and condition.

Building on these results, we construct a disease relation network through transcrip-
tomic signatures, identifying statistically significant transcriptomic overlaps between thou-
sands of disease—condition pairs. We validate this network against ICD-10-CM categories
and observe both strong within-category clustering and biologically plausible cross-category
links—highlighting hidden disease relationships overlooked by traditional taxonomy.

To further interpret the functional basis of these relationships, we extend our analysis to
the pathway level. By conducting multi-database enrichment and introducing a novel pathway-
based similarity scoring framework, we identify over 1,000 disease combinations that converge
on shared molecular pathways. These shared pathways reveal fundamental biological mech-
anisms that transcend clinical presentation and reflect the cellular logic underlying diverse
disease states.

and resilience,'>'® but also uncovers

Our analysis recovers well-established comorbidities (e.g., epilepsy and Canavan disease),
confirms mechanistically plausible cross-category relationships (e.g., ankylosing spondylitis
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Fig. 1: Agenetic Al analysis of transcriptomic data for transcriptomic signatures and the
network of diseases constructed from the signatures.

and osteoporosis), and—most notably—uncovers novel disease links that have not been previ-
ously reported in the literature. For these unexpected pairs, we hypothesize potential biological
mechanisms supported by shared pathways and gene functions, providing initial interpre-
tive insights to be explored in future studies—for instance, immune and glycosylation-related
convergence between Gaucher disease and kidney cancer, or shared metabolic signaling and
oxidative stress patterns observed in neurodegenerative diseases and Ocular Melanoma.

Finally, we explore how background conditions like obesity and hypertension modulate dis-
ease—disease transcriptomic similarity and highlight rare disease cases, such as autism spec-
trum disorder, where shared molecular signatures with more common diseases may inform
drug repurposing opportunities.

To encourage broader exploration of hidden disease relationships, we have made our full
results publicly available at github.com/KeeeeChen/Pathway_Similarity_Network. Addi-
tionally, an initial biological plausibility assessment was conducted using GPT-40 to highlight
approximately 200 disease-combinations that exhibit interpretable functional convergence. We
hope this resource can inspire new hypotheses and offer alternative perspectives for under-
standing disease mechanisms beyond established taxonomies.

In summary, the contributions of this paper are illustrated in Figure [I| and as follows:

e We perform large-scale transcriptomic signature analysis across 1,384 disease-condition
pairs using an agentic Al system (GenoMAS).

e We construct a gene-level transcriptomic similarity network based on transcriptomic
signatures, revealing both strong within-category and cross-category connections.

e We introduce a pathway-level similarity framework based on multi-database enrichment
and joint pathway scoring, identifying over 1,000 disease-condition combinations that
converge on interpretable molecular mechanisms.

e We highlight examples of transcriptomic convergence in both well-established and unex-
pected disease pairings, including several cases with no previously documented clinical
or molecular connection.

e We study how background conditions such as obesity and hypertension modulate tran-
scriptomic similarity between diseases, and identify rare diseases whose molecular pro-
files suggest potential therapeutic strategies based on cross-disease alignment.
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2. Results

Before presenting our main findings, we first clarify several key terms used throughout the
analysis. Our study involves multiple levels of comparison across diseases, biological conditions,
and their combinations. Table [1| summarizes the terminology used.

Table 1: Terminology used in this study

Term Definition / Example

Disease A clinical diagnosis or condition label. e.g., Liver Cancer

Condition A biological or demographic modifier that contextualizes the disease.
e.g., Obesity, Sex, Age, Hypertension

Pair A disease combined with a specific condition. e.g., Liver Cancer—Obesity

Combination A pairwise comparison between two disease—condition pairs.
e.g., (Liver Cancer—Obesity) vs. (Schizophrenia—Gender)

2.1. Gene-Based Similarity Network

To investigate inter-disease relationships at the transcriptomic level, we preliminarily analyzed
the statistical significance of overlap of transcriptomic signatures between every combination
of the 1,384 disease—condition pairs (hereafter, “combinations”).

Based on these shared gene relationships, we constructed a graph in which each node
represents a disease—condition pair, and each edge connects two pairs that significantly share
a set of genes (see Section for details). To validate the biological plausibility of the resulting
network, we compared our result with the ICD-10-CM classification system.! Specifically, we
prompted GPT-40 to assign an ICD category to each disease, and constructed a heatmap
of average pairwise gene similarity scores for both pairs within the same ICD category and
cross-category pairs. (Figure

As expected, many chapters show the strongest similarity within their own category—e.g.,
Chapter 6, 13, and 9 all display elevated diagonal values. However, the heatmap also reveals
that several chapters exhibit their highest similarity scores with other categories rather than
their own. For instance, certain subtypes within Chapter 2 and 3 share stronger transcriptomic
profiles with Chapter 13 than within their own chapters, suggesting biologically meaningful
cross-category overlap. While some of these connections may arise from annotation bias or
shared tissue origin, others may reflect previously overlooked biological commonalities.

Together, these findings suggest that while disease taxonomy based on anatomy or symp-
toms often aligns with molecular signatures, gene-level similarity can also uncover latent bi-
ological relationships that transcend clinical classifications. This motivated our subsequent
pathway-level analysis to probe deeper into shared mechanisms.

2.2. Pathway-Based Disease Similarity

While these combinations significantly shared some genes, their biological relevance remained
unclear without understanding what molecular processes these genes are involved in. To better
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Fig. 2: Heatmap of average gene-based similarity between ICD-10-CM chapters. Diagonal
blocks (e.g., Chapters 6, 9, 13) show strong within-category similarity, while several off-
diagonal blocks indicate cross-category transcriptomic convergence. Notably, chapter 2, 3,
10, and 11 show higher similarity to other categories than within their own, suggesting latent
biological overlap.

interpret the functional basis of disease similarity, we examined pathway-level overlap among
the 1,293 significant disease—condition combinations identified by our gene-based analysis (see
Section for details). Among these combinations, 1,060 were found to share at least one
enriched pathway. To visualize these relationships, we constructed a weighted undirected graph
(see Figure [3)) to provide a systems-level view of transcriptomic convergence across diseases.

This network reveals a clear tendency for nodes of the same ICD-10-CM category to
cluster together, which suggests that our pathway-based analysis, while agnostic to clinical
labels, nonetheless recapitulates key elements of traditional disease taxonomy. At the same
time, many edges span across categories, hinting at molecular commonalities that transcend
existing clinical boundaries.

Subsequent analyses in this study are grounded in this network representation. Specifically,
we focus on interpretable subgraphs extracted from the full network—such as highly connected
modules, cross-category clusters, and rare disease neighborhoods—to uncover novel patterns
of comorbidity, shared vulnerability, and potential therapeutic convergence. This pathway
network thus serves as the functional scaffold for the biological insights that follow.

2.2.1. Transcriptomic Simularity Reflects Symptom-Based Taxonomy

Many high-scoring combinations correspond closely to well-established disease relationships.
For example, Canavan Disease and Epilepsy—both neurological disorders—significantly
shared pathways such as detection of chemical stimulus, sensory perception, and G
protein-coupled receptor signaling pathway. These pathways are central to neuronal
communication and signal transduction, especially in sensory and stimulus-related neural ac-
tivity. This is consistent with clinical consensus.

There are also other top-scoring combinations aligned with known biological and clinical
groupings, including: - Stomach Cancer and Peptic Ulcer Disease, both involving the gas-
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Fig. 3: Pathway-level similarity network. Each node represents a disease-condition pair, col-
ored by ICD-10-CM category. Edges indicate statistically significant overlap in enriched path-
ways. Both the thickness and the length of each edge reflect the strength of similarity—stronger
pathway-level similarity results in shorter and thicker edges. Node size reflects degree central-
ity. While many nodes are connected, this visualization is designed to emphasize the strength
of similarity rather than the presence of connection.

Table 2: P-values of pathological-related shared Pathways in Canavan Disease and Epilepsy

Pathway Canavan_Disease—-None Epilepsy—None
detection of chemical stimulus 2.04 x 10722 3.72 x 10726
sensory perception 6.01 x 10~16 1.50 x 10722
G protein-coupled receptor signaling pathway 1.17 x 10713 2.43 x 10717

trointestinal system; - Depression and Schizophrenia, both major psychiatric disorders; -
Bladder Cancer and Endometrioid Cancer, which share hormonal and tissue-level common-
alities.

2.2.2. Cross-Category Transcriptomic Similarity with Empirical Support

Beyond well-established within-category associations, our pathway-based analysis also re-
vealed biologically meaningful links across some phenotypically unrelated disease categories.

One example is Ankylosing Spondylitis (AS) and Osteoporosis, two conditions tra-
ditionally categorized under musculoskeletal and metabolic disorders, respectively. They sig-
nificantly share genes such as AAMDC, ABCB1, and ABCAS5, along with enriched pathways
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related to lipid metabolism, cholesterol regulation, ABC transporters, steroid biosynthesis,
and xenobiotic response.

These functions jointly regulate inflammation, immune activity, and bone remodel-
ing—suggesting a shared biological axis linking chronic inflammation, lipid dysregulation, and
bone loss. This supports the hypothesis that inflammatory mechanisms in AS may drive os-
teoporosis risk through disrupted metabolic signaling. Our findings are consistent with recent
empirical studies confirming an elevated osteoporosis risk in AS patients,3*3! and with tran-
scriptomic evidence highlighting immune-driven bone density reduction.?? Our results further
clarify potential shared molecular mechanisms underlying this comorbidity.

We also observed high pathway-based similarity between Hemochromatosis and Liver
Cancer, supported by significantly shared genes such as AADAT, A1BG, AjJGNT, and AARS2.
These genes participate in pathways related to amino acid metabolism, mitochondrial function,
immune regulation, and glycoprotein processing.

These shared pathways converge on several key processes: iron overload in Hemochromato-
sis promotes oxidative stress and chronic inflammation in the liver—an organ central to both
conditions. Pathways such as Tryptophan metabolism, immune response signaling, and protein
glycosylation highlight a potential mechanistic chain involving metabolic disruption, immune
imbalance, and epithelial cell proliferation—all of which may facilitate hepatocarcinogenesis.

These findings align with prior epidemiological studies confirming elevated liver cancer
risk in patients with HFE-related Hemochromatosis,** and extend beyond prior expression
analyses by identifying a broader set of molecular mediators.3*

These examples illustrate how pathway-level similarity can provide complementary con-
text to gene-level overlap, offering candidate functional processes that may help interpret
co-occurrence patterns between diseases.

2.2.3. Transcriptomic Similarities That Are Potentially Unexpected from Conventional
View

One interesting outcome of our transcriptomic similarity analysis is the resemblance observed
between several phenotypically and clinically unrelated conditions. One example is Gaucher
Disease and Kidney Chromophobe. Although Gaucher Disease is a lysosomal storage disor-
der and Kidney Chromophobe is a renal carcinoma subtype, they share significant expression
of genes such as A1BG, AJGNT, and A2M, alongside co-enrichment in pathways involving
immune signaling, extracellular matrix (ECM) remodeling, and protein glycosylation.

These overlapping genes suggest a common functional landscape shaped by immune reg-
ulation, protein processing, and inflammation. A7BG has been linked to tumor-associated
immune modulation;3*3¢ A/GNT influences glycosylation—a process central to immune es-
cape and cellular signaling;3” and A2M is involved in ECM maintenance and inflammatory
control.?® Pathway-level analysis further reveals enrichment in immune response, ECM or-
ganization, glycoprotein biosynthesis, and cellular stress adaptation. Together, these find-
ings point to a shared cellular environment marked by chronic inflammation and metabolic
stress—hallmarks of both lysosomal disorders and tumorigenesis. While no direct clinical rela-
tionship has been reported between Gaucher Disease and Kidney Cancer, our results suggest
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a potentially overlooked biological intersection that warrants further investigation.

A second example involves an unexpected transcriptomic connection between Alzheimer’s
Disease & Parkinson’s Disease, and Ocular Melanoma. These conditions share significant
expression of AADAT and AASDH, genes involved in lysine349 and tryptophan metabolism,?’
which regulate NAD™ biosynthesis, glutamate balance, oxidative stress response, and immune
modulation.*'"43 Though these processes diverge in pathological outcomes, they are central to
both neurodegeneration and cancer.

As shown in Figure ] we observed shared enrichment in pathways related to amino acid
catabolism, $-oxidation, and cellular response to oxidative stress. In neurodegenerative dis-
ecases, these pathways are often impaired,** leading to energy failure and excitotoxicity. In
contrast, Ocular Melanoma exhibits enhanced -oxidation,*> supporting tumor proliferation
and immune evasion. This inverse utilization of the same metabolic axis may reflect a mecha-
nistic fork, shaped by the shared neural crest origin of retinal and neural tissues.?6 AADAT’s
dual role in neural excitotoxicity and tumor immune regulation further supports this.

Although no clinical relationship has been established between neurodegenerative disor-
ders and Ocular Melanoma, the observed transcriptomic similarities may reflect a shared
developmental or metabolic context. These findings raise the possibility of underlying molec-
ular features that span traditionally unrelated disease categories, which may merit further
investigation through functional or mechanistic studies.

P1: small molecule metabolic process
P2: oxoacid metabolic process
P3: fatty acid metabolic process
P4: organic acid catabolic process
P5: carboxylic acid catabolic process
P6: amino acid catabolic process

P7: alpha-amino acid catabolic process
P8: L-amino acid catabolic process

P9: Tryptophan metabolism

Fig. 4: Shared transcriptomic pathways between Alzheimer’s Disease and Ocular Melanoma.
The graph displays the top 50 most significant enriched pathways in each disease. Blue nodes
represent highly enriched but not shared pathways. Green nodes indicate pathways shared
by both diseases, with darker green highlighting the pathways discussed in which are
potentially relevant to the comorbidity. Edge labels reflect pathway significance (p-values),
and edge lengths scale with significance.
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2.3. Disease—Condition Interaction Analysis: Triggers of Comorbidity

While disease—disease similarities often reflect shared genetic programs or pathological mecha-
nisms, the presence of specific physiological or environmental conditions can further modulate
the expression of such relationships. In our analysis, we explored disease—condition pairs to
understand how background factors—such as obesity or hypertension—may shape transcrip-
tomic overlaps and increase the risk of co-occurrence.

One interesting case involves the co-occurrence of Celiac Disease and Uterine
Carcinosarcoma in obese individuals. Though one is an autoimmune enteropathy and the
other a rare uterine malignancy, they share dysregulation of genes such as A1CF, AACS, and
ABCBI1, which point to altered mRNA editing, amino acid metabolism, and xenobiotic trans-
port. These genes are enriched in pathways that are particularly sensitive to metabolic dys-
regulation in obesity, including glycosphingolipid biosynthesis, bile secretion, and branched-
chain amino acid degradation. In obese individuals, chronic inflammation, disrupted metabolic
homeostasis, and impaired detoxification mechanisms may jointly promote both autoimmune
activation and tumorigenesis, thus creating a fertile biological landscape for comorbidity.

Another example is the comorbidity of Acute Myeloid Leukemia and Osteoarthritis
in individuals with hypertension. These diseases converge on genes such as A2ML1 and A2M,
which regulate extracellular matrix homeostasis and inflammation, as well as A1CF, which
modulates immune signaling through RNA editing. The two diseases also share enrichment in
immune and complement pathways, ECM degradation, and glucocorticoid response—features
that are frequently exacerbated in hypertensive individuals. Hypertension, by promoting sys-
temic inflammation, endothelial dysfunction, and hormonal imbalance, may amplify shared
transcriptomic vulnerabilities in both hematologic and joint tissues.

This is not an isolated observation. In fact, 11 of the top 20 highest-scoring dis-
ease—condition pairs in our transcriptomic similarity analysis involve hypertension, including
connections with Acute Myeloid Leukemia, Adrenocortical Cancer, Gaucher Disease,
and Osteoarthritis. These findings underscore the wide-reaching systemic impact of hy-
pertension—not just as a cardiovascular risk factor, but as a molecular amplifier of disease
vulnerability across diverse biological systems. Given its high prevalence and silent progression,
we emphasize the importance of early detection and integrative management of hypertension
to mitigate its far-reaching comorbidity burden.

2.4. Hypotheses Related to Rare Diseases

In addition to mapping disease—disease similarity, we also examined whether transcriptomic
overlaps with well-characterized conditions could highlight underexplored disorders that worth
further investigation. For example, we extracted the subgraph centered on Autism Spectrum
Disorder (ASD). As shown in Figure [ this local network reveals close transcriptomic and
pathway-level similarity between ASD and other conditions, including Osteoporosis and
Type 1 Diabetes. While these two diseases are typically studied in distinct clinical domains,
their established therapeutic pipelines and shared molecular features with ASD raise the
possibility of identifying underexamined connections or therapeutic hypotheses, particularly
in individuals with overlapping metabolic or immune phenotypes.
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Fig. 5: Subnetwork of diseases showing significant pathway-level similarity to ASD (the red
node with index N4). Osteoporosis and Type 1 Diabetes (T1D) emerge as strongly connected
conditions, both with established pharmacological pipelines.

In the case of Osteoporosis, ASD shares genes such as AADAC, ABCF3, and ABCAY,
which participate in lipid metabolism and ABC transporter pathways. While these genes
have not been directly targeted in ASD, several lipid-modulating agents—such as statins,
bisphosphonates, and ANGPTL3/APOC3 inhibitors—have demonstrated activity along the
same pathways. Their mechanistic action on lipid regulation and inflammatory balance raises
the possibility that they could be repurposed for ASD, particularly in individuals with lipid
signaling or neuroinflammation phenotypes.

A similar pattern emerges with T1D: shared genes like AADAT, ABCDI1, and AATF
point to convergence in fatty acid oxidation, mitochondrial stress, and immune dysregula-
tion. Corresponding therapeutic approaches—ranging from anti-inflammatory agents (e.g.,
al-antitrypsin, TYK2 inhibitors) to metabolic modulators (e.g., ABCD1 gene therapy, PPAR~y
agonists like Leriglitazone)—may offer a foundation for exploratory ASD interventions aimed
at metabolic or immune correction.

3. Methodology
3.1. Large-Scale Gene Analysis via Transcriptomic Agentic AI System

To explore disease relationships from a transcriptomic perspective, we leveraged the Geno-
TEX dataset,?® a large-scale, biologically curated benchmark for automated gene expression
analysis. GenoTEX comprises 1,384 gene—disease association problems, spanning 132 distinct
human diseases, each analyzed under varying biological or demographic conditions (e.g., age,
sex, obesity, hypertension, or comorbidities). For clarity, we refer to the combination of a dis-
ease and a condition as a “disease—condition pair”, or simply a “pair”, throughout this study.
The dataset encompasses 911 unique cohorts, totaling over 150,000 biological samples, with
each cohort containing more than 18,000 normalized gene features on average.

To process this data at scale, we employed GenoMAS,?® a multi-agent agentic Al framework
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built for code-level automation in genomic analysis. In practice, GenoMAS automates the full
workflow of gene expression analysis—from dataset retrieval and preprocessing to regression-
based gene-trait association modeling. During preprocessing, the system standardizes hetero-
geneous data formats (e.g., RNA-seq and microarray), performs gene identifier normalization,
and applies corrections for batch effects and population stratification. For statistical infer-
ence, it primarily relies on regularized regression (e.g., Lasso) to select trait-associated genes
under high-dimensional settings, while incorporating confounder adjustment and imputation
strategies to ensure robust signal detection. Using this system, we performed end-to-end gene
significance analysis for all 1,384 disease—condition pairs. The results include gene-level effect
sizes (regression coefficients), lists of significant genes.

3.2. Gene-Based Similarity Network

To quantify transcriptomic similarity, we assessed gene overlap significance for each of the
pairwaise combinations of 1384 pairs. For each pair, we retained genes with |5] > 0.05 from
Lasso regression, filtering out weak associations. We then computed shared genes between each
combination and performed a bidirectional hypergeometric test, testing enrichment of set A
within set B and vice versa, so that significance was not driven solely by large gene sets, while
accounting for gene set sizes and the full gene universe (18,0004 genes). Benjamini-Hochberg
correction was applied to adjust for multiple testing.

We retained only combinations with false discovery rate (FDR) < 0.05, yielding approxi-
mately 65,000 significant pairwise links out of nearly 1 million tested combinations.

To avoid redundancy, we further filtered out overlapping combinations involving general-
ized condition entries labeled as None (i.e., entries not conditioned on any specific biological
factor). For example, if a significant link was already identified between Diseasel--None and
Disease2--0besity, then additional links such as Diseasel--Sex or Diseasel--Age with
Disease2--0besity were considered redundant, as the shared signal likely reflects disease-
level rather than condition-specific effects. This de-duplication step prevents generalized as-
sociations from inflating or obscuring condition-specific links, reducing the network from over
65,000 initially significant combinations to 1,293 unique links after filtering.

We constructed a gene-level similarity network using NetworkX. In this network, each
node corresponds to a disease—condition pair, and an edge is drawn between two nodes if their
overlap of significant genes passes the bidirectional hypergeometric test after FDR correction.
To quantify edge strength, we defined the weight as —log;,(FDR), such that more significant
overlaps are assigned larger weights. The resulting weighted graph thus captures both the
presence and relative strength of transcriptomic similarity among disease—condition pairs.

For visualization, we employed the nx.spring layout() algorithm to arrange nodes in
2D space. To account for edge strength, we defined the layout weight as the inverse of the
edge similarity score (wy, = 1/(weight,, + 1075)), so that stronger similarities correspond to
shorter distances. We set the repulsive force parameter to k = 0.2 to generate a more compact
layout. These settings allow the visualization to reflect both the local clustering and the global
structure of the similarity network in a consistent manner.

To annotate the biological identity of each node, we assigned an ICD-10-CM category to
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every disease using GPT-40. These categories were also used as node colors in the visualization
for pathway-based similarity network (Figure (3.

3.3. Pathway-Based Disease Similarity

To investigate functional overlap among disease—condition pairs, we performed pathway en-
richment analysis and similarity scoring for all 1,293 significant combinations identified in the
gene-level analysis.

Pathway Enrichment per Pair. For each disease—condition pair, we mapped significantly
expressed genes (with |3] > 0.05) to pathways using six complementary annotation databases:
GO:Biological Process (GO:BP),*” Reactome (REAC), KEGG,*® transcription factor targets
(TF), miRNA targets (MIRNA), and Human Phenotype Ontology (HP).*? This ensures both
biological breadth and low redundancy. We adopted the g:Profiler®® framework to retrieve
enriched terms. g:Profiler selects higher-level, abstracted pathway terms to mitigate semantic
variability across databases and maximize interpretability.

Identification of Shared Pathways. For each disease—condition pairwise combination
(hereafter, “combination”), we focused only on the genes that were shared between the two
pairs. For each such shared gene, we retrieved its pathway annotations in both pairs. A path-
way was considered “shared” if it was enriched for the same gene in both pairs.

Similarity Scoring. To quantify the overall strength of pathway-level similarity between
two disease—condition pairs, we computed a cumulative score across all shared pathways using
the following formula:

N
Similarity Score = Z [log(1 — p1x) +log(1 — pax)]
k=1

Here, N is the number of shared pathways between the two pairs, and py, por are the enrich-
ment p-values of the k-th pathway in the first and second pair, respectively. For each pathway,
this score reduces to log((1 — p1x) X (1 — pax)), which reflects the joint probability that both
enrichments are non-random. That is, the score becomes more positive when both p; and ps
are small, indicating that the pathway is likely involved in both disease contexts. Summing
across all such shared pathways allows us to capture not just the presence of overlap, but the
joint confidence in their functional relevance.

Filtering. We retained only combinations where at least one shared pathway had a positive
similarity score, indicating non-random co-enrichment. This yielded 1,060 pathway-supported
combinations out of the original 1,293 gene-sharing ones.

Pathway-level Graph Construction To visualize cross-disease functional similarity, we
constructed an undirected weighted network in which each node represents a disease-condition
pair. An edge is drawn between two nodes if the two diseases share at least one enriched path-
way. The edge weight corresponds to the pathway-level similarity score. Node size reflects its
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degree (i.e., the number of connected neighbors), and node color encodes ICD-10-CM cate-
gories. Similar to the gene-level network, we applied a spring-force layout in which edge lengths
are inversely proportional to similarity weights. To better illustrate the strength of functional
similarity, edge thickness is scaled proportionally to the similarity score—stronger similarities
are rendered as thicker connections. In subsequent analyses, we also constructed disease-level
subgraphs by collapsing the condition dimension (e.g., Figure . In these subgraphs, node size
reflects the average degree of each disease across all associated conditions, while edge width
and length correspond to the average pathway similarity between the connected diseases.

4. Limitation and Discussion

This work has several limitations. Most importantly, our results are hypothesis-generating
rather than experimentally validated. While we provide mechanistic hypotheses for selected
examples, these remain speculative until confirmed by biological experiments. For other find-
ings, we performed an initial interpretability assessment using GPT-40, but these outputs still
require expert review and validation to ensure robustness.

We envision several ways in which our resources may support future research. The sim-
ilarity network may help generate hypotheses on disease etiology, comorbidity, or molecular
mimicry. For instance, rare-disease investigators may identify molecular patterns shared with
more prevalent conditions, suggesting avenues for drug repurposing or biomarker development.
Gene- and pathway-level results may also guide validation studies, especially in evaluating the
functional relevance of shared molecular programs. Finally, by providing structured and in-
terpretable outputs from Al-generated analyses, we aim to lower the barrier for translational
researchers to engage with complex transcriptomic datasets.

More broadly, we advocate closer integration of Al systems with biomedical research—mnot
just automation, but biologically interpretable and clinically useful output. Agentic Al, when
grounded in biological context, can help bridge the gap between large-scale computation and
meaningful biological interpretation.

5. Conclusion

This study introduces a transcriptomics-driven framework for rethinking disease relationships
beyond traditional clinical boundaries. Leveraging the GenoMAS system, we analyzed over
1,300 disease—condition pairs to construct both gene- and pathway-level similarity networks.

Our multi-layered approach reveals both well-established comorbidities and novel cross-
category links, proposing molecular connections across diseases through shared pathways in
metabolism, immune response, and cellular stress. We further show that systemic condi-
tions such as obesity and hypertension modulate transcriptomic similarity, while rare dis-
eases like autism spectrum disorder may benefit from therapeutic hypotheses derived from
better-characterized conditions.

By publicly sharing our results and network resources, we aim to support hypothesis gen-
eration and translational research. More broadly, this work demonstrates how biologically
grounded agentic Al can scale transcriptomic analysis while enabling mechanistic interpreta-
tion across complex disease landscapes.
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